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Abstract

Models to assess mediation in the pretest-posttest control group design are understudied in the 

behavioral sciences even though it is the design of choice for evaluating experimental 

manipulations. The paper provides analytical comparisons of the four most commonly used 

models used to estimate the mediated effect in this design: Analysis of Covariance (ANCOVA), 

difference score, residualized change score, and cross-sectional model. Each of these models are 

fitted using a Latent Change Score specification and a simulation study assessed bias, Type I error, 

power, and confidence interval coverage of the four models. All but the ANCOVA model make 

stringent assumptions about the stability and cross-lagged relations of the mediator and outcome 

that may not be plausible in real-world applications. When these assumptions do not hold, Type I 

error and statistical power results suggest that only the ANCOVA model has good performance. 

The four models are applied to an empirical example.
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Introduction

The cross-sectional single mediator model has been widely applied to test mediational 

theory in psychology and many areas of social science. Statistical and methodological 

aspects of the cross-sectional single mediator model have been studied extensively including 

significance testing (MacKinnon, Lockwood, Hoffmann, West, & Sheets, 2002; Shrout & 

Bolger, 2002, Valente, Gonzalez, Miočević, & MacKinnon, 2016), confidence limit 

estimation (Cheung 2007, 2009; MacKinnon, Lockwood, & Williams 2004; MacKinnon, 

Warsi, & Dwyer, 1995), effect size (Preacher & Kelly, 2011; Wen & Fan, 2015), influence of 

omitted variables (Cox, Kisbu-Sakarya, Miočević, & MacKinnon, 2014; James, 1980; Jo, 

2008; MacKinnon & Pirlott, 2015), and causal estimation (Imai, Keele, & Tingley 2010; Jo, 

Stuart, MacKinnon, & Vinokur, 2011; MacKinnon, Krull, & Lockwood, 2000; Valeri & 

VanderWeele 2013; VanderWeele & Vansteelandt, 2009). The limitations of cross-sectional 

mediation analysis for assessing longitudinal mediation have been described in several 

articles (Cheong, MacKinnon, & Khoo, 2003; Cole & Maxwell, 2003; Fritz, 2014; Gollob & 
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Reichardt, 1991; Kraemer, Stice, Kazdin, Offord, & Kupfer, 2001; MacKinnon, 1994, 2008; 

Maxwell & Cole, 2007; Maxwell, Cole, & Mitchell, 2011; Tein, Sandler, MacKinnon, & 

Wolchik, 2004).

None of this work has addressed statistical and methodological aspects of the simplest 

longitudinal model and most common experimental design, the pretest-posttest control 

group design (Shadish, Cook, & Campbell, 2002). Therefore there is little information 

regarding the best statistical model for estimating the mediated effect in this design. Jang, 

Kim, and Reeve (2012) specifically mentioned this lack of methodological information for 

estimating multi-wave mediation effects “…described well-known procedures to test for 

mediation with cross-sectional research designs, similar procedures to test for mediation 

with multi-wave longitudinal research designs have not yet been developed” (p. 1181). The 

purpose of this article is to demonstrate both analytically and empirically how four common 

statistical models used to estimate the mediated effect in the pretest-posttest control group 

design compare, and the additional complexity that occurs with the addition of pretest 

measures of a mediating and outcome variable.

Statistical Mediation

Statistical mediation is represented by three linear regression equations and allows 

researchers to test indirect effects of an independent variable on a dependent variable 

through the independent variable’s effect on the mediating variable (Lazarsfeld, 1955; 

MacKinnon, 2008; MacKinnon & Dwyer, 1993; Sobel 1990). Equation 1 represents the total 

effect of X on Y (c coefficient), Equation 2 represents the effect of X on M (a coefficient), 

and Equation 3 represents the effect of X on Y adjusted for M (c′ coefficient) and the effect 

of M on Y adjusted for X (b coefficient). An interaction between X and M provides a test of 

whether the relation between the mediator and the dependent variable differs across levels of 

X but is not included in the equations below and is not a focus of this study. Computing the 

product of a and b coefficients from Equation 2 and Equation 3, respectively, represents the 

mediated effect of X on Y through M (ab).

(1)

(2)

(3)

These three linear regression equations used to assess statistical mediation in crosssectional 

experimental designs, are extended in this paper for the pretest-posttest control group design.

As noted by many researchers, mediation models are inherently longitudinal and researchers 

should take time into account when assessing mediated effects (Cheong, et al., 2003; Cole & 
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Maxwell, 2003; Fritz, 2014; Gollob & Reichardt, 1991; Kraemer, et al., 2001, MacKinnon, 

1994, 2008; Maxwell & Cole, 2007; Tein, et al., 2004). That is, mediation is a type of third 

variable effect such that a mediating variable is both a dependent variable and an 

independent variable in a causal sequence (Lazarsfeld, 1955; MacKinnon, 2008, Sobel, 

1990). Mediating variables are intermediate in a causal sequence such that an event, X, 

occurs which has a causal effect on a mediating variable, M, which then has a causal effect 

on a dependent variable, Y. Given the temporal nature of the causal sequence, longitudinal 

data (i.e., data collected over time) is needed to accurately assess mediated effects (Cole & 

Maxwell, 2003; Gollob & Reichardt, 1991; MacKinnon, 1994, 2008; Maxwell & Cole, 

2007; Maxwell, Cole, & Mitchell, 2011). Maxwell and Cole (2007) and Maxwell et al 

(2011) noted the lack of research on the performance of the cross-sectional model for 

estimating mediated effects in a longitudinal model where X represents an experimental 

manipulation.

Pretest-Posttest Control Group Design

The pretest-posttest control group design consists of randomly assigning units to either a 

treatment or a control group, measuring theoretically relevant variables prior to 

randomization (i.e., pretest measures) and measuring theoretically relevant variables again 

after randomization (i.e., posttest measures) (Bonate, 2000; Shadish et al., 2002). The 

simplest case consists of an independent variable that represents treatment assignment (X) 

and a dependent variable (Y). In this case, a pretest measure of Y is obtained prior to 

treatment assignment and incorporated into the estimation of the treatment effect of X on Y 

at posttest. This design allows researchers to take into account nuisance variation in the 

outcome variable subsequently leading to more powerful inferential test statistics, narrower 

and more precise confidence intervals, and increased internal validity (Maxwell & Delaney, 

2004; Shadish et al., 2002).

In the case of a randomized experiment, there are numerous ways to adjust for these pretest 

scores to increase the precision of the treatment effect estimate including difference scores, 

residualized change scores, and Analysis of Covariance (ANCOVA). The benefits of 

adjusting for pretest scores in longitudinal experimental designs can be extended to designs 

that include a mediating variable. In the pretest-posttest control group design with a 

mediating variable, there are pretest scores for both the mediating variable and the outcome 

variable and the same adjustment techniques for the pretest scores can be applied to both the 

mediating variable and the outcome variable.

When a mediating variable (M) is involved, pretest measures of M and of Y can be used in 

the estimation of the mediated effect of X on Y through M at posttest. The pretest-posttest 

design with a mediating variable can be used to estimate a longitudinal mediated effect when 

only two waves (e.g., pretest and posttest) of data are collected and is sometimes referred to 

as a half-longitudinal mediation model (Cole & Maxwell, 2003). Because X is an 

experimental manipulation which we assume marks the beginning of the mediational chain 

for all units, we argue that the longitudinal mediated effect in this design is the mediated 

effect of X on posttest outcome through its effect on w for the M2 – Y2 relation to be free of 

any time-invariant third variable effects on the mediator outcome relation and can be 
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considered a causal effect assuming no time-varying confounding (derivation of causal 

mediated effects using the potential outcome framework can be obtained from the second 

author’s website, https://psychology.clas.asu.edu/research/labs/research-prevention-

laboratory-mackinnon, and there is further discussion of this point later in the paper).

Pretest-Posttest Control Group Design with a Mediating Variable

When X is a randomized experimental manipulation, a common way to assess the mediated 

effect is by estimating a series of linear regression equations (or simultaneously estimating 

the equations in a structural equation model) similar to those used to assess the mediated 

effect in cross-sectional data (as shown in Figure 1). Equation 4 represents the effect of X on 

the mediator measured at posttest (M2) adjusted for pretest mediator (M1) (am2x coefficient; 

a path) and the pretest outcome variable (Y1), the effect of M1 on M2 is the stability of the 

mediator (Sm2m1 coefficient) adjusted for X and Y1, and the effect of Y1 on M2 is the M2 

cross-lagged relation (bm2y1 coefficient) adjusted for X and M1. Equation 5 represents the 

effect of X on the outcome variable measured at posttest (Y2) (c′y2x coefficient; c′ path) 

adjusted for the other variables in the equation, the effect of Y1 on Y2 is the stability of the 

dependent variable (Sy2y1 coefficient) adjusted for the other variables in the equation, the 

effect of M1 on Y2 is the Y2 cross-lagged relation (by2m1 coefficient) adjusted for the other 

variables in the equation, and the effect of M2 on Y2 (by2m2 coefficient; b path) adjusted for 

the other variables in the equation. In addition to these parameters, the model includes a 

pretest covariance between the mediator and the outcome (σm1y1) (see Figure 1).

(4)

(5)

The mediated effect of X on Y2 through M2 in the pretest-posttest design is assessed by 

taking the product of am2x coefficient in Equation 4 and by2m2 coefficient in Equation 5 

(am2xby2m2) and represents the mediated effect estimate in the ANCOVA model.

Prior research has investigated the limitations of the cross-sectional model for investigating 

longitudinal mediated effects, but has not investigated the performance of various 

longitudinal models for investigating the longitudinal mediated effect in the pretest-posttest 

design. Four statistical models can be used to investigate the mediated effect: the cross – 

sectional model, the difference score model (Jansen, et al., 2013; MacKinnon et al., 1991), 

the residualized change score model (Miller, Trost, & Brown, 2002; Reid & Aiken, 2013), 

the Analysis of Covariance (ANCOVA) model (Jang et al., 2012; Schmiege, Broaddus, 

Levin, & Bryan, 2009). Alternatively, the parameters of the ANCOVA model can be 

estimated simultaneously via path analysis (MacKinnon, 1994, 2008; MacKinnon, et al., 

2001).

Although each of these models address different questions about change from pretest to 

posttest, researchers use each of them to address questions regarding longitudinal mediation. 
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Little is known about the accuracy of these different mediated effect estimators because of 

the pretest-posttest relations between the mediator and the outcome that are a consequence 

of adding a mediating variable to the traditional pretest-posttest control group design. 

Therefore, the purpose of this article is fourfold. First, we discuss model assumptions and 

compare the four models discussed earlier in this paper and show how the mediated effect 

estimate for each of these models relates to the mediated effect estimate in the ANCOVA 

model. Second, we demonstrate how the difference score, residualized change score, and 

cross-sectional models are hierarchically nested within the ANCOVA model using a Latent 

Change Score specification (e.g., McArdle, 2009). Third, we conduct a simulation study 

investigating the relative bias, Type 1 error rates, confidence interval coverage, and power to 

detect the mediated effect for each of the four models. Fourth, we apply these models to an 

empirical example.

Analysis of Change in Mediation Models and Model Assumptions

Assuming there is successful randomization of units to the control group and treatment 

group so that these groups do not differ systematically at pretest, any observed change in a 

unit from the treatment group from pretest to posttest would not have occurred had that unit 

been assigned to the control group (Van Breukelen, 2006, 2013). Researchers have explored 

the results of violating these assumptions using ANCOVA and difference score models 

outside the context of mediation (Jamieson, 1999; Kisbu-Sakarya, MacKinnon, & Aiken, 

2013; Van Breukelen, 2006, 2013; Wright, 2006). For the application of mediation, 

VanderWeele and Vansteelandt (2009) describe the four assumptions necessary for 

identification of a mediated effect:

1. No unmeasured confounders of the relation between X and Y.

2. No unmeasured confounders of the relation between M and Y.

3. No unmeasured confounders of the relation between X and M.

4. No measured or unmeasured confounders of M and Y that have been affected by 

treatment.

Because X is an experimental manipulation, assumptions one and three outlined by 

VanderWeele and Vansteelandt (2009) will hold true in the pretest- posttest control group 

design. That is, the randomization of X will help to ensure an equivalent balance across all 

measured and unmeasured variables, in expectation, that may theoretically affect X and M2. 

This also holds for the relation between X and Y2 not adjusted for M2. For this article, we 

assume that there are no unmeasured confounders of the relation between M1 and Y1 or M2 

and Y2 although using the pretest scores from two-waves of data adjusts for time invariant 

confounders in a randomized experiment (James, 1980, Judd & Kenny, 1981) and there are 

some potential alternatives to address confounding of the M to Y relation (MacKinnon & 

Pirlott, 2015). We also assume there are no measured or unmeasured confounders of the M2 

to Y2 relation that are affected by X and all variables are measured without error. A full list 

of assumptions for the single mediator model can be found in MacKinnon (2008) and 

VanderWeele and Vansteelandt (2009). We will address how violating these assumptions 

may affect results and approaches to improving inference in these situations in the 

Discussion section of this article.
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Cross-sectional model—The cross-sectional model is the simplest model because it 

does not take into account the pretest measures of the mediator and dependent variable and 

therefore does not address a question of change across time. Equation 6 represents the 

relation between the treatment variable and the posttest mediator (am2x) and Equation 7 

represents the relation between the treatment variable and the posttest dependent variable (c

′y2x) adjusted for the posttest mediator and the relation between the posttest mediator and 

the posttest dependent variable (by2m2) adjusted for the treatment.

(6)

(7)

The cross-sectional mediated effect is estimated by computing the product of am2x 

coefficient from Equation 6 and by2m2 coefficient from Equation 7 (am2xby2m2) which is the 

effect of X on Y2 through its effect on M2 not adjusted for pretest measures, M1 and Y1.

The performance of the cross-sectional model has been investigated for estimating mediated 

effects when the true underlying model is a longitudinal model with repeated measures of X, 

M, and Y (Cole & Maxwell, 2003; Gollob & Reichardt, 1991; Maxwell & Cole, 2007; 

Maxwell, et al., 2011). The cross-sectional estimate of the mediated effect when there is a 

true underlying longitudinal model is biased and this bias has been shown in Maxwell and 

Cole (2007) and Maxwell et al (2011). However, what has not been demonstrated in this 

prior research, was the Type 1 error rate, confidence interval coverage, and power for cross-

sectional estimates when the true longitudinal model corresponds to a pretest-posttest 

control group design.

Difference score model—The difference score model is unconditional on pretest scores 

(Cronbach & Furby, 1970; Dwyer, 1983; McArdle, 2009) and assumes that the 

unstandardized regression coefficient between the prestest and posttest measure (stability) is 

1.0 (Bonate, 2000; Campbell & Kenny, 1999; Cronbach & Furby, 1970; Laird, 1983) (see 

Table 1). Equation 8 represents the difference score that would be calculated for a mediator 

variable where Δm represents scores on the mediator variable measured at pretest subtracted 

from scores on the mediator variable measured at posttest. Equation 9 represents the 

difference scores calculated for the dependent variable where Δy represents scores on the 

dependent variable measured at pretest subtracted from scores on the dependent variable 

measured at posttest.

(8)

(9)

Valente and MacKinnon Page 6

Struct Equ Modeling. Author manuscript; available in PMC 2018 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Equations 10 and 11 represent regression equations using difference scores for the mediator 

variable and dependent variable, respectively.

(10)

(11)

The mediated effect is estimated by computing the product of aΔ coefficient from Equation 

10 and bΔ coefficient from Equation 11 (aΔbΔ) which is the effect of X on change in Y 

through its effect on change in M.

Residualized change score model—Residualized change scores are computed by 

regressing posttest scores on pretest scores and then computing the difference between 

observed posttest scores and predicted posttest scores (i.e., residual; Cronbach & Furby, 

1970). No treatment group variable is included in the regression of posttest scores on pretest 

scores which means posttest scores for units in both treatment groups are adjusted for pretest 

scores based on an aggregate of pretest scores across both treatment groups (e.g., Cronbach 

& Furby, 1970; Kisbu-Sakarya et al., 2013) which may lead to erroneous inference regarding 

group differences in some cases (Maxwell, Delaney, & Manheimer, 1985).

Residualized change scores are conditional on pretest scores and are the part of the posttest 

score that is not predictable from the pretest score (Cronbach & Furby, 1970; Rogosa, 1988). 

Equation 12 represents residualized change scores calculated for the mediator variable, 

where Rm indicates change in predicted scores on the mediator variable measured at posttest 

subtracted from observed scores on the mediator variable measured at posttest. Equation 13 

represents residualized change scores calculated for the dependent variable, where Ry 

indicates change in predicted scores on the dependent variable measured at posttest 

subtracted from observed scores on the dependent variable at posttest.

(12)

(13)

Equations 14 and 15 represent regression equations using residualized change scores for the 

mediator variable and the dependent variable, respectively.

(14)
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(15)

The mediated effect is estimated by computing the product of ar coefficient from Equation 

14 and br coefficient from Equation 15 (arbr) which is the effect of X on the residual change 

in Y through its effect on the residual change in M.

ANCOVA—ANCOVA is used to assess change by using pretest scores as a covariate when 

predicting posttest scores (Bonate, 2000; Campbell & Kenny, 1999; Laird, 1983). ANCOVA 

removes the influence of pretest scores on posttest scores by computing a within-group 

regression coefficient of posttest scores on pretest scores for each treatment and control 

group, separately. Next, these within group regression coefficients are pooled to form a 

single regression coefficient by which posttest scores are adjusted for pretest scores. 

ANCOVA is conditional on pretest scores and is considered a base-free measure of change 

(Cronbach & Furby, 1970; McArdle, 2009). The ANCOVA model assumes that within group 

regression coefficients are homogenous, there is no interaction of the covariate (e.g., pretest 

scores) and the treatment group, and that the covariate is measured without error (Maxwell 

& Delaney, 2004). Equations 16 and 17 represent regression equations using ANCOVA to 

adjust for pretest scores for the mediator and the dependent variable, respectively.

(16)

(17)

Sm2m1 in Equation 16 represents the relation of pretest scores measured on the mediator to 

posttest scores measured on the mediator within each treatment and control group and then 

pooled across both groups. Sy2y1 in Equation 17 represents the relation of pretest scores 

measured on the dependent variable to posttest scores measured on the dependent variable 

within each treatment and control group and then pooled across both groups. The mediated 

effect is estimated by computing the product of am2x coefficient from Equation 16 and by2m2 

coefficient from Equation 17 (am2xby2m2) which is the effect of experimental manipulation 

on Y2 through its effect on M2 adjusted for M1 and Y1.

In summary, each of these four models provide a different estimate of the mediated effect. 

The mediated effect estimates across these four models can be compared analytically to 

determine under what conditions researchers would expect to observe differences in these 

mediated effect estimates. The following section provides analytical derivations of the 

differences in the b path component (i.e., relation of the mediator to the outcome adjusted 

for X) of the mediated effect estimate as this is the component of the mediated effect that 

differs across the four models discussed earlier.
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Comparing Models of Change—The four models for two waves of data for estimating 

the mediated effect adjusted for pretest measures differ from one another in the assumptions 

they make regarding the relation of pretest measures to posttest measures. Of particular 

interest is how the path coefficients involved in estimating the mediated effect are similar 

across models. The paths of interest are the paths relating X to M2 (a path) and the path 

relating M2 to Y2 adjusted for X(b path). The unstandardized relation of X to M2 in the 

pretest-posttest control group design is equivalent in expectation across all models because 

the covariances of X and M2, X and Δm, and X and Rm are equivalent when the covariance 

between X and M1 and X and Y1 are zero (i.e., assuming successful randomization of units 

to levels of X). Therefore no analytical comparisons are needed for this component of the 

mediated effect.

The unstandardized relation of M2 to Y2 adjusted for X varies across the four different 

models depending on a number of factors and will be referred to as the b path throughout 

this paper. The difference in the b path across models can be thought of as an unmeasured 

confounder problem by applying results from Clark (2005) and Hanushek and Jackson 

(1977). That is, assuming the data-generating model is the ANCOVA model, the predicted 

ΔY using the difference score model will not explain all the variance in ΔY and therefore 

there will be a residual of this prediction. Any relation of the predictor ΔM with this residual 

will capture the difference in the b path across the two models (full derivations of the 

differences in the b path from the ANCOVA versus the difference score model, the 

ANCOVA versus the residualized change score model, and the ANCOVA versus the cross-

sectional model can be obtained from the second author’s website, https://

psychology.clas.asu.edu/research/labs/research-prevention-laboratory-mackinnon). For 

brevity, only the final solutions for each model comparison are presented below. The 

unstandardized b path from the difference score model can be characterized with the 

following equations:

(18)

(19)

(20)
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The  term is the covariance between the mediator variable for the 

difference score model and the residual of prediction of the outcome variable for the 

difference score model from the true difference score outcome variable assuming the 

ANCOVA model is the population model. The  term is the variance of this residual 

of prediction, the  term is the variance of the mediator variable for the difference score 

model, and the  term is the squared correlation between X and the mediator variable for 

the difference score model. When the  term is equal to zero, the b 

path in the difference score model (bΔ)will equal the b path in the ANCOVA model (bY2M2). 

The unstandardized b path from the residualized change score model can be characterized 

with the following equations:

(21)

(22)

(23)

The terms represented in Equations 21–23 for the residualized change score model are 

analogous to the terms described in Equations 18–20 for the difference score model. When 

the  term is equal to zero, the b path in the residualized 

change score model (bR)will equal the b path in the ANCOVA model (bY2M2). The 

unstandardized b path from the cross-sectional model can be characterized with the 

following equations:

(24)
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(25)

(26)

The terms represented in Equations 24–26 for the cross-sectional model are analogous to the 

terms described in Equations 18–20 for the difference score model. Therefore, when the 

 term is equal to zero, the b path in the cross-sectional model (b)will 

equal the b path in the ANCOVA model (bY2M2).

In summary, the mediated effect estimate for difference score, residualized change score, 

and cross-sectional models will not generally equal the mediated effect estimate for the 

ANCOVA model because of differences in the b path component of the mediated effect. 

Generally speaking, the mediated effect estimates for the non-ANCOVA (i.e., difference 

score, residualized change score, and cross-sectional) models will differ from the mediated 

effect estimate of the ANCOVA model as a function of the pretest correlation, stabilities, and 

cross-lagged paths. The following section demonstrates how all of these models can be fitted 

in a general structural equation modeling approach using a Latent Change Score 

specification. The latent change score specification of these models is useful for providing 

evidence of model fit, which can be used to assess the adequacy of the each of these four 

models.

Latent Change Score Specification

The latent change score (LCS) specification is a Structural Equation Modeling (SEM) 

approach to modeling longitudinal data that can represent simple and dynamic change over 

time with either manifest or latent measures of a time-dependent outcome (McArdle, 2001, 

2009). With two waves of data measured for both the mediating and outcome variable a 

variety of models can be fitted to the data to assess the mediated effect. Assuming random 

assignment to two groups and the two waves represent pretest measure (M1, Y1) and posttest 

measures (M2, Y2), all four two wave models previously mentioned can be fitted with the 

LCS specification. Because these models can all be fitted with the LCS specification, we can 

view the difference score, residualized change score, and cross-sectional models nested 

within the ANCOVA model to which they can be compared using traditional (SEM) fit 

indices (See Table 1).

ANCOVA—The ANCOVA model can be estimated in the LCS specification as in Figure 2a. 

We now have the second wave of the mediator and the outcome as a unit-weighted function 
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of pretest and a new unobserved change variable (ΔM and ΔY) to mimic subtracting pretest 

scores from posttest scores on the respective variables. The fit of this model will be identical 

to the fit of the traditional ANCOVA model1 (i.e., saturated, 0 dfs). The mediated effect is 

estimated as the effect of experimental manipulation, X, on ΔY through its effect on ΔM (ab) 

and is equivalent to the estimate of the mediated effect in the traditional ANCOVA model 

although some of the parameters in the LCS specification are re-parameterizations of the 

traditional ANCOVA parameters. The ANCOVA parameters can be recovered from the LCS 

framework by applying the following equations (McArdle, 2009) with the asterisked 

quantities representing quantities from the LCS specification: Sm2m1 = S*m2m1 + 1 and 

Sy2y1 = S*y2y1 + 1 and by2m1 =b *y2m1 − by2m2.

Difference score model—The difference score model and can be estimated in the LCS 

specification as in Figure 2b. The following constraints are made on the ANCOVA model to 

estimate the LCS resulting in a model with four degrees of freedom: Cross-lagged paths 

areconstrained to zero and Pretest effects on Δ′s are constrained to zero.

Residualized change score model—The residualized change score model can be 

estimated in the LCS specification as in Figure 2c. The following constraints are made to the 

LCS model to estimate the residualized change score model resulting in a model with four 

degrees of freedom. The residualized change score and the difference score models cannot 

be compared based on a chi-square difference test because they have the same degrees of 

freedom. These two models represent change in different ways. Recall, in the LCS 

specification, change is defined as the part of posttest scores that is not identical to pretest 

scores. For residualized change, change is defined as the part of posttest scores that is not 

predictable from pretest scores (i.e., base-free). To get the residualized change score 

estimates from the LCS framework two constraints are needed: (1) Fix stability of the 

mediator to the simple regression estimate of posttest mediator on pretest mediator and (2) 

fix the stability of the outcome to the simple regression estimate of the posttest outcome on 

the pretest outcome. This requires a two-step procedure where the simple regression 

estimate is first computed of posttest scores on pretest scores for both the mediator (bm2m1) 

and the outcome (by2yl) separately. These estimates are then used as the constraints in the 

LCS specification in place of the traditional constraint of 1 that is used for the difference 

score model.

Cross-sectional model—The cross-sectional model can be estimated in the LCS 

specification as in Figure 2d. The following constraints are made to estimate the 

crosssectional model resulting in a model with four degrees of freedom. The cross-sectional 

model implies that there is no stability of scores across time. This also implies that if the true 

generating model is longitudinal in nature (e.g., there are stable individual differences across 

time) the cross-sectional model will result in biased estimation of the mediated effect (Cole 

1Additionally, an ANCOVA model could be fitted that constrains either the bm2y1 or by2m1 or both to zero. These constraints can be 
made and the fit of these alternative models can be compared to the saturated ANCOVA model. If a model with either or both of these 
paths constrained to zero fit the data well, the following difference score, residualized change score, and cross-sectional models can be 
compared to this unsaturated ANCOVA model as opposed to the saturated ANCOVA model.
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& Maxwell, 2003; Maxwell & Cole, 2007; Maxwell et al., 2011). To get the cross-sectional 

model estimates from the LCS specification, constrain the stability coefficients zero.

Summary of Model Assumptions and Comparisons

In summary, there are four models for estimating the mediated effect with two waves of 

data. Those models include: the cross-sectional model, the difference score model, the 

residualized change score model, and the ANCOVA model. Assuming the pretest-correlation 

is present, the b path from the difference score model differs from the b path from the 

ANCOVA model because the stabilities of the mediator and outcome are not equal to one 

and the cross-lagged paths are not exactly zero. This relation is implied by examining 

Equation 20. The b path from the residualized change score model differs from the b path 

from the ANCOVA model because the simple regression relating M2 to M1 and Y2 to Y1 are 

not equivalent to the stabilities estimated in the ANCOVA model and the cross-lagged paths 

are non-zero. This relation is implied by examining Equation 23. The b path from the cross-

sectional model differs from the b path from the ANCOVA model because the stabilities are 

non-zero and the cross-lagged paths are non-zero. This relation is implied by examining 

Equation 26. Because four different models could be fitted to any two-wave data with a 

mediating variable, it is important to understand the statistical properties of the various 

estimators of the mediated effect.

Overview of Simulation Study

The purpose of the simulation study was to provide researchers with information regarding 

the performance of four statistical models for estimating the mediated effect in the pretest-

posttest control group design. The primary focus of our comparison was Type 1 error rates, 

confidence interval coverage, relative bias, and statistical power of each model. We predicted 

that the ANCOVA model would perform the best in terms of our criteria. The difference 

score and residualized change score model would be unbiased when compared to their 

respective population true values but not as powerful as the ANCOVA model when 

assumptions of the difference score and residualized change score models regardingthe 

stabilities and cross-lagged relations do not hold because there will be unexplained 

variability not accounted for by either model when these assumptions do not hold. It was 

hypothesized the cross-sectional model would be biased when compared to the population 

true value adjusted for pretest measures (i.e., to reflect a longitudinal mediated effect value) 

when there is a pretest correlation between the mediator and the dependent variable in the 

population and when cross-lagged paths are present in the population. It was hypothesized 

that conditions which led to increased bias in the cross-sectional model would lead to more 

power than the ANCOVA model. The overall goal of the simulation was to provide 

information to researchers regarding the options for assessing mediation in the pretest-

posttest control group design.

Method

Data-Generating Model

The SAS 9.3 programming language was used to conduct a Monte Carlo simulation. The 

following equations represent the data-generating model and correspond to the ANCOVA 
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model in the Monte Carlo simulation where x is an observed value of random variable X and 

 is the sample median.

(27)

(28)

(29)

(30)

(31)

(32)

(33)

In the Monte Carlo simulation the following factors were varied: sample size (N = 50, 100, 

200, 500), effect size of the a (am2x) (0 .14, .39, .59), b(by2m2) (0 .14, .39, .59), and c′ (c
′y2x) (0 and .39) paths, effect size of the Y2 cross-lag (by2m1 path) (0 and .50), effect size of 

the M2 cross-lag (bm2y1 path) (0 and .50), stability of the mediator variable (Sm2m1) and the 

dependent variable (Sy2y1) (.3 and .7), and the correlation between M1 and Y1 (0 and 0.5). 

The by1m1 coefficient in Equation 29 was simulated to be equivalent to a correlation (ρy1m1) 

of 0 or .5. Thirty-two combinations of effect sizes for the a (am2x), b (by2m2), and c′ (c′y2x) 

path were studied. The effect sizes were chosen to reflect approximately small, medium, and 

large effect sizes, respectively (Cohen, 1988). There were 2048 conditions defined by 32 

effect size combinations, 4 sample sizes, 2 effect sizes of Y2 cross-lag, 2 effect sizes of M2 

cross-lag, 2 stabilities of the mediator variable and dependent variable, and 2 correlations 

between M1 and Y1. This resulted in a complete factorial design with all factors being fully 

crossed with one another. A total of 1,000 replications of each condition was conducted. The 

focus of this simulation study was to evaluate estimator characteristics of the mediated effect 

(am2x by2m2) for the four data analysis models: ANCOVA, difference score, residualized 

change score, and crosssectional models.
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Bias of Parameter Estimates

Relative bias was computed for the parameter estimates of the mediated effect by subtracting 

the true value of the parameter from the parameter estimate and then dividing the bias of the 

parameter estimate by the true value of the parameter across replications. An estimator of 

the mediated effect was considered acceptable in terms of bias if the absolute value of 

relative bias was less than .10 (Flora & Curran, 2004). Other measures of bias, absolute bias 

and standardized bias, led to similar conclusions as reported below.

Significance Testing

Distribution of a product—The PRODCLIN program was used to compute asymmetric 

confidence intervals based on the non-normal distribution of the product of two regression 

coefficients (e.g., ab; MacKinnon, Fritz, Williams, & Lockwood, 2007). The PRODCLIN 

program was used to compute the 95% asymmetric confidence interval for each estimate of 

the mediated effect for each replication.

Type 1 error rates were the proportion of times across the 1000 replications per condition an 

estimate of the mediated effect was statistically significant at the 0.05 alpha level when the 

true value of the parameter estimate was equal to zero. Bradley’s (1978) liberal criterion was 

used to evaluate the performance of the methods in terms of Type 1 error rates. That is, Type 

1 error rates were deemed acceptable if they fell within the range of [0.025, 0.075]. Power 

was the proportion of times across the 1000 replications per condition an estimate of the 

mediated effect was statistically significant at the 0.05 alpha level when the true value of the 

parameter was not equal to zero. The best performing estimator in terms of statistical power 

had the highest statistical power given the effect size and sample size generated for a given 

simulation condition. Coverage was the proportion of times the true value of the mediated 

effect fell within the asymmetric confidence intervals. Confidence intervals were deemed 

acceptable if the interval contained the true value of the mediated effect within the range of 

[0.925, 0.975].

Results

Organization

The results section is organized in the following way. Type 1 error rates are discussed first 

followed by bias, confidence interval coverage, and then power results. All Type 1error, 

confidence interval coverage, and power results are reported using the distribution of a 

product method. The distribution of a product method results were reported because they 

perform better than normal theory results and they perform similarly to the percentile 

bootstrap results when detecting the mediated effect in this study and in prior research 

(MacKinnon, Lockwood, & Williams, 2004). The raw data were analyzed using Analysis of 

Variance. For example, for one set of parameter combinations, N = 200, and 1,000 

replications, the dataset analyzed consisted of 200,000 observations. Because of the large 

sample size and number of factors involved in this simulation study, only the highest order 

interaction and main effects for each model with semi-partial eta-squared values of 0.01 (i.e., 

small effect) or greater were reported in this article.
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Type 1 Error Rates

The mediated effect in this article is tested by taking the product of two regression 

coefficients. Because the mediated effect is the product of two quantities, the mediated effect 

can equal zero in three separate cases. First, the mediated effect can equal zero if the a path 

is equal to zero. Second, the mediated effect can equal zero if the b path is equal to zero. 

Third, the mediated effect can equal zero if both the a and the b path are equal to zero. The 

Type I error rates only exceeded the robustness interval when the a path was non-zero and 

the b path was zero therefore only these results were presented.

Type 1 Error Rates – b Path Equal To Zero

Type 1 error rates were investigated for true values of a equal to 0 – .59 when the true value 

of b was equal to 0. The Type 1 error rates for the ANCOVA model never exceeded the 

robustness interval so these results were not reported. There were main effects of true value 

of a , sample size , M2 cross-lag , and Y2 cross-lag 

 on Type 1 error rates for the difference score, residualized change score, and the 

cross-sectional models. As these factors increased, the Type 1 error rates for these models 

increased and exceeded the top-end of the robustness interval. There was a significant three-

way interaction of pretest correlation by M2 cross-lag by Y2 cross-lag  on Type 1 

error rate for the difference score model such that Type 1 error rates exceeded the top-end of 

the robustness interval when either the M2 cross-lag was equal to 0.50 or the Y2 cross-lag 

was equal to 0.50 but was the highest when both the M2 cross-lag and Y2 cross-lag were 

equal to 0.50. The Type 1 error rates for the difference score model were within the 

robustness interval when both the M2 cross-lag and Y2 cross-lag were equal to zero except 

for when the pretest correlation was equal to 0.50 (see Table 2).

In addition to the main effects for the difference score, residualized change score, and cross-

sectional models, there was also a main effect of pretest correlation on the Type 1 error rates 

for the residualized change score model. The Type 1 error rates were above the top-end of 

the robustness interval when the pretest correlation was equal to 0.50 compared to when the 

pretest correlation was equal to zero. There was also a three-way interaction of pretest 

correlation by M2 cross-lag by Y2 cross-lag  on the Type 1 error rate for the 

residualized change score model. The Type 1 error rates for the residualized change score 

model were above the top-end of the robustness interval except when both the M2 cross-lag 

and the Y2 cross-lag were equal to 0.00.

There were additional main effects of pretest correlation  and stability 

on the Type 1 error rates for the cross-sectional model. Although there was not a three-way 

interaction of pretest correlation by M2 cross-lag by Y2 cross-lag there was however a three-

way interaction of sample size by M2 cross-lag by Y2 cross-lag  on Type 1 error 

rates for the cross-sectional score model. The pattern of results for the Type 1 error rates for 

the cross-sectional model were similar to the pattern of results for the difference score model 

but with generally higher values of Type 1 errors.
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Relative Bias and Confidence Interval Coverage Results

There were no significant predictors of relative bias for either the ANCOVA, difference 

score, or residualized change score model. Therefore, the relative bias for these models is 

not presented here. Because the confidence interval coverage results for the cross-sectional 

model were nearly identical to the relative bias results for the crosssectional model, only the 

relative bias results are presented but the coverage results are available upon request. There 

were main effects of true value of the Mediated Effect , pretest correlation 

, M2 cross-lag , and Y2 cross-lag  on the relative bias for 

the cross-sectional model. Relative bias was outside the boundaries (≤ −0.10 or ≥ 0.10) for 

the cross-sectional models as the true value of the mediated effect decreased and when either 

the pretest correlation, M2 cross-lag, or the Y2 cross-lag was equal to 0.50. There was an 

additional main effect of stability  on the relative bias of the cross-sectional model, 

a two-way interaction of true value of the mediated effect by stability  and a two-

way interaction of true value of the mediated effect by Y2 cross-lag  (see Figures 3 

– 4). The relative bias of the cross-sectional model was quite substantial for all conditions 

(relative bias > .4) except when pretest correlation, M2 cross-lag, and Y2 cross-lag were all 

equal to zero.

Power Results

For every model there was a significant true value of the mediated effect by sample size two-

way interaction  and main effects of sample size  and 

true value of the mediated effect  on the power to detect the mediated effect. 

There were no additional predictors of power for the ANCOVA model or for the cross-

sectional model (see Figure 5). The power to detect the mediated effect for both the 

ANCOVA model and the cross-sectional model were very similar. Power to detect the 

mediated effect was greater than 0.80 for each sample size for medium to large true values 

of the mediated effect and was greater than 0.80 for all true values of the mediated effect 

when the sample size was equal to 500. When sample size was 50, 100, or 200, the cross-

sectional model had more power to detect the mediated effect than the ANCOVA model for 

small to medium true values of the mediated effect. This difference went away when the 

sample size was equal to 500.

In addition to the main effects of sample size and true value of the mediated effect, there 

were main effects of stability  and Y2 cross-lag  on the power to detect 

the mediated effect with the difference score model. Power for the difference score model 

was lower when either stability was equal to 0.30 compared to 0.70 or Y2 cross-lag was 

equal to 0.50 compared to zero. There was also a three-way interaction of pretest correlation 

by stability by Y2 cross-lag  and a three-way interaction of true value of the 

mediated effect by stability by Y2 cross-lag  for the power of the difference score 

model. Power was lowest when stability was equal to 0.30, pretest correlation was equal to 

0.50, and when the Y2 cross-lag was equal to 0.50 (see Figure 6).
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For the residualized change score model, in addition to the main effects of sample size and 

true value of the mediated effect there were main effects of M2 cross-lag  and Y2 

cross-lag . Power to detect the mediated effect for the residualized change score 

model was lower when either the M2 cross-lag or the Y2 cross-lag were equal to 0.50 as 

compared to when they were equal to zero. There was also a two-way interaction of pretest 

correlation by M2 cross-lag . Power to detect the mediated effect with the 

residualized change score model was lowest when the pretest correlation, M2 cross-lag, and 

Y2 cross-lag were equal to 0.50 (see Figure 7).

Summary of Simulation Results

In summary, all models produced an unbiased estimate of the longitudinal mediated effect 

except for the cross-sectional model, as was expected. The only condition for which the 

cross-sectional model produced an unbiased estimate of the longitudinal mediated effect was 

when the pretest correlation and cross-lagged paths were zero. The ANCOVA model was the 

only model that did not have elevated Type 1 error rates for the case when by2m2 was zero 

but am2x was greater than zero. The statistical power for the ANCOVA model was unaffected 

by the predictors in the simulation study and was higher than the cross-sectional model 

except for a few conditions.

Empirical Example

In order to demonstrate and compare the mediated effect estimates using the LCS 

specification, we present an empirical example. The data for the empirical example come 

from the Athletes Training and Learning to Avoid Steroids (ATLAS; Goldberg et al., 1996) 

study, which was a program designed to reduce high school football players’ use of anabolic 

steroids by engaging students in healthy nutrition and strength training alternatives. 

MacKinnon et al. (2001) investigated 12 mediating mechanisms of the ATLAS program on 

three different outcomes: intentions to use anabolic steroids, nutrition behaviors, and 

strength training self-efficacy. In the current example, the model tested students’ perception 

of their high school football team as an information source at posttest as the mediating 

variable of the ATLAS program on strength training self-efficacy at posttest.

Method

The variables included pretest measures of the mediator, perception of team as information 

source at pretest (M1) which included items such as “Being on the football team has 

improved my health” and the outcome, strength training self-efficacy at pretest (Y1) which 

included items such as “I know how to train with weights to become stronger”. Both the 

mediator and the outcome were measured immediately after the ATLAS programmed was 

administered (i.e., units randomly assigned to experimental conditions) and constitute the 

posttest measures of these variables, respectively (M2 and Y2). There were 1,144 

observations used in this example after listwise deletion of the original 1,506 observations. 

The empirical example is used to demonstrate how to apply the LCS specification and 

substantive interpretation of model results should be approached with caution.
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Results

All models were fitted using Mplus version 7.11 (Muthén & Muthén, 1998–2012) (See 

Appendix A for Mplus syntax for the latent change score specification of each of these 

models for a user-specified dataset). Table 3 displays the parameter estimates of the four 

models that were fitted to the data, relative fit indices, chi-square test of fit, and when 

applicable, chi-square difference test. Because of the large sample size, most estimates were 

statistically significant, therefore no discussion of statistical significance is warranted. The 

mediated effect estimate ranged from 0.181 (SE= 0.032) under the difference score model to 

0.254 (SE = 0.037) under the cross-sectional model. The mediated effect estimate under the 

ANCOVA and residualized change score models were the most similar. The mediated effect 

estimate under the ANCOVA model was 0.237 (SE= 0.033) and the mediated effect estimate 

under the residualized change score model was 0.222 (SE = 0.032).

All the chi-square difference tests were statistically significant when comparing the 

respective models to the ANCOVA model. The residualized change score model performed 

the best in terms of the relative fit indices (CFI = 0.956, RMSEA = 0.087) although there is 

room for improvement.

Summary of Empirical Example

There was not sufficient evidence to suggest that the difference score, residualized change 

score, or the cross-sectional model fit the data better than did the ANCOVA model. That is, 

each of these models made strict assumptions about stabilities and cross-lagged relations of 

the pretest-posttest model that were not supported by the data. The residualized change score 

model had the most similar estimate of the mediated effect as the ANCOVA model which is 

supported by the fact the estimated stabilities across these models were similar and the 

cross-lagged relations were not large in magnitude.

Additionally, the mediated effect estimates for the difference score and residualized change 

score model were both smaller in magnitude than the mediated effect estimate for the 

ANCOVA model. This supports the simulation results that suggests these models may be 

underpowered compared to the ANCOVA model when there is some combination of pretest 

covariance and non-zero cross-lagged paths. The mediated effect estimate for the cross-

sectional model was larger in magnitude than the mediated effect estimate for the ANCOVA 

model, again supporting the simulation results. It is important to note, however, if the pretest 

covariance or cross-lagged paths were large in magnitude and negative, the opposite pattern 

of results could occur when comparing the difference score, residualized change score, and 

cross-sectional mediated effect estimates to the ANCOVA mediated effect estimate.

Discussion

The four models discussed in this article each estimate the mediated effect and each address 

different questions of change. The ANCOVA and residualized change score models are each 

base-free measures of change while the difference score model is not a base-free measure of 

change and the cross-sectional model does not directly address a question of change unless 

strict assumptions are made (Gollob & Reichardt, 1991). Regardless of these differences, a 
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researcher may be interested in investigating mediation using one or many of the models 

investigated in this article. Because the difference score, residualized change score, and 

cross-sectional models were all affected by either the pretest correlation, M2 cross-lag, Y2 

cross-lag, or all three, if these models are used it is important for researchers to investigate 

whether or not these relations exist in their longitudinal mediation model. Using the LCS 

specification as outlined earlier in this paper, it becomes apparent the relation between these 

four models for assessing the mediated effect in the pretest – posttest control group design 

and provides a hierarchy for testing the differences between the difference score, 

residualized change score, and cross-sectional models and the ANCOVA model based on 

standard SEM fit indices.

Overall, the ANCOVA model performed the best for estimating the mediated effect in terms 

of Type 1 error rates, bias, confidence interval coverage, and power. Although the difference 

score, residualized change score, and cross-sectional models had elevated Type 1 error rates 

(i.e., a > 0.05) for conditions when the b path was zero but the a path varied, this may not be 

problematic from a substantive perspective. Recall the focus of this article was to investigate 

the mediated effect in the pretest-posttest control group design which consists of pretest 

measures of the mediating variable and the dependent variable, an experimental 

manipulation, and posttest measures of the mediating variable and the dependent variable. 

Typically when mediation hypotheses are tested and the independent variable is an 

experimental manipulation like in the pretest – posttest control group design, the 

experimental manipulation is designed to affect the outcome through the mediating variable 

because evidence exists a priori that suggests the mediator and outcome variable are related.

This framework for assessing mediation is referred to as mediation for design and within this 

framework mediating variables are typically chosen prior to the experiment because these 

mediating variables are related to the outcome (i.e., they are correlated; MacKinnon, 2008). 

Using this framework, it is unlikely either the relation between the mediating variable and 

the dependent variable at pretest (i.e., the pretest correlation) is equal to zero, or the relation 

between the mediating variable and the dependent variable at posttest (i.e., the b path) is 

equal to zero. Therefore, it is important to emphasize the simulation conditions where the 

pretest relation of mediating and dependent variables at baseline was zero, but the relation at 

posttest was nonzero would be unlikely situations with real data and it is not surprising that 

the difference score, residualized change score, and cross-sectional models were less 

accurate in these conditions. The by2m2 path in the ANCOVA model is a function of the 

pretest correlation, cross-lagged paths, and the effects of the experimental manipulation on 

both the mediator (am2x) and the outcome (cy2x). Therefore, it is very unlikely that the by2m2 

path estimated with the difference score, residualized change score, or cross-sectional 

models will be zero when any of combination of these paths are non-zero.

The power to detect the mediated effect for the difference score, residualized change score, 

and cross-sectional models were all affected by the factors outlined above in the model 

comparisons section. When the assumptions of these models (i.e., assumptions about 

stabilities and cross-lagged paths) did not hold, the power to detect the mediated effect 

decreased whereas the power to detect the mediated effect with the ANCOVA and cross-

sectional models did not decrease as a function of these factors. Additionally, the reason the 
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power to detect the mediated effect with the cross-sectional model was as high as or higher 

than the power to detect the mediated effect with the ANCOVA model in some conditions 

was that the cross-sectional model estimate was positively biased across many conditions. It 

is a note of caution to use the difference score, residualized change score, and cross-

sectional models to estimate the mediated effect because of the sometimes implausible 

assumptions they make regarding the relation of pretest measures to posttest measures.

Assumptions for Identification of Causal Mediated Effects

VanderWeele and Vansteelandt (2009) have outlined four assumptions necessary for the 

identification of causal mediated effects (see Imai, Keele, & Yamamoto, 2010 and Pearl, 

2014, for alternate assumptions regarding identification of causal mediated effects). 

Assumptions 1 and 3 are with regard to there being no unmeasured confounders of the X and 

M relation and no unmeasured confounders of the X and Y relation given pretreatment 

covariates. These assumptions are generally satisfied with successful randomization of units 

to the treatment groups. Assumptions 2 and 4 are with regard to the M and Y relation. These 

assumptions are that there are no unmeasured confounders of the M to Y relation given 

pretreatment covariates and no unmeasured confounders of the M to Y relation that are 

affected by X (Assumption 4 can be replaced by a no XM interaction assumption).

The pretest-posttest control group design is particularly well suited for estimating causal 

mediated effects because it will satisfy Assumptions 1 and 3 because X is randomized and 

potentially satisfy Assumption 2 and 4 assuming there are no time varying covariates. One 

of the benefits of adjusting for pretest scores is that when an adjustment on pretest scores is 

done, any time invariant confounders of the pretest scores will be adjusted for as a 

consequence of adjusting for the pretest scores themselves. Subsequently, if there are any 

time invariant covariates (i.e., stable individual differences) such as genetic background, the 

treatment will not be able to affect these time invariant covariates thus making Assumption 4 

plausible. If any of these assumptions are violated or not plausible, however, the mediated 

effect estimate will not be interpretable as a causal effect. That is, there will be non-causal 

associations between X and Y2 adjusting for M2 rendering the mediated effect a function of 

some causal effect of X on Y2 through M2 and some non-causal associations.

Sensitivity analyses are an option for assessing both the potential effects of unmeasured 

confounders of the M2 – Y2 relation and the potential effects of a pretest correlation, cross-

lagged paths, or varying stability if only cross-sectional data are available. Similar to how 

sensitivity analyses are performed to assess the potential effects of unmeasured confounders 

on the M to Y relation in the single mediator model (Cox, et al., 2014; Imai, et al., 2010; 

Mauro, 1990; VanderWeele, 2010), sensitivity analyses can be used to assess the potential 

effect of an unmeasured pretest correlation between M and Y, unmeasured cross-lagged 

relations, and varying effects of unmeasured stability of M and Y. This can be done 

following Gollob and Reichardt (1991) by fitting the analysis of covariance model in this 

article and assessing the impact of incremental changes in the fixed values of the pretest 

correlation, cross-lags, or stability on mediated effect estimates(SAS syntax is available to 

carry out this sensitivity analysis upon request from the first author).
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Implications

Researchers can apply several different models when assessing the mediated effect in the 

pretest – posttest control group design including the cross-sectional model, the difference 

score model, the residualized change score model, and ANCOVA. These models can all be 

estimated using the LCS specification as described in this paper and the non-ANCOVA 

models can be compared to the ANCOVA model using standard SEM fit indices.

Given the findings of this study, when researchers use the cross-sectional model, the 

difference score model (Jansen et al., 2012; MacKinnon et al., 1991), or the residualized 

change score model (Miller, et al., 2002; Reid & Aiken, 2013) they are making assumptions 

about the conditions that need to be met regarding the stability of the mediator and outcome 

and any cross-lagged paths. All four models investigated place different constraints on these 

quantities. When these constraints are unrealistic, for example, there are cross-lagged paths 

in the population but these are not modeled in the difference score model, statistical 

properties of the model will be affected (e.g., Type 1 error or model fit).

As demonstrated with Equations 18 – 20, the difference score model makes a number of 

assumptions regarding the stability of both the mediator and outcome as well as the cross-

lagged paths from pretest to posttest. Assuming the mediator and outcome are related at 

pretest, the difference score model assumes the stabilities of both the mediator and the 

outcome are exactly equal to one and it assumes the cross-lagged paths are exactly equal to 

zero. These are strong assumptions to make because it is unlikely that the stabilities are 

exactly equal to one and the cross-lagged paths are exactly equal to zero. If the stabilities are 

close to one and the cross-lagged paths are close to zero, then the difference score model 

would fit approximately as well as the ANCOVA model and the estimate of the mediated 

effect across both models would be very similar.

Equations 21 – 23 highlight the difference between the residualized change score model and 

the ANCOVA model. Assuming the mediator and outcome are related at pretest, the 

residualized change score model assumes the cross-lagged paths are equal to zero and the 

stabilities of the mediator and outcome are equal to the simple regression of posttest scores 

on pretest scores for the mediator and outcome, respectively. The stability of the mediator 

will not equal the simple regression of the posttest score on the pretest score unless the 

cross-lagged path from pretest outcome to posttest mediator is zero and the mediator and 

outcome are not related at pretest. The stability of the outcome will not equal the simple 

regression of the posttest score on the pretest score unless both the cross-lagged paths are 

zero and the mediator and outcome are not related at pretest which we already established as 

being unlikely.

Previous research has explored the limitations of using cross-sectional data to estimate 

mediated effects (Gollob & Reichardt, 1991; Maxwell & Cole, 2007; Maxwell, et al., 2011). 

Cross-sectional estimates of mediated effects will often be biased because they do not allow 

for mediating variables (M) to exert their influence on dependent variables (Y), which 

presumably occurs over a specific period of time. As time interval varies, so do estimates of 

mediated effects because estimates of mediated effects depend on the time interval during 

which they are assessed. This study confirms the general findings of previous literature 
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regarding the bias of the cross-sectional mediated effect as an estimate of a longitudinal 

mediated effect. The implications of the findings of this study is that there are some 

conditions for which the cross-sectional estimate of the mediated effect is unbiased (i.e., 

when there are no cross-lagged relations and when the stabilities are zero, see Equations 24 

– 26). These implications build on previous research and provide a more detailed picture of 

when the cross-sectional model will result in biased estimates of longitudinal mediated 

effects, how this affects Type 1 error rates, confidence interval coverage, power, and how the 

cross-sectional model specifically performs when the independent variable, X, represents an 

experimental manipulation.

Some general results and recommendations can be made based on the simulation results. 

First, the cross-sectional model performs the worst in terms to Type 1 error and bias. The 

increased power of the cross-sectional model comes at the cost of a biased estimate of the 

mediated effect. Second, the difference score model was unbiased and had lower statistical 

power than the ANCOVA model when the stabilities were low. Although there were some 

conditions for which the difference score model produced elevated Type 1 error rates, these 

conditions are not very likely to occur in practice. Third, the residualized change score 

model was unbiased and had similar power as the ANCOVA model with one exception. 

When there was a pretest correlation and both cross-lagged paths were non-zero, the power 

of the residualized change score model was much lower than that of the ANCOVA model. 

This particular combination of conditions leads to a smaller estimate of the mediated effect 

than when either one of the cross-lagged paths are present separately (See Equations 21 – 

23). The residualized change score model had elevated Type 1 error rates which were 

highest when the pretest correlation and both cross-lagged paths were present (See 

Equations 21 – 23) although these conditions may not happen often in practice. Overall, we 

recommended that researchers use the ANCOVA model to test the mediated effect in the 

pretest-posttest control group design.

The benefit, however, of some of these models of change, in particular the difference score 

and residualized change score models is that they reduce the pretest and posttest mediator 

and dependent variable scores to a single score for M and a single score for Y, respectively, 

which allows for methods developed for a single mediator and single dependent variable to 

be easily applied. If researchers use the cross-sectional, difference score, or residualized 

change score model, they may be inadvertently missing the true mediated effect that is 

present and they may be reporting biased estimates of the true mediated effect. The LCS 

specification can be used to compare the non-ANCOVA models to the ANCOVA model and 

test the assumptions the non-ANCOVA models make regarding the pretest correlation, 

stabilities, and cross-lagged paths. Using the LCS specification and conducting model 

comparisons may provide empirical evidence of the adequacy of one of the non-ANCOVA 

models compared to the ANCOVA model but it is generally recommended that researchers 

use the ANCOVA model when estimating the mediated effect in this design.

Limitations and Future Directions

Recall, the pretest-posttest control group design involves the random assignment of units to 

either a treatment or a control group. Successful randomization of units to groups in this 
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experimental design ensures that any pre-existing differences between the units in the 

treatment and control groups are due to chance and do not reflect systematic differences. In 

the case of non-randomized or observational studies, adjusting for pretest scores require 

more careful consideration in order to ensure accurate estimation of treatment effects 

(Morgan & Winship, 2014). It is known from previous research that ANCOVA and 

difference score models can lead to very different results regarding change across two-waves 

of data and represent different theoretical models of change (Jamieson, 1999; Kisbu-

Sakarya, et al., 2013; Lord, 1967; Wright, 2006) but further work is needed in order to 

examine which of the four longitudinal models discussed in this article would perform the 

best for estimating the mediated effect when systematic preexisting differences exist.

Further, it was assumed the mediator and outcome were measured perfectly at pretest and 

posttest. Unreliable measures of the mediator and dependent variables can substantially bias 

estimates of the mediated effect in most cases but the pattern of results can be complicated 

and even counter-intuitive in some cases (Fritz, Kenny, & MacKinnon, 2016; Hoyle & 

Kenny, 1999). In general, measurement error in the mediator leads to a reduced mediated 

effect and consequently an inflated direct effect in the single mediator model with linear 

relations. With the addition of pretest measures of the mediator and outcome that may not be 

measured perfectly reliably, the impact of measurement error on the estimate of the 

mediated effect may be more complicated than in the single mediator model.

It is possible to extend the pretest – posttest control group design to more than two waves of 

data (e.g., 3 or more waves of data) and have mediation effects across all waves. The 

addition of more waves of data may complicate the estimation of mediation effects but 

provides longitudinal estimation of the X to M relation and longitudinal estimation of the M 

to Y relation (Cole & Maxwell, 2003; MacKinnon, 1994; 2008). That is, all the assumptions 

and effects regarding stability, timing of effects, and cross-lagged relations across two waves 

of data will now apply across three or more waves of data. Similar to how the difference 

score and residualized change score models were used in the pretest – posttest control group 

design to reduce the number of waves from two to one, these models could be used in a 

design consisting of three waves of data to reduce the number of waves from 3 to 2.

Finally, the longitudinal models discussed in this project all handled the pretest information 

on the mediator and dependent variable in different ways (e.g., condition on it or remove it 

via difference scores). It is possible to handle the pretest information on the mediator and the 

dependent variable by treating this information as prior information in a Bayesian analysis 

(Miočević, MacKinnon, & Levy, 2015) or by using new methods derived from the potential 

outcomes framework for causal inference (MacKinnon & Valente, 2015). These are 

promising areas for bolstering the precision and causal interpretation of mediated effect 

estimates, respectively.

The pretest-posttest control design improves on cross-sectional mediation analysis by 

generating information on the relation of a randomized experiment on the change in M and 

the change in Y. This article provided insight into the best model to estimate the mediated 

effect in this design and how the mediated effect estimates of the difference score, 

residualized change score, and cross-sectional models relate to the mediated effect estimate 
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of the ANCOVA model and the assumptions each model makes in doing so. Additional 

research is needed on this simple longitudinal mediation model following the now extensive 

work done for the cross-sectional mediation model. Ultimately, if researchers are planning 

future pretest-posttest research designs with mediating variables, the ANCOVA model 

should be used to estimate the mediated effect.
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Appendix A

This Appendix contains the Mplus syntax used to estimate the ANCOVA, difference score, 

residualized change score, and cross-sectional models using the latent change score 

specification. All syntax is annotated. The percentile bootstrap procedure is used to test the 

significance of the mediated effect across all four models.

Mplus Syntax for ANCOVA Model

TITLE: Two wave ANCOVA;

DATA: FILE=;

VARIABLE:

NAMES =

id x m1 m2 y1 y2;

IDVARIABLE=id;

USEVAR = x m1 m2 y1 y2;

ANALYSIS:

estimator=ml;

type=general;

bootstrap=1000;

MODEL:

!Defining change in M as a function of M1 and M2;

deltam BY m2@1;

deltam;

[deltam];

m2 on m1@1;

m2 with m1@0;
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m2@0;

[m2@0 m1];

!Defining the change is Y as a function of Y1 and Y2;

deltay BY y2@1;

deltay;

[deltay];

y2 on y1@1;

y2 with y1@0;

y2@0;

[y2@0 y1];

!Estimating the Pretest correlation between M1 and Y1 and Variance of X;

m1 with y1;

!Regression of change in M on X and pretest measures;

!The inclusion of pretest measures makes this equivalent to ANCOVA;

deltam on x (am2x)

m1(sm1) !Labeling the stability of M for use in Model constraints;

y1;

!Regression of change in Y on X, change in M, and pretest measures;

!The inclusion of pretest measures makes this equivalent to ANCOVA;

deltay on x

deltam (by2m2) !Labeling path of change in M on change in Y for use in Model 

Constraints;

m1(b) !Labeling the path of pretest M on change in Y for use in Model constraints;

y1(sy1); !Labeling the stability of Y for use in Model constraints;

Model constraint:

NEW(sm,sy,by2m1,med); !Making constraints to match estimates to ANCOVA;

sm=sm1+1; !Estimate of effect of M1 on M2 in ANCOVA;

sy=sy1+1; !Estimate of effect of Y1 on Y2 in ANCOVA;

by2m1=b-by2m2; !Estimate of effect of M1 on Y2 in ANCOVA;

med=am2x*by2m2; !Estimate of mediated effect;

OUTPUT: SAMPSTAT STANDARDIZED CINTERVAL(Bootstrap) TECH1 TECH4;
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Mplus Syntax for difference score Model

TITLE: Two wave diff score;

DATA: FILE=;

VARIABLE:

NAMES =

id x m1 m2 y1 y2;

IDVARIABLE=id;

USEVAR = x m1 m2 y1 y2;

ANALYSIS:

estimator=ml;

type=general;

bootstrap=1000;

MODEL:

!Defining change in M as a function of M1 and M2;

deltam BY m2@1;

deltam;

[deltam];

m2 on m1@1;

m2 with m1@0;

m2@0;

[m2@0 m1];

!Defining the change is Y as a function of Y1 and Y2;

deltay BY y2@1;

deltay;

[deltay];

y2 on y1@1;

y2 with y1@0;

y2@0;

[y2@0 y1];

m1 with y1;

!Regression of change in M on X;
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deltam on x (a);

!Regression of change in Y on change in M and X;

deltay on x

deltam (b);

Model constraint:

NEW(med); !Making constraints to match estimates to ANCOVA;

med=a*b; !Estimate of mediated effect;

OUTPUT: SAMPSTAT STANDARDIZED CINTERVAL(BOOTSTRAP) TECH1;

Mplus Syntax for simple regression of posttest scores on pretest scores for 

use in the residualized change score Model

TITLE: Two wave res score simple prediction;

!Use this model to get the estimates of the simple regression of M2 on M1 and;

!the simple regression of Y2 on Y1 for use in the residualized change score model;

DATA: FILE=;

VARIABLE:

NAMES =

id x m1 m2 y1 y2;

IDVARIABLE=id;

USEVAR = m1 m2 y1 y2;

ANALYSIS:

estimator=ml;

type=general;

MODEL:

deltam BY m2@1;

deltam@0;

[deltam];

m2 on m1;

m2;

[m2@0 m1];

deltay BY y2@1;

deltay@0;
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[deltay];

y2 on y1;

y2;

[y2@0 y1];

m2 with y2@0;

m1 with y1; m1 with deltam@0;

m1 with deltay @0;

y1 with deltam@0;

y1 with deltay @0;

deltay with deltam@0;

OUTPUT: SAMPSTAT STANDARDIZED TECH1 TECH3;

Mplus Syntax for residualized change score Model

TITLE: Two wave res score;

DATA: FILE=;

VARIABLE:

NAMES =

id x m1 m2 y1 y2;

IDVARIABLE=id;

USEVAR = x m1 m2 y1 y2;

ANALYSIS:

estimator=ml;

type=general;

bootstrap=1000;

MODEL:

deltam BY m2@1;

deltam;

[deltam];

!@0.189 is the estimate of the simple regression of M2 on M1;

m2 on m1@0.189;

m2 with m1@0;

m2@0;
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[m2@0 m1];

deltay BY y2@1;

deltay;

[deltay];

!@0.418 is the estimate of the simple regression of Y2 on Y1;

y2 on y1@0.418;

y2 with y1@0;

y2@0;

[y2@0 y1];

!Regressing Mchange on X. Equivalent to Res change;

deltam on x (a);

!Regressing Ychange on Mchange and X. Equivalent to Res change;

deltay on x

deltam (b);

m1 with y1;

Model constraint:

NEW(med);

med=a*b; !Estimate of mediated effect;

OUTPUT: SAMPSTAT STANDARDIZED CINTERVAL(BOOTSTRAP) TECH1;

Mplus Syntax for cross-sectional Model

TITLE: Two wave cross;

DATA: FILE=;

VARIABLE:

NAMES =

id x m1 m2 y1 y2;

IDVARIABLE=id;

USEVAR = x m1 m2 y1 y2;

ANALYSIS:

estimator=ml;

type=general;

bootstrap=1000;
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MODEL:

deltam BY m2@1;

deltam;

[deltam];

!Constraining the stability of M to 0;

m2 on m1@0;

m2 with m1@0;

m2@0;

[m2@0 m1];

deltay BY y2@1;

deltay;

[deltay];

!Constraining the stability of Y to 0;

y2 on y1@0;

y2 with y1@0;

y2@0;

[y2@0 y1];

!Regressing Ychange on Mchange and X. Equivalent to Cross model;

deltam on x (a);

!Regressing Ychange on Mchange and X. Equivalent to Cross model;

deltay on x

deltam (b);

!The pretest correlation only affects the fit.

m1 with y1;

Model constraint:

NEW(med);

med=a*b; !Estimate of mediated effect;

OUTPUT: SAMPSTAT STANDARDIZED CINTERVAL(BOOTSTRAP) TECH1;
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Figure 1. 

Path diagram of pretest posttest control group design with mediating variable. Diagram 

includes pretest correlation between mediator and dependent variable ρy1m1, stability of 

mediator (sm2m1) and stability of dependent variable (sy2y1), Y2 cross-lag (by2m1), M2 cross-

lag (bm2y1), effect of X on M2 (am2x), effect of X on Y2 (c′y2x), and effect of M2 on Y2 

(by2m2).
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Figure 2. 

The top left panel displays the ANCOVA equivalent pretest-posttest control group design 

with a mediating variable. The S *m2m1, S *y2y1, b *y2m1, parameters are re-parameterized 

versions of Sm2m1, Sy2y1, by2m1, in the traditional ANCOVA model. The top right panel 

displays the difference score model for estimating the mediated effect. The cross-lagged 

paths are excluded and the stabilities are constrained to one. The bottom left panel displays 

the residualized change score model for estimating the mediated effect. The cross-lagged 

paths are excluded, the stability of the mediator is constrained to bm2m1 which is the relation 

of posttest mediator on pretest mediator with no group information or pretest outcome 

information included, and the stability of the outcome is constrained to by2y1 which is the 

relation of posttest outcome on pretest outcome with no group information or pretest 

mediator information included. The bottom right panel displays the cross-sectional model 

for estimating the mediated effect. The cross-lagged paths are excluded and the stabilities 

are constrained to zero.

Valente and MacKinnon Page 37

Struct Equ Modeling. Author manuscript; available in PMC 2018 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 

Relative bias of the mediated effect for the cross-sectional model plotted by the true value of 

the mediated effect. Reference lines are included at values of −0.10 and +0.10 to illustrate 

boundaries of acceptable relative bias. The top row contains results for pretest correlation 

equal to zero and stability equal to 0.30. The bottom row contains results for pretest 

correlation equal to 0.50 and stability equal to 0.30.
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Figure 4. 

Relative bias of the mediated effect for the cross-sectional model plotted by the true value of 

the mediated effect. Reference lines are included at values of −0.10 and +0.10 to illustrate 

boundaries of acceptable relative bias. The top row contains results for pretest correlation 

equal to zero and stability equal to 0.70. The bottom row contains results for pretest 

correlation equal to 0.50 and stability equal to 0.70.
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Figure 5. 

Power to detect the mediated effect for the ANCOVA model and the crosssectional model 

plotted by sample size and true value of the mediated effect. ANCOVA results are 

represented by the long dashed line. Cross-sectional results are represented by the short 

dashed line. A reference line was included at 0.80 to illustrate a nominal boundary of 

statistical power.
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Figure 6. 

Power to detect the mediated effect for the difference score model plotted by true value of 

the mediated effect. A reference line was included at 0.80 to illustrate a nominal boundary of 

statistical power. The top row contains results for pretest correlation equal to zero. The 

bottom row contains results for pretest correlation equal to 0.50.
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Figure 7. 

Power to detect the mediated effect for the residualized change score model plotted by true 

value of the mediated effect. A reference line was included at 0.80 to illustrate a nominal 

boundary of statistical power. The top row contains results for pretest correlation equal to 

zero. The bottom row contains results for pretest correlation equal to 0.50.
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