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ABSTRACT: Three-dimensional (3D) printing has emerged
as a potential revolutionary technology for the fabrication of
microfluidic devices. A direct experimental comparison of the
three 3D printing technologies dominating microfluidics was
conducted using a Y-junction microfluidic device, the design of
which was optimized for each printer: fused deposition
molding (FDM), Polyjet, and digital light processing stereo-
lithography (DLP-SLA). Printer performance was evaluated in
terms of feature size, accuracy, and suitability for mass
manufacturing; laminar flow was studied to assess their
suitability for microfluidics. FDM was suitable for micro-
fabrication with minimum features of 321 ± 5 μm, and rough
surfaces of 10.97 μm. Microfluidic devices >500 μm, rapid
mixing (71% ± 12% after 5 mm, 100 μL/min) was observed, indicating a strength in fabricating micromixers. Polyjet fabricated
channels with a minimum size of 205 ± 13 μm, and a surface roughness of 0.99 μm. Compared with FDM, mixing decreased
(27% ± 10%), but Polyjet printing is more suited for microfluidic applications where flow splitting is not required, such as cell
culture or droplet generators. DLP-SLA fabricated a minimum channel size of 154 ± 10 μm, and 94 ± 7 μm for positive
structures such as soft lithography templates, with a roughness of 0.35 μm. These results, in addition to low mixing (8% ± 1%),
showed suitability for microfabrication, and microfluidic applications requiring precise control of flow. Through further
discussion of the capabilities (and limitations) of these printers, we intend to provide guidance toward the selection of the 3D
printing technology most suitable for specific microfluidic applications.

A dditive manufacturing, or three-dimensional (3D) print-
ing, has gained significant attention in manufacturing,

because it can directly create 3D designs from a computer-aided
drawing (CAD) file. For more than a decade, engineers and
designers have been using 3D printers to make prototypes
quickly and inexpensively, before embarking on the expensive
business of equipping a factory to produce the final product.
Over time, 3D printing technologies have advanced and been
adapted to work with a broad range of materials, including
production-grade plastics and metals. Consequently, the
technology evolved from a rapid prototyping approach to a
manufacturing method, with more than 20% of the output now
in the form of final products.1 3D printing has found
applications in the manufacture of airplanes, shoes, and
clothing, but also in the medical field, providing bone
replacements and dental implants. There has been a significant
effort toward exploring the potential of 3D printing for new
applications, such as microfluidics and biomedical engineering.
While 3D printing was first developed in the 1980s,2 there has

been a surge of interest in the implementation of 3D printing in
non-traditional areas, with 80% of the academic papers on 3D
printing being published in 2012 and beyond.
In the field of microfluidics, 3D printing offers the capability

to directly print complex 3D microfluidic devices with low-cost
desktop printers, changing the way in which such devices are
conceived, designed, and manufactured. This underpins a
potential rapid growth and expansion of industries involved in
the manufacturing of portable chemical sensors, as well as
diagnostic and biomedical research devices. Providing design
and the evaluation of prototype devices within hours at the cost
of tens of dollars per device or less, 3D printing provides an
attractive alternative to the weeks and hundreds to thousands of
dollars typical for traditional microfabrication approaches. In
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the late 1990s, the introduction of polydimethylsiloxane
(PDMS) and soft lithography allowed researchers to prototype
with a simple and low-cost infrastructure, significantly
expanding microfluidic research. However, PDMS has many
known limitations,3 including the complicated commercial
translation of academic research, because of difficulties in large
volume manufacturing. To this end, 3D printing adds the
potential to prototype in materials that are compatible with
large volume manufacturingsuch as thermoplastics used in
embossing and injection moldingwith the simplicity,
flexibility, and cost of soft lithography, and may even be a
viable manufacturing approach by itself for highly complex 3D
geometries, or specialist devices that may only require low to
moderate volume production.
The suite of 3D printing technologies has been discussed in

detail;4,5 of particular interest for microfluidics are fused
deposition molding (FDM), stereolithography (SLA), inkjet/
Polyjet, two photon lithography, selective laser sintering, and
layered hydrospinning.6 FDM was first demonstrated as a
method for fabricating templates for soft lithography of
microfluidic devices with PDMS in 2002,7 which was followed
shortly thereafter by the same group using an inkjet 3D printer.
In 2012, FDM printing was used for the direct fabrication of
microfluidic chemical reaction-ware.8 As the resolution and

accessibility of 3D printers has evolved, so too has the
complexity of 3D printed microfluidic devices, with recent
reports demonstrating direct printing of 3D micromixers9 and
devices with integrated valves.10 We have shown that 3D
printed channels of 250 μm × 250 μm can be achieved by DLP-
SLA within a matter of minutes, using commercially available
desktop 3D printers,9 and using DLP-SLA with an in-house-
developed resin, Nordin et al. fabricated enclosed micro-
channels with dimensions of <100 μm (60 μm × 108 μm),11 as
well as integrated valves, pumps, and multiplexors.12 3D
printing technology has also found its way into soft robotics
with the autonomous microfluidic powered soft octopus,13 and
our group reported laser sintering for the fabrication of 3D
metallic microfluidic devices.14

As summarized above, a variety of 3D printing approaches
have been used for the fabrication of microfluidic devices,
documented in over 100 papers related to 3D printing and
microfluidics. This includes several reviews that discuss and
contrast the different printing approaches and the devices that
have been made by each.6,15−19 With a wide range of printers
on the market, the suitability for the microfluidic market has
been studied by comparing different SLA printers,20 different
inkjet printers both from Stratasys, and 3D Systems,21 as well as
a direct comparison between Polyjet and FDM technologies.22

Figure 1. Illustration of 3D fabrication methods, and photographs of 3D printed laminar flow devices with 500 μm input channels, and 750 μm
laminar flow channel filled with green food dye. (a) FDM method, in which molten plastic is extruded through a heated nozzle, according to the G-
code. The features are formed by moving the nozzle in the XY-plane until the current layer was complete, when the build platform was then dropped
by a set level (50 μm) before moving to the next layer. (b) Polyjet (i3DP) method, where two sets of four-micronozzle arrays (build and support
material, respectively) are spraying microdroplets of polymer to form the device. Following each pass, UV lamps polymerize the material before the
layer is leveled by a roller and scraper. (c) DLP-SLA method, in which 365 nm light was projected onto a build platform immersed in liquid
photopolymer. Following each exposure, the build platform was raised then lowered back into the resin bath for the next 50 μm layer. Scale bars = 1
cm.
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While these are all valuable contributions, a cross-platform
comparison including microfluidic performance is missing.
Here, the three most commonly used printing technologies

in microfluidicsFDM, Polyjet, and DLP-SLAare critically
compared for their ability to fabricate microfluidic devices. The
design of a Y-junction microfluidic device was optimized for
each printer, to achieve optimal microfluidic performance. In
comparing the devices, consideration was given to the positive
and negative feature analysis of SEM images, measurement of
surface roughness, production and infrastructure requirements,
and a microfluidic performance based on a study of mixing two
adjacent flows within the channels. The objective of this report
is to provide the information required for informed decision
making, as compromises will be required when selecting a 3D
printing approach in microfluidics. In a field as diverse as
microfluidics, there is not a single 3D printing technology
capable of accommodating all the needs, but a technology that
best serves each individual application.

■ EXPERIMENTAL SECTION

Materials. Veroclear-RGD810 print material and SUP707
water-soluble support were purchased from Stratasys, Ltd.
(Eden Prairie, MN, USA). Crystal Clear acrylonitrile−
butadiene−styrene (ABS) 1.75-mm-diameter filament was
purchased from 3D Printing Systems (Melbourne, Australia).
BV-007 photopolymer was purchased from MiiCraft (Young
Optics, Inc., Hsinchu, Taiwan). Isopropanol, and sodium
hydroxide (NaOH) were purchased from Sigma−Aldrich
(Sydney, Australia). Colored food dyes were purchased locally
and used as received. Deionized water was provided, using a
Merck Millipore purification system (Bedford, MA, USA).
Instrumentation. The laminar flow devices were designed

using SolidWorks 2015−2016 (Dassault System̀es SE, France),
and were printed with a Felix 3.0 (FELIX 3D printers,
Nieuwegein, The Netherlands), Objet Eden 260VS professional
3D printer (Stratasys, Ltd., Eden Prairie, MN, USA), and a
MiiCraft+ desktop DLP-SLA 3D printer (Young Optics, Inc.,
Hsinchu, Taiwan). Slicing of .stl files into G-code for the Felix
3.0 was completed using KISSlicer v1.5, and printing was
controlled by Repetier Host v1.05 (Willich, Germany). Objet
Suite v9.211.3626 (Stratasys Ltd., Eden Prairie, MN, USA),
sliced and processed models for printing, according to
manufacturer guidelines. For the MiiCraft+, devices were sliced
using Creation Workshop (DataTree3D, Dallas, TX, USA), and
edited in Photoshop Elements 14.1 (Adobe Systems Inc., San
Jose, CA, USA) before printing on the MiiCraft+ controller
software. Surface data were collected using a Veeco Wyko
NT9100 surface profilometer (Bruker Corporation, Billerica,
MA, USA), and data were processed with Vision 4.20. SEM
images were taken using an Analytical UHR Schottky emission
scanning electron microscope (Model SU-70, Hitachi, Chiyoda,
Tokyo, Japan). For pumping of dye into the devices, a dual
syringe pump (Harvard Apparatus, Inc., Holliston, MA, USA)
with 10 mL of disposable plastic was used, with sample volumes
of 10 mL for both blue and yellow dyes. The flow rates selected
were 25, 50, and 100 μL/min. PEEK tubing OD 1.59, ID 0.508
mm (P/N: 052308) was supplied by Thermo Fisher Scientific
(Waltham, MA, USA). For measurement of the fabricated
channels and diffusion cones, ImageJ was used.
Fabrication of Laminar Flow Devices. Three methods

were used to fabricate the devices: (i) FDM (Felix 3.0), (ii)
PolyJet (Eden 260VS), and (iii) DLP-SLA (MiiCraft+). These
three methods are depicted in Figure 1. Test parts containing

open and closed channels with 1000, 750, 500, 350, and 250
μm dimensions, with 1:1 ratio and 1:1.5 ratio channels, were
printed for analysis and characterization. Because of the
limitations in the resolution that can be obtained using the
Felix 3.0, only devices containing 1000, 750, and 500 μm
channels were produced for comparison with the other printers.
All structures were printed and analyzed in triplicate.

FDM Printing. FDM printing involves extruding thermal
plastic through a heated nozzle, which was controlled by two
precision stepper motors, following coordinates specified by G-
code generated using KISSlicer, using the following parameters:
layer height, 100 μm; extrusion width, 300 μm; infill, 100%; 5
mm/s, print speed; 1 loop stroke. After depositing each layer,
the build platform was lowered 100 μm before extruding the
next layer. A single nozzle was used to extrude Crystal Clear
ABS at a temperature of 210 °C for the first layer, 185 °C for
the rest while the build platform was at 70 °C throughout the
print. After completion of the print run, reservoirs were cleared
of stray fibers. No support material was used.

PolyJet Printing. PolyJet printing involves jetting a
photopolymer using linearly arranged nozzles, then spraying
microdroplets onto the build surface, where the material was
polymerized using an integrated UV light source. Voids in the
model were filled with a support material, which was removed
after the printing process had been completed. All devices were
fabricated with Veroclear-RGD810 build material, in combina-
tion with SUP707 as a water-soluble support. Orientation of the
devices was always aligned with the print head, so that the roller
texture was parallel to the main fluidic microchannel, and
printed flat on the build platform in matte mode. To dissolve
the soluble support, devices were soaked in water for up to 6 h,
depending on the channel size, followed by soaking in 2%
NaOH for up to 3 days with sonication, and finally flushed with
a water jet.

DLP-SLA Printing. DLP-SLA printing involved optically
curing a photopolymer through a clear bottomed bath by a
digital projector, with the vertical movement of the build
platform being controlled by a single stepper motor. Using the
projector, each slice of the device was projected onto the
bottom of the bath to attach to the build platform. After each
exposure, the platform with the previous layer(s) was raised,
then lowered to a position minus the height of the previous
layer (50 μm in this work). Post-processing of the device
involved removal of nonpolymerized resin from the channels
using compressed air and bonding the device to a glass
microscope slide (25 mm × 75 mm) by pressing a glass slide
onto the device, onto which a drop of BV-007 resin was placed,
before curing by exposure to UV light (365 nm) for 5 min. This
bonds the device to a glass base for easier handling, and it post-
cures the structure.

■ RESULTS AND DISCUSSION

Three printers were selected for evaluation: FDM, DLP-SLA,
and Polyjet. The manufacturer specifications are provided in
Table 1, and schematic representations of the printing
processes are shown in the first row of Figure 1, as well as
photographs of fabricated devices from each of the printers.

Microfabrication. Initial characterization of the three
printers was performed by printing a series of positive and
negative structures (data shown in Table 1, and Figure 2 shows,
in SEM images, a small piece of the template that has both 250
and 350 μm open and closed channels. The channels from the
FDM printer (Figure 2a) did not form, according to the design.

Analytical Chemistry Technical Note

DOI: 10.1021/acs.analchem.7b00136
Anal. Chem. 2017, 89, 3858−3866

3860

http://dx.doi.org/10.1021/acs.analchem.7b00136


There were polymer beads making connecting channels
(features “1” and “2” in Figure 2a) and rough and deformed
areas where the nozzle changed direction (feature “3” in Figure
2a). Channels printed with the Polyjet printer (Figure 2b) met
the 250 and 350 μm channels specified in the design (features
“4” and “5” in Figure 2b). The spray and roll process of the
PolyJet made for a distinctive texture on the top surfaces,
including the bottom/top surface of the channel (feature “5” in
Figure 2b). The height of each layer was 17.3 ± 2.4 μm (n =
12), which is close to the 16 μm specified by the printer
manufacturer, causing a layering effect in the sidewalls (feature
“4” in Figure 2). The top cover for the closed channels had an
organic, grown appearance at the edge (feature “6” in Figure
2b), which was due to the interaction between the support and
the build material. Channels fabricated by the DLP-SLA
(Figure 2c) were the closest in appearance to a device
fabricated with traditional microfabrication methods, with
straight sidewalls. The height of each layer was 37 ± 1 μm
(n = 3) with a roughness (Ra) of 3 μm (feature “7” in Figure
2c). The grid texture on the top surfaces, including inside the
microchannel, appeared because of the pixels (56 μm × 56 μm)
from the projector CCD and uneven illumination from each

pixel. Back-exposure was a significant issue, as the closed
channels would often block (feature “8” in Figure 2) the
pathway when the resin trapped in the channel was exposed;
careful optimization of the print parameters was required to
avoid this.
The correlation between the size of the designed and

fabricated channels is shown in Figure 3. All of the printers
demonstrated a linear correlation; however, the accuracy and
precision varied.

Using FDM, it was impossible to fabricate chips with
channels smaller than 500 μm, which correlates with the
findings by Lee et al.,22 and channels were consistently smaller
(−107 ± 36 μm) than designed; this is due to spreading of the
polymer as it is extruded. It was observed that the diameter of
the nozzle had significant impact on the channel width;
however, it is possible to fabricate channels <500 μm by
reducing the distance between deposition passes, as demon-
strated by Anciaux et al.23 Fabrication by the PolyJet was found
to produce slightly smaller channels (−40 ± 36 μm), with a
similar deviation to the FDM. Closed and open channels as

Table 1. Comparison of Fabrication, and Production Factors
of Microfluidic Devices for the 3D Printers in This Work

FDM
(Felix 3.0)

Polyjet
(Eden 260VS)

DLP-SLA
(Miicraft+)

Fabrication Factors

printer resolution XYZ
(μm)

300 × 300
× 50

250 × 250 × 16 56 × 56 × 50

+ve feature min (μm) 321 ± 5 270 ± 70 94 ± 7

−ve feature min (μm) 370 ± 7 205 ± 13 154 ± 10

build areas XYZ (mm) 240 × 205
× 235

255 × 252 × 200 43 × 27 ×
180

surface roughness, Ra
(μm)

10.97 0.99 0.35

mixing − 5 mm, at 100
μL/min (%)

71 ± 12 27 ± 10 3 ± 1

multi-materials yes (2) yes (2 − but one is
the support)

no

biocompatible materials ABS,19

PLA29
MED61027 not available

Production Factors

post-processing <1 h >1 day <15 min

time per chip (mins) 6 30 12

chips per hour 10 33 4

cost per chip (USD) 0.1 4 2

cost per printer (USD) 1.3 k 85 k 3 k

Figure 2. SEM micrographs of open and closed microfluidic channels: (a) FDM structure, where (1) 250 μm channels and (2) 350 μm channels are
visible, as well as (3) deformed surface due to nozzle; (b) PolyJet structure with (4) a layer thickness of 16 μm, (5) the surface texture due to the
scraper, and (6) deformed layers due to support interaction; and (c) DLP-SLA structure with (7) a layer thickness of 32 ± 2 μm, (8) underexposure
causing partial collapse of the channel, and (9) texture due to projector pixels (56 μm). Scale bars = 500 μm.

Figure 3. Graph showing the relationship between CAD design and
fabricated channels for the three printing technologies. PolyJet (black
diamond (◇), large dashed line) shows a tendency to undershoot (40
± 36 μm), FDM (red square (□), small dashed line) also undershot
by >100 μm (109 ± 37 μm); however, DLP-SLA (green triangle (△),
solid line) demonstrated a tendency to overshoot (26 ± 20 μm); DLP-
SLA demonstrated the closest to a direct replication of the original
CAD design. All measurements were taken from SEM images using
ImageJ. N = 3.
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small as 205 ± 13 μm (designed 250 μm) were printed and
successfully cleared of support material.
The PolyJet was the only printer capable of reproducing

channels of this size; however, it struggled to fabricate positive
features smaller than 200 μm, which is typical of the
technology.21

The DLP-SLA printer was the only printer to produce
channels slightly larger than the design (26 ± 20 μm), which
corresponds to half a pixel (56 μm × 56 μm), and was the
highest in accuracy and precision. In addition, the DLP-SLA
was able to fabricate positive structures as small as 94 ± 7,
typical of DLP-SLA printers.9,12 The superior accuracy and
precision of the DLP-SLA makes this the better choice for
microfabrication; however, it cannot match the performance of
traditional photolithography and soft-lithography processes.
Surface Roughness. To obtain a more quantitative

understanding of surface roughness, each device was analyzed
with an optical profiler, with the surface profiler renderings
shown in Figure 4.
The FDM (Ra = 10.97 μm) top surface, shown in Figure 4a,

contains a wide range in heights across the surface, varying as
much as 93 ± 5 μm. Valley-like formations that had formed
through the individual depositions of ABS were observed, with
a peak-to-peak distance of 603 ± 55 μm, which corresponds to
the width of the nozzle diameter. The Polyjet produced a
surface with smaller features (Ra = 0.99 μm), but the texture of
the roller used to level each deposited layer can been observed
in Figure 4b. This leads to the formation of troughs 5.8 ± 1 μm
deep and fish-bone-like textures 1 μm (0.97 ± 1 μm) high,
spaced every 147 ± 15 μm. Originating with the roller, these
textures are typical of PolyJet or MultiJet printing.21,22 The
surface with the smallest features on the surface was obtained
with DLP-SLA (Ra = 0.35 μm, Figure 4c). As already
mentioned, the grid pixel texture (57.5 ± 0.01 μm) was
formed due to CCD pixel density, and resulted in a 0.73 ± 0.14
μm variation in height. The DLP-SLA was found to produce

the smoothest surface of the compared 3D printers, while FDM
made the roughest.

Production and Infrastructure. Post-production for each
of the three printers was different, with the times for each
compared in Table 1. Post-production of FDM devices was
simple in that only the removal of stray fibers from connectors
was required immediately after printing; however, because the
layers left gaps between the port and the tubing, sealant/glue
was needed to prevent leaking, which required 1 h to fully cure.
For the PolyJet, post-production was a significant issue,

because removal of the support material would require up to 3
days to remove from the channels. This is due to the
requirement to solubilize the support in water, which was slow
for long and narrow channels. This is the main restriction
limiting the fabrication of very small (<150 μm) channels and
new support materials are needed if this is to be achieved.
For DLP-SLA, the post-production was minimal, only

requiring bonding the device to a glass slide with resin and
exposure to UV light. The simplicity allowed a device to be
ready for use within 15 min. DLP-SLA possesses a strong
advantage being able to fabricate channels with no support, but
optimization of the resin for resolution, optical clarity, and
back-exposure reduction needs considerable development. This
has already been examined by Gong et al. were closed channels
of 60 μm × 108 μm were achieved.11

Materials. The device materials in this work were selected
for optical transparency over all other factors, as this is desirable
for many microfluidic applications. Issues around biocompat-
ibility have been investigated in other works; generally,
photopolymers are inherently more toxic, because of residual
initiator and monomers.22,24−26 There are some biocompatible
materials marketed for both SLA20 and Polyjet27 printers;
however, these still show some toxicity without extensive
treatment.24 As FDM does not rely on photopolymerization, it
has a significant advantage over the DLP-SLA, as well as PolyJet
technologies, in terms of biocompatibility. However, ABS is not
always inherently biocompatible but can be made so by

Figure 4. Surface roughness renders of (a) FDM, (b) PolyJet, and (c) DLP-SLA. In panel (a), major characteristics of the FDM are shown, with
large valleys (peak to peak = 602 ± 55 μm) formed due to the individual bead depositions of thermal polymer, and defined by the nozzle diameter
(300 μm). In panel (b), the texture of the roller used to level each layer is shown, where 5.8 ± 1 μm deep troughs are formed, and repeated 1 μm
high fish-bone-like textures, 0.97 ± 1 μm. In panel (c), the pixel texture shown (57.5 ± 0.01 μm) has formed due to CCD pixel density, and is
repeated throughout the printed surfaces, which were 0.73 ± 0.14 μm in height. Measurements taken using Vision 4.20. N = 3.
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acetone-based sealing and polyethyl glycol (PEG) grafting.28

PLA would be a more suitable choice for biocompatibility,29

although the transparency of devices is an issue. Commercial
translation of research devices into products requires trans-
lation of prototypes to injection molding and hot embossing;
vacuum casting requires thermoplastics, making FDM
attractive. Both FDM and Polyjet printers have the ability to
print devices made from multiple materials, and to blend these
materials during the printing process. A wide variety of
materials is available, with differences in physicochemical
properties including, chemical resistance, thermal resistance,
flexibility, electrical conductivity, magnetism, and porosity.
Cost. The cost of the printers, both capital, consumable and

time costs varies significantly as shown in Table 1. At the time
of writing, the approximate cost of the FDM printer used in this
work, the Felix 3.0 was $1300 USD, the Eden 260VS was
$85 000 USD, and the MiiCraft+ was $3000 USD. A sizable
cost difference also exists in the cost of chips, considering the
cost of material, not upkeep of the printers, with the price per
device being $0.1 USD, $4 USD, and $2 USD for FDM,
PolyJet, and DLP-SLA, respectively. It is worth noting that
these are still considerably less expensive than the $215 USD
estimated for a new PDMS design.15 The time to print a device
was 6, 30, and 12 min for FDM, PolyJet, and DLP-SLA,
respectively. Note that the FDM and DLP-SLA could only
print one chip at a time, because of technical limitations. The
FDM build platform was not uniformly level; this meant that
the calibration of the zero position of the nozzle in the Z-axis
had to be established for different XY positions. For the DLP-
SLA, the limited XY (43 mm × 27 mm) build space meant that
the chip design used the entire XY build area; the alternative
build orientation of placing the chip length-ways in relation to
the Z-axis would have increased build time significantly. The
maximal number of chips printed per hour was 10 for the FDM
and 4 for the DLP-SLA. In a single, 2 h run, the PolyJet was
able to fabricate 66 chips, providing the possibility to produce
several hundred devices in a day, making it potentially attractive
for small-volume manufacturing. One should keep in mind,
however, that the extensive post-processing that is required for
PolyJet printing currently limits the attractiveness of this option
for same-day prototyping. To summarize, FDM provides chips
at a low cost at the expense of resolution, while the Polyjet
provides the inverse. DLP-SLA offers high resolution at the
expense of throughput, with a cost significantly below than of
the Polyjet.
Laminar Flow Chip Design. To examine the fluidic

properties of the printed devices, a simple Y junction design
was selected for laminar flow studies and fabricated with each of
the 3D printers. This design was selected in order to determine
the optimized settings for each of the three printers, since it can
be used for mixing, reaction, and parallel two-phase flow. The
width and shape of the diffusion area formed between the two
flows was examined as a way to determine differences in
microfluidic behavior for the three print methods.
While each of the designs had the same internal channel

dimensions, careful consideration of the different methods of
3D printing was considered to optimize the device for each
printer type. The footprint of the chip was chosen to be 40 mm
× 20 mm, as the max XY build space of the MiiCraft+ was 43
mm × 27 mm. The minimum channel size included in the
comparison was 500 μm, limited by the smallest dimension that
could be printed on the FDM printer.

PolyJet Design. We observed that the VeroClear polymer
was brittle and prone to cracking when <1 mm in thickness;
hence, devices with a thickness of >1 mm were printed with the
PolyJet to retain strength and ease of handling. While brittle at
the smaller thickness, once >1 mm in thickness, the chips were
difficult to snap or bend. Vertical connectors were designed
with straight sidewalls, 100 μm less in diameter, which are less
than the connecting PEEK tubing (1.6 mm), to provide a tight
fit. The rough sidewalls due to the 16 μm layer deposition
allowed fluidic sealing at the flow rates examined. Since the
negative minimum feature size for the Polyjet was found to be
205 ± 13 μm, rulers were included in the design to aid with
mixing measurements.

FDM Design. With the FDM device, the channel was
difficult to visualize once multiple layers of polymer were
deposited under the channel to form the chip base. This was
due to the cross-hatch nature of the base and entrapment of air
between the filament, due to incomplete fusing of the extruded
polymer. The optical clarity was improved by reducing the base
layer to a single 100 μm layer, because the ABS was strong
enough to be removed from the build platform without
deforming or causing leaks. In addition, because of the strength
of the ABS, it was possible to reduce the material in the device,
which saves material and print time. When forming the 500 μm
channels, the printer would direct the nozzle across the
channel, providing a risk of a small bead of ABS blocking the
channel. To overcome this, the walls of the chip were designed
to be exactly 3 layers of ABS wide (900 μm), and the loop pass
number in the software was increased to 3. Therefore, the
channels were formed by continuous movements of the nozzle
head, with no crossover. The inlets of the devices printed by
FDM were designed to address two problems. First, by
reducing the height of the device, the print time per device was
reduced from 30 min to 10 min. Second, the inlets into which
tubing was connected were oriented horizontally, reducing the
effective gap around the inserted tubing and improving sealing
to the tubing. This also avoided the circular structures required
for vertical connection ports, which normally are fabricated in a
spiral, leaving a gap equal to the nozzle head diameter.

DLP-SLA Design. Printing using the DLP-SLA was most
difficult to optimize of the three printers. Variables in
fabrication conditions (room temperature, exposure times,
Teflon film position, slicing software, resin age) all impacted
the outcome. The final design was reached for four reasons.
First, by making the bottom layer of the chip relatively thick
(500 μm), the structural stability of the device was sufficient to
provide the robustness required for easily handling. A minimum
of 4 layers (or 200 μm) was required to seal the channels and
avoid back-exposure into the channel. Second, the fluidic
connector went through numerous design iterations, minimiz-
ing back-exposure in both vertical and horizontal config-
urations. The final design involved tapered connectors from 5
mm to 2.5 mm, and removing the section directly above the
channel. Third, as the sidewall roughness was <1 μm, sealing of
the tubing without sealant was an issue. To address this, a collar
with a reduced diameter of 1.4 mm was introduced to grip the
tubing and seal the connector. Fourth, the forces between the
cured layer and Teflon film caused devices to stick to the build
space; this effect increases with surface area. Therefore, by
reducing the surface area by removing sections of the bulk next
to the laminar flow channels, we prevented sticking while still
providing structural integrity of the device.
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Microfluidics−Laminar Flow and Mixing. The suitability
of the chips fabricated by the three 3D printers for microfluidics
was studied. Laminar flow profiles at a flow rate of 25 μL/min
are shown in Figure 5 of FDM (Figure 5a), PolyJet (Figure 5b),
and DLP-SLA (Figure 5c). The extent of mixing for flow rates
of 100, 50, and 25 μL/min, respectively, are shown below the
flow photographs for each printer.
FDM Microfluidics. In the FDM chips, the two dyes started

flowing parallel, but mixed rapidly with complete mixing
achieved within 15 mm from the intersection for all flow rates.
The large peaks and valleys formed through the fabrication
process (Figure 4) cause additional flow interfaces with folds
and stretches as described by Simonnet and Groisman.30 This
mixing occurs when the flow from one of the inlets was parallel
to the printed grain in the chip. Considering the popularity of
surface patterning for the creation of passive micromixers, FDM
may be a simple and effective way to make micromixers.
Alternatively, their use should be restricted to applications
where mixing has no impact on the outcome.
PolyJet Microfluidics. In the PolyJet chips, the fluids

reached complete mixing at 25 mm for 50 μL/min, and 15 mm
for 25 μL/min. Unexpected mixing was observed at the origin,
which we believe was caused by the 16 μm channel structures
present in the sidewalls running parallel to the flow profile (see
Figure 5). At high flow rates (100 μL/min), this effect was
reduced and mixing was 83% ± 6% at 25 mm. At 25 μL/min,
however, more mixing was observed at 5 mm than when using
FDM printed devices (82% ± 6% vs 71% ± 12% for PolyJet
and FDM, respectively). Microfluidic devices, where complex
geometries are required without the need for precision in

channel reproduction, such as droplet or cell culture systems,
are most suited to PolyJet-type printers.

DLP-SLA Microfluidics. The DLP-SLA chips showed the
least mixing, and complete mixing was not achieved at any of
the flow rates shown (complete mixing only occurred at 1 μL/
min). The highest extent of mixing was 32% ± 7% at 25 mm
and 25 μL/min. These results are in agreement with the low
surface roughness (Figure 4) and high design reproducibility
(Figure 3), and the results provide flow profiles similar to those
observed in more conventionally fabricated devices.31 Micro-
fluidic devices that require laminar flow and minimization of
mixing (for example, diffusion based H-filters) are most suited
to be made with these types of printers.

■ CONCLUSIONS

Comparing the performance of the three most popular three-
dimensional (3D) printing technologies used to make micro-
fluidic devices, we found that they all have significant
advantages. While microchannel resolution generally is still a
major issue for all 3D printers, each of the different types of
printers has unique properties when it comes to making
microfluidic devices.
FDM printers are the least expensive, with regard to both

purchase and operate, and have the largest selection in material
choice−some of which are biocompatible (PLA, COC),
electrically conductive (composites with carbon, cooper,
graphene), and have specific chemical resistance (COC, for
example, which is resistant to hydrolysis, acids, alkalis, as well as
polar solvents such as methanol). Its reliance on thermoplastics
inherits compatibility with traditional polymer manufacturing

Figure 5. Microscopic images of laminar flow within 500 μm × 500 μm channels into 750 μm × 500 μm channels, visualized with yellow and blue
food dye at 25 μL/min for FDM, Polyjet, and DLP-SLA respectively. Plots of distance vs mixing ratio, demonstrating diffusion through the laminar
flow channel at 100, 50, and 25 μL/min, respectively, are also shown. (a) The FDM (red diamond (◇), large dashed line) shows increased mixing
due to the 300-μm-wide valleys formed by the deposition of polymer beads pressing together; the flow rate has little effect on the mixing rate with
consistent mixing saturation at 15 mm. (b) The Polyjet (blue square (□), small dashed line) displayed a diffusion cone more similar to what would
be expected in devices of this type fabricated with traditional methods. However, pinching can be observed at the origin, with increased mixing
compared to the DLP-SLA, and FDM before stabilizing. This was due to the layered 16 μm surfaces of the sideways, causing increased mixing, which
was reduced at 100 μL/min and did not saturate, as did 50 μL/min. However, the profile became similar to the FDM at 25 μL/min saturating at 15
mm. (c) The DLP-SLA (green triangle (△), solid line) showed stable low levels of mixing for all of the flow rates, with a limited range of error. As
the flow rate decreased, the level of mixing also did, however, in a linear fashion with no saturation. N = 3. Scale bar = 500 μm.
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potentially, helping the translation to commercial products.
Multiple material printing is another strong advantage for
FDM, which is also shared by the PolyJet. While low resolution
(321 ± 5 μm) particularly in the XY plane means that <500 μm
is an impossibility at this stage, the roughness (10.97 μm) does
make the FDM well-suited for the fabrication of low-cost
micromixers.
The Polyjet printer was able to produce the smallest closed

channels (205 ± 13 μm) and was capable of producing the
largest number of chips per hour (33 chips), making the Polyjet
a potentially attractive option for low-volume manufacturing in
research environments. However, the difficulty and time
needed in removing the support complicates post-processing,
which is a significant disadvantage. In addition to the high
initial purchase price of the printer and high cost of
consumables, it has the highest cost per device of the three
printers compared. We see the Polyjet being useful for
fabricating complex microfluidic systems for droplet generation
and cell culture platforms.
The resolution of the DLP-SLA allows for the smallest open

channels (154 ± 10 μm), with well-defined channels, and fast
post-processing. The major advantage for the DLP-SLA devices
was the laminar flow performancethe fluidic behavior is
similar to what is achieved in current microfluidic devices
however, the small XY build space (43 mm × 27 mm) limits
the throughput, making it mainly suitable for single-device
prototyping. Similar to the PolyJet, DLP-SLA relies on the use
of commercial photopolymers, inherently compromising
biocompatibility. The primary disadvantage of the DLP-SLA
is that, because of the fact that a support is not used, back
exposure of channels limits closed channel fabrication to 500
μm with our printer. These results indicate the DLP-SLA is
well-suited to microfluidics, where precise control of features
and fluidics is critical.
The selection of the “best printer for the job” requires careful

consideration of the requirements of the device, and
application; compromises will have to be made on some
aspects, since there is no technology covering all microfluidic
applications. We believe that, to ensure that tomorrow’s
printers will better cover demands specific to the microfluidic
community, communication of these demands through partner-
ships and conversation with 3D printing engineers is required.
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