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Abstract

Most models of protein evolution are based upon proteins that form relatively rigid 3D structures. A significant fraction of
proteins, the so-called disordered proteins, do not form rigid 3D structures and sample a broad conformational ensemble.
Disordered proteins do not typically maintain long-range interactions, so the constraints on their evolution should be
different than ordered proteins. To test this hypothesis, we developed and compared models of evolution for disordered
and ordered proteins. Substitution matrices were constructed using the sequences of putative homologs for sets of
experimentally characterized disordered and ordered proteins. Separate matrices, at three levels of sequence similarity
(.85%, 85–60%, and 60–40%), were inferred for each type of protein structure. The substitution matrices for disordered
and ordered proteins differed significantly at each level of sequence similarity. The disordered matrices reflected a greater
likelihood of evolutionary changes, relative to the ordered matrices, and these changes involved nonconservative
substitutions. Glutamic acid and asparagine were interesting exceptions to this result. Important differences between the
substitutions that are accepted in disordered proteins relative to ordered proteins were also identified. In general,
disordered proteins have fewer evolutionary constraints than ordered proteins. However, some residues like tryptophan
and tyrosine are highly conserved in disordered proteins. This is due to their important role in forming protein–protein
interfaces. Finally, the amino acid frequencies for disordered proteins, computed during the development of the matrices,
were compared with amino acid frequencies for different categories of secondary structure in ordered proteins. The
highest correlations were observed between the amino acid frequencies in disordered proteins and the solvent-exposed
loops and turns of ordered proteins, supporting an emerging structural model for disordered proteins.
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Introduction
Biologists infer models of evolution for DNA and protein
sequences to try and identify the acceptable pathways
for change in these molecules. Identifying these pathways
can lead to an understanding of the evolutionary processes
responsible for the observed differences among homolo-
gous sequences. Considerable work has been done devel-
oping models of evolution for both DNA and protein
sequences and recently in combining models of protein
substitutions with models of DNA substitutions (Thorne
et al. 1991; Goldman et al. 1998; Lio and Goldman 1998;
Thorne 2000; Yang et al. 2000; Posada and Crandall 2001;
Whelan and Goldman 2001; Kosiol et al. 2007; Anisimova
and Kosiol 2009). For these combined models to be useful,
they must accurately reflect the patterns of change in both
the DNA and protein sequences.

Empirical models of protein evolution can be used to
infer the relative frequencies of amino acid substitutions
for proteins. While these amino acid substitution matrices
have been used to improve database queries, sequence
alignments and phylogenetic inference, they are also very
valuable for investigating the processes by which protein

sequences evolve. The models originally developed by
Dayhoff et al. (1978) were based on a limited number of
proteins with known 3D structures. These initial models
were followed by a succession of models using data sets
of increasing sizes, algorithms of increasing complexity
and assumptions of different physical and evolutionary
constraints (Dayhoff et al. 1978; Gonnet et al. 1992;
Henikoff S and Henikoff JG 1992; Jones et al. 1992; Kosiol
et al. 2007). Some models are based upon the average evo-
lutionary patterns of many proteins, whereas others are
based upon the evolutionary patterns of specific protein
structures (Jones et al. 1994).

There are clear indications that the process of protein
evolution is not simply additive over time. For instance,
amino acid substitution matrices extrapolated from shorter
to longer divergence times are different from matrices de-
veloped using sequences with different percent identity lev-
els (Benner et al. 1994). In the short term, protein evolution
is constrained by the genetic code. Over the long term, pro-
tein evolution is constrained by the physical characteristics
of the amino acids and their interactions with one another.
This latter constraint is so important that simultaneous sub-
stitutions may occur in the DNA to avoid an amino acid
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substitution that disrupts the structure and function of the
protein (Kosiol et al. 2007).

Several groups have shown that models of protein se-
quence evolution can be improved when various types
of protein structure are considered (Benner 1989; Thorne
et al. 1996; Goldman et al. 1998; Dean et al. 2002). These
studies have identified differences in the frequencies of
amino acid substitutions for alpha helices, beta sheets, coils
and turns, as well as differences that depend on whether
the amino acids are located on the surface (hydrophilic) or
the interior (hydrophobic) of folded proteins. These results
indicate that structure is an important constraint on pro-
tein evolution. However, these studies are incomplete be-
cause an important category of protein structure has been
overlooked.

The existence of two distinct categories of protein ter-
tiary structure is now well established (Wright and Dyson
1999; Uversky et al. 2000; Dunker et al. 2002; Tompa 2002;
Uversky 2002). The category that has held the most atten-
tion in the past 60 years is ordered proteins. Ordered pro-
teins form conformational ensembles that experience small
fluctuations in the average positions of backbone atoms.
These are the proteins whose structures are most easily de-
termined by X-ray crystallography and nuclear magnetic
resonance spectroscopy. These are also the proteins that
formed the basis for modeling protein evolution, either ex-
plicitly, such as in the models of Dayhoff et al. (1978) and
Goldman et al. (1998) or implicitly in models that regularly
exclude regions with ambiguous alignments (Henikoff S
and Henikoff JG 1992; Kosiol et al. 2007). It is well known
among structural biologists that these regions of ambiguity
are often not ordered.

It is now widely accepted that there is a second category
of functional proteins that do not adopt compact rigid
structures. These proteins form dynamic conformational
ensembles that experience large fluctuations in the average
positions of their amino acids (Wright and Dyson 1999;
Uversky et al. 2000; Dunker et al. 2002; Tompa 2002; Uver-
sky 2002; Daughdrill et al. 2005; Dyson and Wright 2005).
These (intrinsically) disordered proteins have a significantly
different average amino acid composition than ordered
proteins with fewer nonpolar and more charged amino
acids (Uversky et al. 2000; Williams et al. 2001; Lise and
Jones 2005). Some disordered proteins are characterized
by low sequence complexity, often due to repeat sequences
(Romero et al. 2001; Tompa 2003).

Much of the increased interest in disordered proteins
comes from their distribution across the tree of life, with
increasing frequency in bacterial to archaeal to eukaryal ge-
nomes (Dunker et al. 2000; Ward et al. 2004), and to their
prevalence in biological processes related to cancer and
other diseases (Iakoucheva et al. 2002; Dunker and Uversky
2008; Uversky et al. 2008). Disordered proteins have several
specific molecular functions related to their inherent flex-
ibility; these functions include molecular recognition, pro-
tein modification, molecular assembly and entropic
tethering (Uversky et al. 2000; Dunker et al. 2002; Tompa
2002; Vucetic et al. 2007; Xie, Vucetic, Iakoucheva, Oldfield,

Dunker, Obradovic, and Uversky 2007; Xie, Vucetic, Iakou-
cheva, Oldfield, Dunker, Uversky, and Obradovic 2007).

Evolutionary studies of disordered proteins indicate that
they generally evolve at a significantly faster rate than or-
dered proteins. This faster rate includes changes that result
in amino acid substitutions, repeat expansions, and inser-
tions and deletions (Huntley and Golding 2000; Brown et al.
2002; Tompa 2003; Lin et al. 2007). Several studies of indi-
vidual protein families indicate that the functions of these
disordered regions are maintained even in the face of this
rapid evolution (Daughdrill et al. 2007; Denning and Rexach
2007; Ayme-Southgate et al. 2008).

Because disordered proteins evolve faster than ordered
proteins, it might be expected that the pattern of amino
acid substitutions would also be different. Previous work by
Radivojac et al. (2002) has shown that substitutionmatrices
based upon families of disordered proteins are different
from other matrices and are better able to detect and dis-
criminate related disordered proteins whose average se-
quence identity among family members is below 50%.
This suggests that the long-term constraints on disordered
proteins are significantly different from ordered proteins.
It is assumed these differences are related to differences
in the structure and function of disordered versus ordered
proteins.

To extend our understanding of how patterns of substi-
tutions differ between ordered and disordered proteins, we
have developed empirical models of protein evolution for
families of well-characterized proteins of these two types.
The models were developed separately for different degrees
of divergence among sequences of each type so that dif-
ferences between the models over evolution could be
detected. Comparisons between the models indicate ex-
pected and unexpected differences in the patterns of evo-
lution between ordered and disordered proteins.

Materials and Methods

Data Sources
Experimentally Characterized Proteins. The disordered
protein sequences were taken from a curated database
of experimentally determined disordered proteins, DisProt
3.6 (Vucetic et al. 2005). There were 287 disordered sequen-
ces with a total of 40,770 residues. Each disordered se-
quence was �30 residues in length. The disordered
sequences had a mean length of 142 residues and a median
of 86 residues. The longest disordered sequence was of
2,174 residues. The ordered protein sequences were taken
from PDB Select 25, a nonredundant subset of the Protein
Data Bank (PDB). This data set was chosen because all
proteins share �25% sequence identity (Boberg et al.
1992; Berman et al. 2000). The sequences were selected
from structures that were determined by X-ray crystallog-
raphy and had strong indications of order, with a resolu-
tion �2Å, an R factor �20%, and no missing backbone or
side chain atoms (Smith et al. 2003). The proteins in this
data set are �80 residues in length and contained no non-
standard residues. There were 289 ordered sequences with
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a total of 67,548 residues. The ordered sequences had a
mean length of 289 residues and a median of 193 residues.
The longest ordered sequence was 907 residues. The pro-
teins are listed in supplementary table S1 (Supplementary
Material online).

Families of Related Sequences. Putative homologs of the
experimentally characterized disordered and ordered pro-
teins were identified by performing a basic alignment
search tool (BLAST) search with each ordered and disor-
dered sequence against GenBank release 159 (Altschul
et al. 1997; Benson et al. 2008). To ensure quality matches,
the maximum allowed e value was 0.0001, and the mini-
mum match length was at least 35% of the length of
the query sequence. Match sequences were cropped to
the region corresponding to the start and end of the query.
Sequences identified as hypothetical, patented, or pre-
dicted were removed from the alignments. Only one se-
quence in a group of sequences with 100% identity was
retained so that all sequences in a family were unique.

During this analysis, it was determined that families of
proteins from the Human Immunodeficiency Virus, and
some other viruses, contained large numbers of similar se-
quences having a disproportionate effect on the results.
Many papers submitting sequences of these viruses ob-
tained them from an individual organism (see for instance
[Huet et al. 1989; Herring et al. 2001]). In order to reduce
any undue influence from these families, only one randomly
chosen sequence from each referenced paper was included.
Unreferenced sequences were not included. The sequences
whose families were culled in this way included DP00048,
DP00148, DP00160, and DP00424 for the disordered set and
1mml, 1idaa, and 1svb for the ordered set.

Procedure for Developing Matrices
To demonstrate different levels of evolutionary divergence,
substitution matrices were developed for three percent
identity levels, defined as 85% to ,100%, 60–85%, and
40–60% identity (table 1). The number of gaps of any
length in the alignments was minimized to reduce ambi-
guity while still maintaining enough data for meaningful
comparisons. This was achieved by specifying no gaps
for matrices with 85% minimum percent identity and
no more than four gaps for the 60% and 40% matrices.
The maximum number of gaps was set to 4 because it
was the lowest number that included the majority of align-
ments in the 60% and 40% percent identity levels.

Alignments for Counting Substitutions. Amino acid sub-
stitution frequencies were inferred from sequence align-
ments. Sets of pairwise alignments were created (fig. 1)

such that each sequence of a family was aligned with every
other sequence in that family using the Needleman–
Wunsch algorithm as implemented by The European Mo-
lecular Biology Open Software Suite (EMBOSS)’ needle but
modified to perform pairwise comparisons on a group of
sequences loaded from a single file (Needleman and
Wunsch 1970; Rice et al. 2000). The gap-opening penalty
was 10 and the gap-extension penalty was 0.5. The substi-
tution matrix that was used to initially align the sequences
is shown in table 1. The substitution matrix inferred from
these alignments was then used to realign the sequences
(fig. 1). This realignment cycle was done for each matrix
class and percent identity level until the difference between
successive matrices had no individual log odds value chang-
ing by more than 1 and there were fewer than 10 log odds
values that differed in subsequent iterations. Table 1 shows
the numbers of cycles required for each matrix.

Pairwise alignments were included in counts for a substi-
tution matrix based on two criteria, the percent identity
and the number of gaps in the alignment. The process
of including an alignment has three steps: 1) Pairwise align-
ments were performed between a putative family member
and a sequence from the experimentally characterized set.
If this alignment met the criteria for minimum percent
identity and maximum number of gaps, then it was in-
cluded in the count for a substitution matrix. 2) A family
member included at this level was then used to recruit new
family members based on pairwise alignments that met
the criteria for minimum percent identity. Alignments
among these new recruits were included in the count

Table 1. Criteria Used to Develop Matrices.

Matrix Label
(D/O)

Minimum %
Identity

Maximum %
Identity

Maximum
No. of Gaps

Starting
Matrix

No. of Realignments
(D/O)

D85/O85 85 <100 0 BLOSUM62 3/3
D60/O60 60 85 4 First 85%, zero gaps 4/3
D40/O40 40 60 4 First 60%, four gaps 3/3

NOTE.—D, disorder; O, order.

FIG. 1. Iterative procedure used for constructing substitution
matrices.
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for a substitution matrix when their pairwise alignments
with other recruits at the same level also met the criteria
for minimum percent identity. 3) New family members
identified in step 2 were then used to recruit the next
level of family members based on pairwise alignments
that met the criteria for minimum percent identity. This
last step was repeated until no more alignments were
added. At each new level, pairwise alignments between
recruits that met the criteria for minimum percent iden-
tity were not included if their pairwise alignment with
at least one established family member did not meet
the criteria for minimum percent identify. Otherwise, se-
quences with very low percent identities in alignments
with the sequence from the experimentally characterized
set would be included. Alignments that did not meet the
criteria for minimum percent identity were not included,
even if these alignments were between established family
members.

Calculating Substitution Matrices
Scaling by Family Size. The amino acid substitutions and
matches of all included alignments from each family were
tallied and scaled according to family size. Large families have
a disproportionate influence on substitution matrices
because they increase the number of alignments, and thus
the number of counted substitutions, at a rate of n �
(n � 1)/2. Ideally, we would like to offset this effect by
scaling the increase in number of alignments from a qua-
dratic to a linear function. This was not possible because
the system was developed such that the number of sequen-
ces did not directly determine the number of alignments.
Therefore, the total number of substitutions each family
contributed was scaled instead. In the scaling, it is assumed
that the substitutions are increasing quadratically and then
they aremapped to a linear function. Let y be the total num-
ber of substitutions for a family; the scaled number of sub-
stitutionswouldbe xwhen solving the equation y5 x� (x�
1)/2. Thematrix of scaled substitution counts for that family
can then be calculated bymultiplying thematrix of raw sub-
stitution counts by x/y.

Calculating the Log Odds. The log odds for the substitu-
tionmatrices were calculated using thematrix of scaled sub-
stitution counts, C. To calculate amino acid frequencies, C
was mirrored and values off of the diagonal were halved.
Then, the sum of substitution counts of each column
was divided by the total substitution counts in C to get
the amino acid frequency pi. To calculate the substitution
frequencies qij, each value of Cwas divided by the total num-
ber of substitutions. The observed frequency of substitution
qij is divided by the expected frequency pipj to get the odds
ratio of that substitution. The log odds value sij of the odds
ratio is 2� log2 of the odds ratio. In the 85%matrices, some
of the amino acid substitutions had no counts. This pre-
vented us from calculating their true log odds values, as
the log of 0 is infinity. In order to approximate the values
for these substitutions, a value that was half of the lowest
existing count was used instead. This approximation gave

an appropriately lower frequency for that substitution
and worked well for scaled substitution counts.

Special treatment was also given to the X (any residue), B
(N or D), and Z (Q or E) ambiguity codes. These ambiguity
codes are present in a few of the sequences and are in-
cluded in many substitution matrices. Substitution values
between standard residues and the ambiguity codes B and
Z were an average of the values for substitutions between
their constituent residues and that standard residue. Values
of X in the 85%, 60%, and 40% identity class matrices were
replaced by the X values in the EMBOSS substitution ma-
trices, EBLOSUM85, EBLOSUM60, and EBLOSUM40, re-
spectively (Rice et al. 2000).

Comparing Matrices Using the Sum of
Off-Diagonal Matrix Values
In order to compare the disordered and ordered matrices
calculated at a similar percent identity level, the sum of the
off-diagonal values in the substitution matrix was com-
puted. The off-diagonal sum of a substitution matrix’s
log odds values gives an idea of how unlikely substitutions
are overall, separated from the context of the amino acid
frequencies. More negative sums indicate substitutions are
more unlikely overall for that matrix. A jackknife procedure
was used to estimate the variance of this statistic: substi-
tution matrices were calculated leaving out the substitu-
tion counts for one family at a time. The statistical
difference between the off-diagonal values for disorder
and order was then determined using Welch’s t-test.

Results

Constructing Amino acid Substitution Matrices
In order to develop accurate models of protein evolution,
consideration must be given to various types of protein
structure. In this study, amino acid substitution matrices
were developed for two categories of protein structures:
1) ordered proteins and domains, which form compact
globular structures, and 2) disordered proteins and do-
mains, which form an ensemble of rapidly interconverting
structures. These substitution matrices indicate the relative
frequencies of amino acid changes in these two categories
of proteins. In order to describe the effect of evolution oc-
curring on multiple timescales, matrices were developed
for each protein class at three levels of percent identity,
40%, 60%, and 85%. Alignments were included in the de-
velopment of a matrix based on these percent identities
and the maximum number of gapped regions (table 1).
The initial alignments were performed with the matrices
listed in table 1 and then realigned for the given number
of times for disorder (D) and order (O).

To construct substitution matrices, experimentally char-
acterized proteins were used to identify families of homol-
ogous proteins and domains. Initially, approximately 290
protein families were used for each structural category. Ul-
timately, some families were excluded because of the cri-
teria used for performing sequence alignments. For
alignments between 85% and 100%, no gaps were allowed
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in the alignment in order to eliminate the possibility of mis-
aligned residues. At the lower percent identity levels, up to
four gapped regions of any length were allowed because
this was the lowest number of gapped regions that included
the majority of alignments. This criterion was also designed
to minimize the chance of aligning residues that are not re-
lated by evolutionary descent. Requiring a small number of
gapped regions reduced the number of alignments at each
level, especially in the disordered proteins (table 2), because
disordered proteins havemore indels than ordered proteins
at each percent identity level (data not shown).

Analysis of Amino acid Frequencies in the Data set. To
construct amino acid substitution matrices, the frequen-
cies of each amino acid in the sequences used for align-
ments is determined (pi). Figure 2 shows the amino acid
frequencies for each of the six matrices. The frequencies
presented in figure 2 were scaled to account for the differ-
ent sizes of protein families by transforming the substitu-

tion counts from a quadratic to a linear function (see
Materials and Methods). All residue types, except glycine
(G) and asparagine (N), have similar frequencies across
each of the percent identity ranges for both the ordered
and disordered proteins. Glycine and asparagine show sig-
nificantly higher frequencies in the disordered protein ma-
trices, at the 40% and 60% identities, relative to 85%.
Therefore, at the lower percent identity levels, the new se-
quences that are included in the alignment tend to have
more glycines and asparagines. The lack of glycines in D85
may be due to the propensity for glycines in disordered
proteins to be found in indels (data not shown) and the
selection of alignments that do not have gaps for the
D85 matrix. This is not the case for asparagines, however,
which are rarely found in indels in disordered proteins
(data not shown). This strongly suggests that as disordered
proteins evolve away from a common ancestor, their se-
quences tend to accumulate these residue types. For gly-
cine, we can infer that this is because of selection for
flexibility, but it is unclear what advantage this provides.
A structural basis for the accumulationof asparaginesduring
evolution is less clear. However, it is noted that asparagines
are sites for glycosylation and these posttranslational mod-
ifications tend to occur in disordered regions (Xie, Vucetic,
Iakoucheva,Oldfield,Dunker,Obradovic, andUversky2007).

Previous studies have shown that there is a large differ-
ence in the amino acid composition of ordered and disor-
dered proteins, reflected primarily by fewer nonpolar
amino acids and more charged and polar amino acids in
disordered proteins relative to ordered proteins (Romero
et al. 2001; Radivojac et al. 2007). This conclusion is largely
reflected in the data shown in figure 2. There are, however,
small differences between our results and previous results
that are probably due to using information from aligned
homologs, versus experimentally characterized proteins,
to determine amino acid frequencies. Amino acids found
more frequently in ordered proteins than disordered pro-
teins are considered order promoting, whereas those that
are more frequent in disordered proteins are considered
disorder promoting. Based upon residue frequencies in Dis-
Prot 3.4, Radivojac et al. (2007) concluded that the order-
promoting residues are C, W, Y, I, F, V and L, the disorder-
promoting residues are M, K, R, S, Q, P and E, whereas H, T,
N, D, A and G are neutral.

Identifying Substitution Probabilities. The next step in
calculating a substitution matrix is to count the number
of times a pair of amino acids align together among all
the pairwise alignments. These values are then converted

Table 2. Number of Families, Sequences, and Alignments Used to Develop Each Matrix.

Matrix, No. of Gaps Families Sequences Total Alignments Included Alignments % Alignments Excluded

D85, 0 213 3,127 76,840 29,259 61.922
O85, 0 213 3,408 68,397 41,551 39.250
D60, 4 207 18,883 750,526 662,599 11.715
O60, 4 224 27,316 3,483,138 3,327,744 4.461
D40, 4 182 31,361 2,417,993 1,738,606 28.097
O40, 4 242 52,527 8,548,724 5,949,331 30.407

NOTE.—D, disorder; O, order.

FIG. 2. Amino acid frequencies (pi) of residues in each matrix. The
axis is sorted by average frequency of the residues in the D matrices.
Shades of red are D matrices; shades of blue are O matrices. Bars
indicate ±0.2%, which is within rounding error and slightly greater
than the maximum standard deviation. D, disorder; O, order.
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to the probabilities of finding the two amino acids aligned
(pij). The sum of the pij’s, where i and j are not the same
residue, yields the mutation rate for the matrix (table 3,
column 2). The ranges of percent identity included in each
matrix provided an upper and lower bound on the fre-
quency of substitutions (i.e., the range of substitution fre-
quencies for 85% was.0 to 0.15, 60% was.0.15 to 0.4, and
40% was .0.4 to 0.6), and the mutation rate reflects the
average frequency of substitutions for that matrix. Note
that the 60% identity matrices had the greatest difference
in average frequency of substitutions, and the ordered ma-
trix had the greater number of substitutions. The mutation
rates were similar between the ordered and disordered ma-
trices at the other two levels of similarity.

Substitution Matrices. The final step in calculating a sub-
stitution matrix is to convert the frequencies of substitu-
tions to log odds [2log2(qij/pipj)]. This method normalizes
the frequency of substitutions by the frequencies of the
residues being substituted. Negative values indicate that
substitutions are occurring less often than would be ex-
pected if two amino acids substituted at random, and
positive values indicate that substitutions are occurring
more often than expected. A value of zero indicates that
substitutions between two amino acids are occurring at
a rate expected by the frequencies of the two amino acids
in the data set from which the matrix was derived. Sub-
stitutions are rare, so the values along the diagonal, which
reflect the probability that a site has not undergone a sub-
stitution, are always positive. As the level of divergence
increases, these diagonal values decrease because there
has been more time for a substitution to arise. The ex-
pected values in table 3 (column 3) represent the ex-
pected log odds score between two randomly chosen
amino acids (Altschul 1991). Because substitutions are
the least frequent in the 85% matrices, these matrices
have the smallest expected values reflecting the small
probability of seeing substitutions. Some substitutions
were never seen, such as between lysine (K) and tyrosine
(Y) in D85, yielding extremely negative values. On the
other hand, substitutions are so common at 40% similarity
that the expected value approaches what is expected sim-
ply due to the amino acid frequencies. At this level of se-
quence divergence, substitutions that occur more often
than expected by chance probably reflect persistent back
substitutions among amino acids with similar biochemical
properties.

Figure 3A shows one-half of the symmetric substitution
matrices for D40 (lower) and O40 (upper). The matrices are
shaded to provide a quick visual reference of which amino
acid substitutions are more or less likely. It is clear that the
overall pattern of substitutions appears to be the same be-
tween the two structural types for many of the amino acid
pairs. For instance, order-promoting amino acids are more
likely to substitute with other order-promoting amino
acids (shaded in dark green), and disorder-promoting
amino acids are more likely to substitute with other disor-
der-promoting amino acids (shaded in white). Substitu-
tions between order-promoting and disorder-promoting
amino acids are less likely to occur for both matrices. There
are some interesting exceptions to this observation. First,
cysteine (C) has a far greater probability of substituting in
disordered proteins than in ordered proteins. This is ex-
pected given the importance of C in forming disulfide
bridges in ordered proteins and the lack of a similar func-
tion in disordered proteins. Second, and more unexpected,
is the conserved nature of glutamic acid (E) especially
relative to the less conserved, but biochemically similar,
aspartic acid (D).

There is also a difference between the matrices in the
degree of substitutions. Figure 3B shows the difference be-
tween the disordered and ordered matrices. Blue shading in
this matrix indicates that substitutions are more common
in disordered proteins versus ordered. This matrix clearly
highlights the less conserved nature of C and the more con-
served nature of E in disordered proteins. It also shows that
although substitutions between order- and disorder-pro-
moting amino acids are not as common as would be ex-
pected by chance, disordered proteins are more likely than
ordered proteins to undergo these types of substitution. All
the matrices can be found at http://people.ibest.uidaho.
edu/;celesteb/Matrices/.

Evolutionary Differences between Ordered
and Disordered Proteins
Comparison of Ordered and Disordered Substitution
Matrices. In order to test for significant differences be-
tween the ordered and disordered substitution matrices
at each percent identity level, a jackknife procedure was
used to calculate the variance of the means of the off-di-
agonal and diagonal sums. This procedure removes one
family from the data set of aligned sequences and recalcu-
lates the substitution matrix. Table 3 (columns 4 and 5)
shows the average sum and standard error of the mean
for the off-diagonal or diagonal cells from the jackknife rep-
licates for each matrix. The sums are significantly different
between the ordered or disordered matrix for a particular
percent identity (P ,, 0.0001) using a two-sided t-test
with unequal variances.

Within each percent identity class, both the sums of the
off-diagonal and of the diagonal are significantly different
between the ordered and disordered substitution matrices,
indicating that ordered and disordered proteins have dif-
ferent patterns of substitutions that are accepted by evo-
lution, as well as different patterns of conservation. Note,

Table 3. Summary Statistics for the Six Substitution Matrices.

Matrix
Mutation
Rate

Expected
Value

Off-Diagonal
Sum

Diagonal
Sum

D85 0.063 28.14 21909 6 7 177 6 0.2
O85 0.060 28.28 21797 6 4 176 6 0.2
D60 0.253 22.66 2623 6 2 167 6 0.2
O60 0.299 22.45 2607 6 2 163 6 0.1
D40 0.478 20.50 297 6 2 144 6 0.2
O40 0.495 20.45 2179 6 1 141 6 0.1

NOTE.—The off-diagonal and diagonal sums are the average (±the standard error
of the mean) of the jackknife replicates for each matrix. D, disorder; O, order.
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however, that the difference between the off-diagonal sums
of D60 and O60 are the smallest and the difference in mu-
tation rate is the largest. We suspect that if the mutation
rates had been more equal, the difference in off-diagonal
sums between D60 and O60 would have been even smaller
and possibly not significant.

One of the surprising results from this analysis is that as
the percent identity of the matrices decreased, the differ-
ence between the off-diagonal sums for the ordered and
disordered matrices changed sign (table 3, column 4).
The sum of the off-diagonal elements of D85 was more neg-
ative than O85, the sums of D60 and O60 are about equal,
and D40 is less negative than O40. This indicates that as
disordered proteins diverge, their substitutions approach
what would be expected by random substitutions among
the amino acids faster than ordered proteins. This means
that when an amino acid changes in a disordered protein, it
has more options. This is consistent with what is known
about the structures of disordered proteins. Their ensem-
bles are dominated by local interactions, and they have very
few, if any, long-range interactions. Local interactions
largely depend on the ability of an amino acid to occupy
different regions of the Ramachandran map and this ability
is fairly uniform for most amino acids. Notable exceptions
include glycine and proline.

Evolutionary Conservation of Disordered and Ordered
Proteins. Interestingly, the disordered matrices show con-
sistently higher values for the diagonal sums, or the log
odds of not substituting, implying greater conservation.
Consistently higher levels of conservation in disordered
versus ordered proteins were not expected and prompted
a closer look at our evolutionary models. Because the log
odds values in the matrices are influenced by the amino
acid frequencies, the matrices of qij’s were investigated
more closely to determine which substitutions are accept-
able. For each column of the qij matrix (representing each
amino acid), the values were divided by their row totals to
create a matrix showing the probability of a substitution
between i and j. In other words, if a site in the alignment
is amino acid i, what is the probability that the same site in
a homologous sequence is amino acid j. In the resulting
matrix, the residue-normalized values off the diagonal in-
dicate how often one amino acid substitutes for another
(pij), and the residue-normalized values along the diagonal
indicate how often an amino acid is conserved (pii). The
diagonal values were then used to investigate the difference
in amino acid conservation between disordered and or-
dered proteins.

Figure 4A shows the differences in amino acid conserva-
tion between the D40 and O40 matrices by comparing
their diagonal probabilities, pii. Values .0 indicate that
an amino acid is more conserved in D40 than in O40. It
is not surprising that cysteine (C) is more conserved in or-
dered proteins than in disordered proteins because it often
forms long-range covalent bonds that stabilize the folded
protein. It was surprising to find that several amino acids,
including glutamic acid (E) and asparagine (N), were more
conserved in disordered proteins than in ordered proteins.
Because C is more frequent in ordered proteins, and E and
N are more frequent in disordered proteins at this percent
identity, we checked to see if there was a correlation be-
tween the probability that an amino acid is conserved
and the frequency of each amino acid (fig. 4B). Excluding

FIG. 3. (A) Substitution matrices for ordered (O40, upper) and
disordered (D40, lower) proteins at 40–60% sequence identity.
Color shading indicates probability of substitutions being greater
than expected by chance (blue) or less than expected (red). (B)
Matrix showing the difference between D40 and O40. Color shading
indicates greater frequency of substitutions in disorder (blue) or
greater frequency in order (red). In all matrices, residues are ordered
from most order promoting (green) to most disorder promoting
(white) as shown in (Radivojac et al. 2007). D, disorder; O, order.
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glycine (G), which is a clear outlier in this graph, there is no
correlation between pii and pi for either the disordered or
ordered matrices.

Relationship between Amino acid Frequencies in
Disordered Proteins and Secondary Structure
Categories in Ordered Proteins. Ordered proteins are
composed of four types of secondary structure: helix, sheet,
turn, and coil. These four categories of secondary structure

have different amino acid frequencies within the ordered
proteins as well as different distributions of phi and psi di-
hedral angles. Disordered proteins do not form tertiary
structures, but a number of studies have shown the pres-
ence of different levels of transient secondary structure. In
recent structural studies, realistic ensembles of disordered
proteins were generated using a database of phi and psi
dihedral angles assembled from the coil and turn regions
of high-resolution X-ray structures of ordered proteins
(Bernado et al. 2005; Jha et al. 2005). Ensembles generated
by this method were used to predict residual dipolar cou-
plings and small-angle X-ray scattering data for chemically
denatured proteins and at least two intrinsically disordered
proteins with high accuracy. Due to the success of this ap-
proach, we anticipated that the amino acid composition of
disordered proteins might be most similar to the coil and
turn regions of ordered proteins.

To investigate this possibility, the amino acid frequen-
cies for the D85 matrix were compared with the frequen-
cies identified by Goldman et al. (Goldman et al. 1998) for
their eight structural classes of ordered proteins, buried or
exposed alpha helices, beta sheets, turns (including bends)
and coils. Table 4 shows that the amino acid frequencies for
D85 are most highly correlated with those for the solvent-
exposed coils and turns of ordered proteins. Figure 5 shows
the correlation plot for the frequencies of individual amino
acids from the solvent-exposed coils and turns of ordered
proteins versus the amino acid frequencies from the D85
matrix. This strong correlation is important because it sug-
gests that the evolution of coils and turns, which are the
most structurally dynamic regions of ordered proteins, is
most similar to the evolution of disordered proteins. If this
is correct, it supports the assumption that the structural
ensembles are similar.

Evolution of Disordered Proteins Appears to be More
Neutral Than Ordered Proteins. Previous studies have in-
dicated that disordered proteins are evolving more rapidly
than ordered proteins but a comparison has not been
made between disordered proteins and the individual sec-
ondary structure classes of ordered proteins. Figure 6 shows

FIG. 4. Residues that are most conserved are different between
disordered and ordered proteins, and conservation is not de-
termined by frequency. (A) Differences between the probability that
an amino acid is conserved at a site (pii) for disorder and order at
40–60% identity for each of the 20 amino acids (i). Error bars
indicate one standard deviation. (B) Scatter plot of the frequencies
of each amino acid versus pii for disorder (filled diamonds) and
order (open squares) at 40–60% identity.

Table 4. Correlations between Amino acid Composition of Disordered Proteins and Different Classes of Secondary Structure in Ordered
Proteins.

Exposed Residues Buried Residues

D85Helix Sheet Turn Coil Helix Sheet Turn Coil

Exposed
Helix 1 0.53 0.44 0.61 0.12 20.23 20.04 20.18 0.64
Sheet 2.6 1 0.38 0.71 20.04 20.08 0.01 0.10 0.49
Turn 2.1 1.8 1 0.81 20.10 20.28 0.67 0.35 0.74
Coil 3.3 4.3* 5.7* 1 20.11 20.33 0.30 0.22 0.85

Buried
Helix 0.5 20.2 20.4 20.5 1 0.80 0.33 0.62 0.08
Sheet 21.0 20.4 21.2 21.5 5.7* 1 0.28 0.70 20.20
Turn 20.2 0.0 3.8 1.3 1.5 1.2 1 0.76 0.32
Coil 20.8 0.4 1.6 1.0 3.4 4.1* 4.9* 1 0.22

D85 3.5 2.4 4.6* 6.9* 0.3 20.9 1.4 0.9 1

NOTE.—The t scores for each correlation are shown, and asterisks indicate significance at P ,0.05 using the Holm–Bonferroni correction. D, disorder. Information for
disordered proteins is based upon the .85% similarity matrix and for ordered proteins is from Goldman, et al. 1998.
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a scatter plot of the pii values for the eight secondary struc-
ture matrices developed by Goldman et al. (1998) and the
D85 matrix developed in this study. The plot is ordered
based upon increasing pii values of the D85 matrix. Lines
between data points from the same matrix are added
for clarity. From this figure, it is clear that the buried res-
idues from ordered proteins are the most conserved and
the disordered residues are the least conserved, even at
85–100% identity. Each amino acid in disordered proteins
is less conserved than it’s counterpart in ordered proteins
except tryptophan in exposed turns and coils and glycine in
exposed helices. This result suggests that the evolution of
disordered proteins is more neutral or less prone to puri-
fying selection than ordered proteins.

To address this question, a direct comparison was made
between the different substitution matrices for ordered
and disordered proteins developed in this study. To do this,
each of the percent identity matrices was extrapolated to
a PAM250 distance matrix, using the program DARWIN
(Gonnet et al. 2000; http://www.cbrg.ethz.ch/biorecipes/
mathematical/Dayhoff; http://www.cbrg.ethz.ch/darwin).
First, a PAM1 mutation matrix was calculated for each sub-
stitution matrix. Then the PAM1 matrix was multiplied by
itself 250 times, and the log odds values of the substitutions
were calculated from this mutation matrix. Table 5 (col-
umns 2 and 3) shows the sum of the cells for each of
the PAM250 matrices. When the sum becomes more pos-
itive, substitutions occur at a level that is similar to the rel-
ative frequencies of the amino acids. Table 5 shows that the
disordered sum changes more than the ordered sum; it
starts out slightly lower than order in the 85% range
and ends up significantly higher in the 60% and 40% ranges.
Indeed, the sum for the extrapolated D40 matrix is slightly
positive, suggesting that at this level, substitutions are oc-
curring more often than expected by chance.

To test our models of evolution against neutral evolu-
tion, the PAM250 extrapolations were compared with the
genetic code matrix (GCM) from Benner et al. (1994). This
matrix is a PAM250 extrapolation of a PAM1mutation ma-
trix made assuming that the only constraint on amino acid
divergence is the genetic code, thus representing a neutral
model of evolution. The last two columns of table 5 show
the absolute sum of the difference between the PAM250
extrapolations and the GCM; a smaller sum indicates
the matrix is closer to the GCM because there is less dif-
ference in the log odds values overall. Taken together, the
log odds sums from the PAM250 extrapolations and the log

FIG. 5. Frequencies of amino acids in disordered proteins are most
similar to the frequencies of amino acids in the exposed coils and
turns of ordered proteins. The line indicates a one-to-one
correspondence between frequency in order and disorder. (In-
formation for disordered proteins is based upon the.85% similarity
matrix and for ordered proteins is from Goldman et al. 1998.)

FIG. 6. Scatter plot of the residue-normalized diagonal values, pii, for the eight secondary structure matrices and D85. The plot is ordered based
upon increasing pii of the D85 matrix. Lines between data points from the same matrix are added for clarity. (Information for disordered
proteins is based upon the .85% similarity matrix and for ordered proteins is from Goldman et al. 1998.). D, disorder; O, order.
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odds differences between the PAM250 matrices and the
GCM indicate that the evolution of disordered proteins
is more neutral than ordered proteins, confirming our ear-
lier work (Brown et al. 2002; Daughdrill et al. 2007). One
obvious physical characteristic to attribute the lack of
amino acid conservation for disordered proteins is the ab-
sence of a structure that is stabilized by interactions be-
tween amino acids that are far apart in the sequence.
The absence of this physical constraint permits a greater
level of sequence variation.

Discussion
To compare the evolution of disordered and ordered pro-
teins, substitution matrices were calculated from pairwise
alignments for three levels of percent identity, at 85% to
,100%, 60–85%, and 40–60%. Relatively small sets of
well-characterized disordered and ordered proteins were
used to represent the overall characteristics of the two
structural classes. Separate matrices were not calculated
for different structural subclasses in either the ordered
or disordered set, so these matrices are an average over
all subclasses. These average models are being used because
the small size of the disorder data set used in this study
precludes any rigorous delineation into specific structural
or functional categories. Additionally, there is currently no
reliable scheme for identifying structural families of disor-
dered proteins, and indeed, it may not be possible to group
some disordered proteins into separate functional classes
like linker type and binding type because of their multi-
functional nature. Therefore, the matrices presented here
should be viewed as overall models of protein evolution for
ordered and disordered proteins, comparable to the PAM;
Jones, Taylor, and Thorton; BLOSUM; and Gonnetmatrices
(Dayhoff et al. 1978; Gonnet et al. 1992; Henikoff S and
Henikoff JG1992; Jonesetal. 1992).Theseearliermatricesalso
provideoverallmodelsofproteinevolutionthataverageevo-
lution over the various structural and functional subclasses.
Because thesematrices are still widely used,we are confident
that the approach of averaging the data sets is robust.

As mentioned above, there is not a reliable structural
classification scheme that encompasses disordered pro-
teins. Although many studies have improved our ability
to detect unstructured regions in database queries, they
have not provided a systematic description of the various
structural ensembles that are populated by different func-
tional classes of disordered proteins (Vucetic et al. 2003;
Ward et al. 2004; Schlessinger et al. 2007; Schlessinger
et al. 2009). According to the classification scheme pro-
posed by Dunker et al. (2002), disordered proteins can

be grouped into 34 functional subclasses. Upon close in-
spection, many of these 34 functional subclasses fall into
one of two structural classes. There are disordered proteins
that function primarily as entropic tethers or linkers (linker
type), and there are disordered proteins that fold in the
presence of other protein partners (binding type). It is pos-
sible that the substitution matrices developed for this study
would show distinct differences between these two classes.

Previous studies have shown that binding-type disor-
dered proteins, also termed molecular recognition ele-
ments, have a frequency of aromatic residues similar to
the value observed for ordered proteins, and their proline
content is almost 50% greater than the value observed for
ordered proteins (Oldfield et al. 2005; Mohan et al. 2006).
The increased content of aromatic residues, and even the
nonpolar proline, is important because it is expected that
these residues will form the interface with protein-binding
partners. This expectation was verified in a detailed analysis
of binding-type protein structures (Gunasekaran et al.
2004). In this study, it was shown that the composition
of the molecular interfaces that form between disordered
and ordered proteins are dominated by contacts between
hydrophobic residues. The authors speculate that the
greater occurrence of hydrophobic contacts at the inter-
face combined with the fact that hydrophobic residues oc-
cur less frequently in disordered proteins means that these
residues should be conserved. Figure 6 shows very clearly
which nonpolar residues fall into this conserved category.
These residues are F, L, Y, W, and P, which all have pii values
greater than 0.9. While P occurs at a relatively high fre-
quency in disordered proteins and F, L, Y, and W occur
at lower frequencies (see fig. 2), their high levels of conser-
vation indicate they are important for function.

Previous studies have also shown that linker-type se-
quences have few evolutionary constraints (Brown et al.
2002; Daughdrill et al. 2007), and one might expect that
binding-type sequences would have more evolutionary
constraints. Based on the analysis presented above, this ap-
pears to be the case. However, the following example dem-
onstrates how difficult it is to make even this simple
generalization. The transactivation domain from the tumor
suppressor protein p53 is a binding-type disordered domain
approximately 90 residues long. It contains at least 20 well-
characterized binding sites for other proteins and numer-
ous sites for posttranslational modifications (Appella and
Anderson 2001). Two of the well-characterized binding
sites are for the ubiquitin ligase, MDM2, and the 70-kDa
subunit of replication protein A, RPA70 (Kussie et al. 1996;
Abramova et al. 1997; Bode and Dong 2004; Bochkareva
et al. 2005; Vise et al. 2005). When bound to MDM2,
p53 becomes ubiquinated and targeted for proteosome-
mediated degradation. When bound to RPA70, p53 may
be stabilized and available to amplify the cellular response
to DNA damage. The expectation is that the MDM2 and
RPA70 binding sites will be conserved between homologs
of the p53 transactivation domain (p53TAD). However, in-
spection of figure 7 shows that this is not the case. In figure 7,
a protein sequence alignment is shown for p53TAD from

Table 5. Sum of Log Odds Values for PAM250 Extrapolation
Matrices and Difference from the GCM.

% Identity Level D Sum O Sum D GCM D D GCM O

85 2351 2402 1,089 1,084
60 290 2326 735 991
40 31 2201 635 820

NOTE.—GCM, genetic code matrix; D, disorder; O, order.
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seven mammalian homologs. The orange bar indicates the
location of the MDM2 binding site, and the green bar in-
dicates the location of the RPA70 binding site. Both binding
sites form amphipathic helices in the bound state (Kussie
et al. 1996; Bochkareva et al. 2005). Figure 7 shows that the
MDM2 binding site is highly conserved and the RPA70
binding site is less conserved. The protein sequences for
MDM2 and RPA70 from the same species are highly con-
served, so this difference may not be due to differences in
variability of the binding proteins themselves. This is just
one example, but it indicates the difficulty with making
any generalizations about the evolution of different func-
tional categories of disordered proteins without additional
structural data.

Recently, an attempt was made to improve the align-
ment of disordered protein sequences using a substitution
matrix that was based on a curated set of disordered pro-
teins (Radivojac et al. 2002). Similar to the current study,
BLAST was used to find homologs of disordered proteins.
The minimum and maximum observed sequence identities
between any two aligned sequences were 10% and 99.53%,
respectively. Therefore, a broad range of sequence evolu-
tion was used to infer a single matrix. This substitution ma-
trix showed a marked improvement in the detection and
discrimination of related disordered proteins whose aver-
age sequence identity with other family members was less
than 50%. Their results indicate that optimizing gap pen-
alties could be used to make further improvements for dis-
ordered protein sequence alignments.

In the current study, substitutionmatrices were not con-
structed for the purpose of improving sequence alignments
and instead were used to make direct comparisons be-
tween models of evolution developed for ordered proteins,
which form fixed 3D structures, and disordered proteins,
which sample a broad conformational ensemble. In this
context, our work represents a significant advance over
previous studies because the substitution matrices for or-
dered and disordered proteins can be compared directly
and over different evolutionary times. We show that disor-
dered proteins are more similar to neutrally evolving pro-
teins by comparison to a matrix based upon the genetic
code, and this similarity increases over greater levels of di-
vergence. Additionally, the data presented in figure 4A
show the clear differences in the conservation of certain
amino acids in disordered and ordered proteins. It was sur-
prising to see that E and N are more conserved in disor-
dered proteins, whereas D is more conserved in ordered
proteins. This was consistent with the analysis of amino

acid frequencies for ordered and disordered proteins at dif-
ferent percent identity levels. This analysis revealed that as
disordered proteins evolve away from a common ancestor,
their sequences tend to accumulate G and N. We speculate
that the accumulation of G is due to selection for flexibility
and the accumulation of N is related to its role as a com-
mon site for glycosylation. It is also worth noting that E has
a higher helical propensity than D and therefore, its con-
servation could be related to its occurrence at helical bind-
ing interfaces. Taken together, the data indicate that the
evolution of disordered proteins is driven by their structure
and function just as the evolution of ordered proteins.

Supplementary Material
Supplementary table S1 is available at Molecular Biology
and Evolution online (http://www.mbe.oxfordjournals.org/).
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