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Hippocampal place cells are key to spatial representation and spatial memory

processing. They fire at specific locations in a space (place fields) and fire in precise

patterns during theta sequences and during ripple-associated replay events. These

phenomena have been extensively studied in rats, but to a less extent in mice. The

availability of versatile genetic manipulations gives mice an advantage for place cell

studies. However, it is unknown how place fields and place cell sequences in the same

environment differ between mice and rats. Here, we provide a quantitative comparison in

place field properties, as well as theta sequences and replays, between rats and mice as

they ran on the same novel track and as they rested afterwards. We found that place cells

in mice display less spatial specificity withmore but smaller place fields. Theta oscillations,

theta phase precession and aspects of theta sequences in mice are similar as those in

rats. The ripple-associated replay, however, is relatively rare during stopping on the novel

track in mice. The replay is present during resting after the track running, but is weaker

in mice than the replay in rats. Our results suggest that place cells in mice and rats are

qualitatively similar, but with substantial quantitative differences.

Keywords: hippocampus, place cells, mouse, rat, theta sequences, replay

INTRODUCTION

Place cells are pyramidal neurons in the hippocampus that fire when an animal is physically at
specific locations (place fields) in an environment (O’Keefe and Dostrovsky, 1971). Those place
cells active in a given space are believed to represent an internal cognitive map of the space and
are critically involved in spatial memory processing (O’Keefe and Nadal, 1978). Place cells have

been extensively studied in rodents, especially after the development of high-density multi-channel
recordings in freely moving animals (Wilson andMcNaughton, 1993), and rapid progress has been
made.

For example, place fields emerge quickly as an animal explores a novel environment (Wilson
and McNaughton, 1993; Frank et al., 2004). Parameters of the newly emerged place fields, such
as spatial specificity and place field size, may indicate how well the new environment is internally
mapped. As the animal travels through place fields one by one along a trajectory, place cells fire
one after another in a sequence. This firing sequence spans a behavioral time scale of a few to
tens of seconds and forms a neural code of the trajectory (Harris et al., 2003). Interestingly, such
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behavioral firing sequences can also occur at a much smaller
time scale of ∼100ms. First, when the animal runs along a
trajectory, the local field potentials (LFPs) in the CA1 area of
the hippocampus display prominent theta oscillations at 6–10Hz.
As the animal travels through a place field, the phases of the
corresponding place cell’s spikes occur earlier and earlier relative
to each theta cycle, a phenomenon called theta phase precession
(O’Keefe and Recce, 1993). Within a given theta cycle (∼120ms),
those place cells active within the cycle display a sequence (theta
sequence) similar to their behavioral firing sequence (Johnson
and Redish, 2007). Second, when the animal stops on the track
or rests/sleeps in a resting box, CA1 LFPs display high-frequency
(100–250Hz) oscillations in individual events called sharp-wave
ripples (Buzsaki et al., 1992; Csicsvari et al., 2000). Within each
ripple event (50–200ms), those place cells active together often
display a sequence (replay sequence) similar to the behavioral
sequence on the track (Wilson and McNaughton, 1994; Lee and
Wilson, 2002; Foster and Wilson, 2006; Diba and Buzsáki, 2007;
Davidson et al., 2009; Karlsson and Frank, 2009). Both theta and
replay sequences have been proposed to play important roles in
spatial learning and memory (Ji and Wilson, 2007; Dupret et al.,
2010; Carr et al., 2011; Pfeiffer and Foster, 2013; Wikenheiser and
Redish, 2015; van de Ven et al., 2016; Zheng et al., 2016;Wu et al.,
2017).

Progresses like these are mostly made from studies on place
cells in rodents. In particular, place cell patterns such as theta
and replay sequences are typically investigated in rats. Although
many studies have examined place field properties in mice (e.g.,
McHugh et al., 1996, 2007; Kentros et al., 1998; Nakazawa
et al., 2002; Cacucci et al., 2008), place cell sequences have been
investigated only in a small number of mouse studies (Dragoi and
Tonegawa, 2011; Cheng and Ji, 2013; Middleton and McHugh,
2016; Yamamoto and Tonegawa, 2017; Middleton et al., 2018).
Given a wide range of available genetic mouse models, studying
place cell patterns in mice may lead to better understanding
of how spatial memory codes respond to circuit manipulations
and how they are impaired in neurological and psychiatric
disorders. However, place cells in rats and mice have not been
directly compared in the same environment. It is unknown
whether mouse place cells encode a space with the same precision
as rat cells or whether place cell sequences are comparable
between mice and rats. In this study, we aim to answer these
questions by recording hippocampal place cells of rats and mice
in the same novel environment and then comparing place field
properties, as well as theta and replay sequences, between rats and
mice.

RESULTS

We recorded hippocampal CA1 cells while 5 mice and 4 rats ran
back and forth (two trajectories) for rewards on a rectangular 2-
m track for 15–35min and while they rested in a box afterwards
for 20min. The track was novel to the animals and they had
never been exposed to the track before the recording day. The
animals’ behavior was variable on the novel track: The number
of running laps per trajectory ranged between 6 and 20. But the

median number of laps per trajectory was similar between mice
(14 [7, 20]: median [25, 75%] values, same below unless specified;
N = 10 trajectories) and rats (12 [7, 17.5], N = 8 trajectories;
P = 0.68, Wilcoxon test). The overall running speed was higher
in mice (14.7 [10.0, 18.4] cm/s; N = 10 trajectories), but did
not reach statistical significance, compared to that in rats (11.9
[7.2, 14.2] cm/s; N = 8 trajectories; P = 0.36, Wilcoxon test). A
total of 194 CA1 cells were recorded from mice and 181 from
rats.

Less Spatial Specificity of Place Cells in
Mice
We analyzed and compared place cells during track running
between mice and rats. Since place cell properties may depend on
animals’ experience on the track, we focused our analysis on cell
activities during the first 6 laps of each trajectory for all animals.
In addition, we excluded the time periods when animals were at
the reward sites or were stopping on the track, since CA1 cells
can fire in a non-spatial manner in these periods. During the first
6 laps, the average running speed was significantly higher in mice
(13.9 [12.3, 15.4] cm/s;N = 10 trajectories) than that in rats (11.3
[9.4, 13.1] cm/s; N = 8 trajectories; P = 0.043, Wilcoxon test).
Furthermore, we only applied the analysis to a subset of cells
with a spike sorting quality higher than a threshold (isolation
distance >10). In the end, we obtained 50 putative pyramidal
cells from mice and 39 from rats that were active within the first
6 laps of at least one trajectory (average firing rate >0.5Hz and
<5Hz). For each of these two groups of cells, we computed its
firing rate on each of the two running trajectories and found no
significant difference between the groups in their median firing
rates during the running (mice: 1.4 [0.79, 2.6] Hz, N = 100 cell×
trajectory, meaning that each sample was a cell on a trajectory;
same below. rats: 1.4 [0.81, 2.2] Hz, N = 78 cell × trajectory;
P = 0.74, Wilcoxon test).

We first examined the overall spatial firing activity of place
cells on their active trajectories. Place cells in both rats and
mice fired at specific locations and their firing locations were
consistent from lap to lap, as shown by spike raster and firing
rate curves on a trajectory (averaged firing rates vs. locations on
the trajectory; Figure 1A). We quantified the spatial specificity of
a place cell’s firing rate curve by spatial information (Figure 1B),
which measures the amount of information about an animal’s
location contained in a cell’s firing activity (Skaggs et al., 1993).
The spatial information of place cells in mice (0.97 [0.47 1.4]
bit/spike, N = 88 cell × active trajectory) was significantly lower
than that in rats (1.5 [0.98, 1.8], N = 67 cell × active trajectory;
P= 4.0× 10−5, Wilcoxon test).We then computed the firing rate
curve of a place cell for each lap and quantified the consistency of
its firing location cross laps by spatial stability (Figure 1C), which
is the mean correlation among any two laps’ rate curves. The
spatial stability was comparable between mice (0.59 [0.39, 0.78],
N = 88 cell× active trajectory) and rats (0.67 [0.46, 0.82],N = 67
cell× active trajectory; P= 0.14,Wilcoxon test). For each cell, we
examined the directionality of its firing activity by a directional
similarity, which was the correlation between the cell’s firing rate
curves on the two running trajectories of the track, and a rate

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 September 2018 | Volume 12 | Article 332

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Mou et al. Mouse and Rat Hippocampal Place Cells

FIGURE 1 | Mouse place cells had lower spatial information than rat ones. (A) Firing activities of an example rat place cell and an example mouse place cell during

running on a novel track trajectory. For each panel, the top shows lap-by-lap spike raster during the first 6 laps on a linearized trajectory (running direction: from left to

right). Each row is a lap and each tick is a spike. The bottom trace is the firing rate curve averaged over all 6 laps. (B,C) Cumulative distributions of spatial information

(B) and spatial stability (C) for rat and mouse place cells on the novel track. ***P < 0.001. (D,E) Cumulative distributions of directional similarity (D) and rate change

index (E) for rat and mouse place cells between the two running trajectories on the novel track. ***P < 0.001. (F,G) Lap-by-lap changes in spatial information (F) and

in spatial correlation (G) between each lap’ rate curve and the average rate curve of the last two laps. The plots represent median and [25, 75%] range values.

**P < 0.01, *P < 0.05, Wilcoxon test; significance values adjusted for the multiple (6) comparisons.

change index, which measured the relative change of its peak
rates on the two trajectories. We found that directional similarity
was significantly lower in mice (0.24 [0.068, 0.56], N = 50 cells)
than that in rats (0.82 [0.53, 0.92], N = 39 cells; P = 2.0 × 10−7,
Wilcoxon test; Figure 1D), but rate change index was similar

between mice (0.31 [0.13, 0.60], N = 50 cells) and rats (0.39
[0.19, 0.48], N = 39 cells; P = 0.99, Wilcoxon test; Figure 1E).
We also examined the lap-by-lap dynamics in a place cell’s firing.
The spatial information in mice started significantly lower than
that in rats and appeared to stay lower throughout most of the
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laps (Figure 1F). Finally, the correlation between the firing rate
curve in each lap and the average curve of the final two laps (lap
5 and 6) shows that firing locations of place cells in mice and
rats were stabilized lap by lap in a similar manner (Figure 1G).
These results indicate that the firing activities of place cells in
mice had lower spatial specificity and lower directional similarity
(thus higher directionality) on the novel track, but otherwise were
comparable to those of rats in terms of their spatial stability and
firing dynamics.

To understand what led to the lower spatial specificity of place
cells in mice, we compared their place field properties to those of
rat place cells. We identified each place field of a place cell and
then quantified the number of place fields per active trajectory,
place field length, and within-field peak firing rate. Place cells in
mice on average had more place fields per active trajectory (mean
± se: 1.2± 0.09,N = 88 cell× active trajectory) than those in rats
(0.90± 0.07, N = 67 cell× active trajectory; P = 0.014, Student’s
t-test; Figure 2A). A small percentage of cells in rats (12%) fired
at more than one place fields on a trajectory, whereas 36% of place
cells in mice (P = 0.00057, binomial test) did so. Place fields in
mice had significantly shorter length (33 [25, 40] cm, N = 105
fields) that those in rats (40 [33, 48] cm, N = 60 fields; P = 9.2
× 10−5, Wilcoxon test; Figure 2B). Place cells in mice also had
lower peak firing rate within their place fields (6.9 [4.8, 11] Hz,
N = 105 fields), compared to those in rats (9.0 [5.8, 14] Hz,
N = 60 fields; P = 0.049, Wilcoxon test; Figure 2C). The place
field analysis thus indicates that place cells in mice represented
the same novel track with more, but smaller and weaker, place
fields than place cells in rats did.

FIGURE 2 | Mouse place cells had more place fields with shorter lengths and

lower peak rates than rat place cells. (A) Histograms for rat and mouse place

cells with different number of place fields on an active trajectory. *P < 0.05.

(B,C) Cumulative distributions of place field length (B) and peak firing rate

(C) for rat and mouse place cells on the novel track. ***P < 0.001, *P < 0.05.

Similar Theta Oscillations and Phase
Precession Between Mice and Rats
During active behavior such as track running, CA1 LFPs display
prominent theta oscillations at 6–10Hz. We next examined theta
characteristics and theta phase precession of place cells when
animals ran on the novel track. Power spectral density (PSD)
analysis reveals a prominent peak in the theta band in the CA1
LFPs of both mice and rats (Figure 3A). The total power within
the theta range of 6–10Hz (normalized by the total power within
[2, 400] Hz) was similar between mice (0.31 [0.26, 0.42], N = 5
mice) and rats (0.38 [0.23, 0.47], N = 4 rats; P = 1.0, Wilcoxon
test). The peak theta frequency inmice (9 [8.4, 9] Hz,N = 5mice)
appeared to be slightly higher than that in rats (7.8 [7.5, 8.3],
N = 4 rats), but did not reach the level of significance (P= 0.079,
Wilcoxon test). The peak theta power appeared to be similar
betweenmice (0.16 [0.15, 0.21],N = 5mice) and rats (0.18 [0.097,
0.23], N = 4 rats; P = 0.090, Wilcoxon test).

Plotting spike theta phases vs. spike locations within place
fields displays prominent theta phase precession in both rats
and mice (Figure 3B). We quantified theta phase precession
by a circular-linear correlation between spike phases and spike
locations, as well as a best-fit linear regression and its associated
slope. Themedian circular-linear correlation wasmodestly (27%)
higher for place fields in mice (0.14 [0.082, 0.23], N = 105
fields) than those in rats (0.11 [0.054, 0.16], N = 60 fields;
P = 0.0072, Wilcoxon test; Figure 3C), but the median linear
correlation associated with the optimal linear regression was
similar between mice (−0.36 [−0.44, −0.26], N = 105 fields)
and rats (−0.40 [−0.48, −0.28], N = 60 fields; P = 0.21,
Wilcoxon test; Figure 3D). In addition, there was also no
significant difference in the linear regression slope between mice
(−6.0 [−9.1, −3.8]◦/cm, N = 105 fields) and rats (−5.4 [−7.6,
−3.3]◦/cm, N = 60 fields; P = 0.11, Wilcoxon test; Figure 3E).
Our analysis thus indicates that theta oscillations and theta phase
precession in mice were largely similar to those in rats, although
minor differences were found.

Similar Bayesian Decoding of Track
Locations
Since firing activities of place cells contain information about
an animal’s spatial location, they can be used to decode the
animal’s locations in a Bayesian scheme. Given the lower spatial
information of place cells in mice, we asked whether spatial
locations of mice could be decoded with similar accuracy as
those decoded in rats. Because Bayesian decoding can use not
well-sorted cells (Kloosterman et al., 2014), for this analysis
we considered all the recorded cells that were active on a
trajectory, which varied from 5 to 34 in number, and built
a template from their firing rate curves on the trajectory, all
averaged over the first 6 laps. However, for a fair comparison,
it was necessary to equalize the number of cells in mouse and
rat templates. Therefore, we removed templates with too few
active cells (<12) and randomly downsampled the cells in those
templates with too many cells (>20). In the end, we obtained 6
templates from 3 mice and 6 templates from 3 rats with similar
number of cells (median and range numbers: rat−14 [12, 18],
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FIGURE 3 | Theta oscillations and theta phase precession were similar between mice and rats. (A) Average (mean and s.e.) power spectral densities (PSDs) of mouse

and rat CA1 LFPs. The PSDs were normalized by the total power within [2,400] Hz. (B) Theta phase precession of the same example cells in Figure 1A. In each

panel, the top shows spike phases plotted against their locations on the track. The same spikes were plotted for 3 cycles of circular phases. Line: optimal linear

regression between spike phases and locations. The bottom shows the firing rate curve of the cell. (C–E) Cumulative distributions of circulation-linear correlation (C),

optimal linear correlation (D), and associated slope (E) between spike phases and spike locations for rat and mouse place cells on the novel track. *P < 0.05.

mice−14 [12, 20]). One mouse and one rat template is shown
in Figure 4A.

We decoded the animal’s location on a trajectory at every
100ms during the first 6 running laps, based on the firing
activities of all place cells contained in the trajectory’s template.
The decoded locations during two time windows (decoded from
the two templates in Figure 4A), as well as the animals’ actual
locations, are shown in Figure 4B. We quantified the decoding
error at every time point by the absolute difference between the
decoded location and the animal’s actual location and used the
median error of all time points in a lap as a measure of decoding
accuracy.We found that the median decoding errors were similar
between mice (7.8 [5.9, 14] cm, N = 36 laps in 3 mice) and rats
(7.7 [6.5, 10.9] cm, N = 36 laps in 3 rats; P= 0.82, Wilcoxon test;
Figure 4C). The result suggests that the animals’ locations could
be decoded equally well in mice as in rats. We also examined the
lap-by-lap dynamics in the decoding errors. The errors started
relatively high and dropped in later laps both in mice and rats
and there were no significant differences in decoding error in any
of the laps (Figure 4D).

Bayesian decoding can be performed at a finer time scale of
10ms within each theta cycle of the running to identify theta
sequences. With the templates we had, the number of template
cells active within a theta cycle was low in general (Figure 4E).
Nevertheless, we found that the median number of active cells

per cycle in mice (1 [0, 3], N = 6,347 cycles) was more than that
in rats (0 [0, 1], N = 10,458 cycles; P < 1.0 × 10−6, Wilcoxon
test; Figure 4E). We considered those theta cycles with 4 or more
active cells as candidate cycles. For each candidate cycle on a
trajectory, we performed Bayesian decoding at every 10ms from
the trajectory’s template and determined whether the sequence
of the decoded locations within the cycle matched a portion of
the trajectory. We found that the match ratio of the number
of matched cycles to the total number of candidate cycles was
similar between mice (0.080 [0.060, 0.093], N = 6 templates) and
rats (0.11 [0.085, 0.13],N = 6 templates; P= 0.18, Wilcoxon test;
Figure 4F). The result suggests that theta sequences were similar
between mice and rats.

Lower Ripple Frequency in Mice
We next examined whether the templates during running were
replayed within ripple events during stopping on the track and
during resting in a box after the running. We first identified and
quantified individual ripple events by their amplitude, duration,
and frequency and then compared these parameters between
mice and rats. The number of ripples was large in some animals
and varied across animals (6–480 on the novel track, 39–530
during resting). To avoid detecting small statistically significant
differences that might be biologically irrelevant (due to large
number of samples) and to ensure that the results were not biased
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FIGURE 4 | Spatial locations during track running were decoded with similar accuracy from mouse and rat place cell activities. (A) An example rat template and an

example mouse template on a trajectory. Each line is the firing rate curve of a place cell. (B) Decoded probability of each position at each time point (100ms) for a

track running period of a rat and for a running period of a mouse. The decoding was based on the two templates in (A). Color represents decoded probability. Red

line: decoded position (peak probability location) at each time point. White line: animal’s actual position. Note the close match between the decoded (red) and actual

(white) positions at most of the time points. (C) Decoding error of every lap for all rats and mice during running of the novel track. Lines: median values. (D) Lap-by-lap

decoding error (median and [25, 75%] range values). (E) Histograms of rat and mouse theta cycles with different number of active template cells. *P < 0.05. (F) Match

ratio of the number of theta cycles within which decoded positions matched a portion of the track over all candidate theta cycles. Each dot is a trajectory of an animal.
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by one or two animals, we randomly re-sampled the data to 6
ripples per animal per session and performed the comparisons
between these samples from 5 mice and 4 rats. During stopping
on the track, we found that ripples in mice and rats had similar
amplitudes (mice: 0.17 [0.16, 0.23] mV, N = 30 ripples; rats: 0.20
[0.17, 0.27] mV, N = 24 ripples; P = 0.24, Wilcoxon test) and
duration (mice: 53 [35, 92] ms, N = 30 ripples; rats: 62 [34, 92]
ms, N = 24 ripples; P = 0.85, Wilcoxon test), but ripples in mice
had lower frequencies than those in rats (mice: 154 [143, 170] Hz,
N = 30 ripples; rats: 190 [174, 208] Hz,N = 24 ripples; P= 1.2×
10−5, Wilcoxon test; Figure 5A). During resting, ripples in mice
and rats again had comparable amplitudes (mice: 0.25 [0.17, 0.34]
mV, N = 30 ripples; rats: 0.25 [0.20, 0.33] mV, N = 24 ripples;

P = 0.62, Wilcoxon test) and duration (mice: 38 [32, 87] ms,
N = 30 ripples; rats: 65 [43, 96] ms, N = 24 ripples; P = 0.068,
Wilcoxon test), but significantly lower frequencies (mice: 172
[162, 185] Hz, N = 30 ripples; rats: 201 [182, 217] Hz, N = 24
ripples; P = 4.6× 10−5, Wilcoxon test; Figure 5B).

To examine whether the detected differences were
representative of all ripples in majority of the animals, we
computed an average value for each ripple parameter over all
identified ripples in an animal. We found that the observed
differences in ripple frequency between rats and mice were
reflected by the average values of individual animals both on
the novel track (Figure 5A) and during resting (Figure 5B).
Specifically, during stopping on the track, average amplitudes

FIGURE 5 | Mouse ripples had lower frequencies. (A) Quantifications of ripple parameters (amplitude, duration, frequency, occurrence rate) during stopping on the

novel track. For each column, the top shows the cumulative distribution of a parameter computed from individual ripples sampled equally from all animals in the rat

and mouse group (N = 24 ripples from 4 rats, 30 ripples from 5 mice; 6 ripples per animal). The bottom shows the parameter’s values for individual animals averaged

from all ripples detected on the track. Lines: median values. *P < 0.05, ***P < 0.001. (B) Same as in (A), but for ripples during resting in a box after the track running.
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were similar between mice and rats (mice: 0.18 [0.17, 0.21] mV,
N = 5 mice; rats: 0.22 [0.19, 0.26] mV, N = 4 rats; P = 0.56,
Wilcoxon test). The average durations were also similar (mice: 73
[59, 80] ms,N = 5 mice; rats: 68 [58, 77] ms,N = 4 rats; P= 0.73,
Wilcoxon test), but the average frequencies were significantly
lower in mice than those in rats (mice: 169 [162, 171] Hz, N = 5
mice; rats: 197 [194, 198] Hz, N = 4 rats; P = 0.016, Wilcoxon
test; Figure 5A). During resting, average amplitudes in mice and
rats again were similar (mice: 0.25 [0.21, 0.33] mV, N = 5 mice;
rats: 0.22 [0.19, 0.30] mV, N = 4 rats; P = 0.73, Wilcoxon test)
and so were the average durations (mice: 59 [57, 63] ms, N = 5
mice; rats: 73 [60, 77] ms, N = 4 rats; P = 0.29, Wilcoxon test),
but average frequencies were again significantly lower in mice
(mice: 181 [168, 182] Hz, N = 5 mice; rats: 195 [191, 199] Hz,
N = 4 rats; P = 0.016, Wilcoxon test; Figure 5B). Furthermore,
we computed an occurrence rate of ripples in a session for
each animal. We found that ripple occurrence rate in mice was
significantly lower than that in rats during the stopping on the
novel track (mice: 0.025 [0.014, 0.043] s−1, N = 5 mice; rats:
0.31 [0.18, 0.35] s−1, N = 4 rats; P = 0.032, Wilcoxon test),
but not during resting afterwards (mice: 0.18 [0.14, 0.27] s−1,
N = 5 mice; rats: 0.21 [0.12, 0.24] s−1, N = 4 rats; P = 0.90,
Wilcoxon test). These quantifications show that ripples in mice
had lower frequencies and appeared to occur less frequently
during stopping on the novel track than ripples in rats.

Weaker Replay During Stopping and
Resting in Mice
We next examined how the template sequences during active
track running in the 3 mice and 3 rats were replayed within
ripples. Since replay may depend on time duration within or after
the running experience (Lee and Wilson, 2002; Ji and Wilson,
2007), we quantified the replay during stopping on the track
within first 6 running laps and during resting in a box within first
20min after the running. We first quantified how many template
cells were active together in a ripple event. Because cells in a
ripple could replay one of the two templates on the track, we
averaged the numbers over the two templates. For ripples during
stopping on the track, the median number of coactive cells per
ripple was higher in mice (3.5 [2.5, 4.9],N = 51 ripples) than that
in rats (2.0 [0.5, 4.0], N = 586 ripples; P = 2.2× 10−5, Wilcoxon
test; Figure 6A). For the ripples during resting in a box after
running, the finding was similar (mice: 5.0 [3.0, 6.5], N = 930
ripples; rats: 2.5 [0.5, 6.0], N = 421 ripples; P = 2.3 × 10−21,
Wilcoxon test; Figure 6A). Therefore, consistent with activities
within theta cycles, there were more cells coactive within ripples
in mice than in rats.

We considered those ripples with at least 4 active cells in any of
the two templates as candidate ripples. For each candidate ripple,
we used the Bayesian decoding method to identify whether
it replayed any of the two templates during track running
(Figure 6B). If so, we counted it as a replay event. We then
computed a replay ratio, which was the ratio of the number of
replay events to the total number of candidate ripples. Since the
ripple occurrence rate, and therefore the number of candidate
ripples, were low in mice during stopping on the track, we
combined the ripples from all 3 mice and those from all 3
rats and compared the ratio between mice and rats. During

the stopping on the track, we found only a few replay events
(N = 4 replay events out of 33 candidates) among the 3 mice
and the replay ratio was significantly lower than that in rats
(mice: 13%; rats: 41%; P = 0.0020, binomial test). However,
during resting in a box after the track running, although ripples
and therefore replay events were frequently observed in mice
(N = 171 replay events out of 722 candidates), the replay ratio
in mice remained significantly lower than that in rats (mice:
24%; rats: 35%; P = 0.0014, binomial test). The replay ratios in
individual animals varied, but in general were consistent with
the group averages (Figure 6C). Therefore, our data suggest that
ripple-associated replay was relatively weak during stopping on
the track, but was present during resting, in our mice. In both
cases, the replay appeared to be less prominent in mice than in
rats.

DISCUSSION

By comparing place cell activities and their firing patterns in
the same environment, we identified similarities and differences
between mouse and rat place cells. Mouse place cells are
qualitatively similar to rat ones. Their place fields develop quickly
on a novel track, they display similar theta phase precession and
similar theta sequences as rat place cells, and their sequences are
replayed in ripple events. Yet major quantitative differences exist.
Mouse place cells are less spatially specific and more directional
with more, smaller place fields on the novel track. They are
more active in theta cycles and ripple events than rat place cells.
Interestingly, ripple and replay events are rare during the first few
laps on the novel track in mice and the replay in mice is weaker
during resting than that in rats. These results suggest that mouse
and rat place cells represent the same environment in a similar
manner. However, the differences identified here, especially those
in ripples and replay, may lead to different spatial learning and
memory processing in the same environment between mice and
rats.

Place cells have been extensively studied in rodents. The
seemingly similar nature of location-specific firing in both rat and
mouse place cells indicates that spatial representation schemes
are similar in rats and mice. A previous review on existing
literature found that mouse place cells have less information
content and have less stable place fields than rat place cells across
sessions and days (Hok et al., 2016). However, to our knowledge,
the emergence of place fields in the same novel environment
had not been directly compared between rats and mice. For this
purpose, we intentionally used a 2-m long novel track in this
study, which is longer than the apparatus in a typical mouse study
but shorter than that in a typical rat study. We found that rat and
mouse place fields emerge in novel environments with similar
dynamics and are similarly stable in the shorter time scale of laps.
Our study also verified that mouse place cells have lower spatial
information than rat place cells in the same environment. Our
place field analysis also suggests that mouse place cells tend to
have multiple, smaller place fields in novel environments. Given
the much smaller body size of a mouse (∼7 cm) than that of
a rat (∼19 cm), the smaller place fields in mice are expected,
although the ∼20% difference in place field size (median: 33 cm
in mice, 40 cm in rats) falls short of proportion to their body
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FIGURE 6 | Ripple-associated replay was relatively weaker in mice than that in rats. (A) Histograms of rat and mouse ripples with different number of active template

cells during stopping on the track and during resting in the box. ***P < 0.001. (B) An example replay event in a rat and one in a mouse identified by Bayesian

decoding. Color represents the decoded probability of each position at each time point (10ms) of a ripple. The decoding was based on the two templates in

Figure 4A. Note that the decoded peak locations replayed a part of a trajectory on the track (white line) in both examples. (C) Replay ratio of the number of replay

events over all candidate ripples during stopping on the track and during resting in a box for every animal. Each dot indicates an animal. Solid lines: group replay ratios

(number of all replay events over all candidate ripples combined from all animals of a group).

size difference. Given that the track was relatively long to mice,
it is also expected that multiple fields tend to occur more often
in mice than in rats (Kjelstrup et al., 2008; Davidson et al., 2009;
Rich et al., 2014). The relatively long track tomice is probably also
related to another finding in our study: Mouse place fields appear
to be more directional. Longer tracks make individual locations
more distinctive and make animals easier to recognize which
direction they are moving. Nevertheless, direct comparisons of
mice and rats performing the same task in the same novel
environment allowed us to reveal quantitative differences of place
cells under same experimental conditions.

At the level of neuronal populations, studies on place cell
firing patterns and sequences are important to our current
understanding of memory processing. Such studies are mostly
done in rats. Similar ones in mice have emerged only recently
(Dragoi and Tonegawa, 2011; Cheng and Ji, 2013; Middleton and
McHugh, 2016; Yamamoto and Tonegawa, 2017;Middleton et al.,
2018). No previous studies have compared place cell sequences

in the same environments between rats and mice. Our data here
show that place cell ensembles can be used to decode the same
space with similar accuracy between rats and mice. Theta phase
precession and theta sequence quality (measured by match ratio)
are also similar between rats and mice. Our data thus suggest
that, despite the quantitative differences in spatial information
and place field parameters, spatial representations at the neuronal
ensemble level are similar between rats and mice. However, one
key difference we found is that awake replay during ripples at
least during the first few laps on the track is rare and replay
during resting after the track running appears weaker in mice.
Because ripples and ripple-associated replay are important for
memory processing (Girardeau et al., 2009; Ego-Stengel and
Wilson, 2010; Jadhav et al., 2012) and place field stability (van de
Ven et al., 2016; Roux et al., 2017; but see Kovacs et al., 2016), our
finding may explain why place fields in mice appear less stable
between sessions and across days and why mice and rats perform
differently in same environments (Hok et al., 2016).
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However, we need to be cautious on the interpretation of the
differences in place cells and replay between mice and rats. One
important issue often hard to disentangle is whether they are
simply caused by differences in behavioral parameters. In our
study, we tried our best to conduct the comparison between mice
and rats at similar time points of the experience (first 6 laps on the
novel track, 20min resting following the track running) and with
similar qualities of place cells and templates. Nevertheless, the
behaviors of our mice and rats were not identical. Our mice ran
faster and were therefore more active than rats on the novel track.
This seemingly hyperactive behavior may explain the decreased
number of ripples and awake replay on the track. Alternatively,
the lack of replay may indicate that our mice were just busy
moving around in the environment and did not stop and “think”
much to learn about the environment. In addition, although
our mice, and perhaps mice in general, are hyperactive, not all
mice are hyperactive in all behavior. It is possible that in some
behavioral tasks or after more running laps/experience mice
may pause more often and ripples and therefore awake replay
may increase (Yamamoto and Tonegawa, 2017; Middleton et al.,
2018). In any case, a true cognitive basis of place cell differences
between rats and mice need further investigation.

The hyperactivity issue may indicate just one possible
limitation of using mice for the study of place cells and place
cell patterns. Another limitation is obviously the number of
simultaneously recorded neurons. Whereas hundreds of neurons
can be simultaneously recorded from a rat (Pfeiffer and Foster,
2013), the number is about an order of magnitude less in
freely moving mice. The smaller number of neurons limits the
power of place cell pattern analysis, although new technological
developments may solve the problem (Jun et al., 2017).
Furthermore, mice are generally harder to handle and train in
complex tasks. However, there is an advantage of mice that rats
cannot match at least at the moment. There is a wide range
of transgenic mouse models that allow circuit manipulations
and the study of many neurological and psychiatric disorders.
Because place cells and theta sequences are qualitatively similar
between mice and rats and replay still occurs in mice, studying
place cells in mouse models may advance our understanding
of how place cell patterns are produced by the hippocampal
circuitry and how they are altered in various brain disorders
(Cheng and Ji, 2013; Suh et al., 2013; Middleton et al., 2018).

In summary, our study reveals key similarities and differences
in hippocampal place cells and place cell patterns between mice
and rats in the same environments. The differences suggest
that mice may learn about environments and process spatial
memories differently from rats. The similarities suggest that basic
spatial representations are comparable between rats andmice and
transgenic mouse models may be invaluable for understanding
the functions of place cell patterns and their role in brain
disorders.

METHODS

Animals and Behavioral Procedure
Four rats and5 mice, all adults at 3–9 months old, were used
in this study. All rats were male, Long–Evans rats. Two of the
mice were female F1 offsprings between a FVB/N strain that

carried aMecp2± gene and a pure 129S6 strain (Guy et al., 2001).
Three other mice were male F1 offsprings between a FVB strain
that carried a human tau gene with the P301L mutation and
a 129S6 strain that carried the tTA transgene (Santacruz et al.,
2005). However, all mice in this study were wild type animals
without the expression of any of the transgenes. All animals were
implanted with a tetrode drive in a surgery (see below). Animals
were mildly food- or water-restricted with weight ≥85% of ad
libitum level and trained to run back and forth on a familiar
track for food rewards. Recording started when animals did the
same task first day on a novel task (see below) in a novel room.
Different animals were recorded on different days. All research
and animal care procedures followed the recommendations in
the “Guide for the Care and Use of Laboratory Animals” of
the National Institute of Health and were approved by the
Baylor College of Medicine Institutional Animal Care and Use
Committee.

Surgery
A tetrode drive was surgically implanted to every animal. The
mouse drive contained 8 tetrodes aimed at the CA1 area of
the hippocampus and a reference electrode to the white matter
above the hippocampus. The rat drive contained 16 tetrodes
to the CA1 and a reference. The animal was anesthetized with
0.5–3% isoflurane and mounted on a stereotaxic device. The
coordinates of the implantation site for CA1was antereoposterior
(AP) 2.0mm and mediolateral (ML) 1.5mm from the Bregma in
mice, and AP 3.8mm, ML 2.5mm in rats. The tetrode drive was
mounted to the skull using stainless anchoring bone screws and
dental cement.

Tetrode Recording and Behavioral Task
Tetrode recording was conducted as previously described (Cheng
and Ji, 2013; Mou and Ji, 2016, 2018). In 2–4 weeks after the
surgery, tetrodes in every animal were slowly moved down to
the CA1 pyramidal layer, which was identified by sharp-wave
ripples in LFPs and bursting spikes during resting. Once spike
clusters were visually stable for at least 2 days, recording of LFPs
and spikes was made by a Neuralynx Digital Lynx system. LFPs
were filtered between 0.5 Hz−1 kHz and sampled at 2 kHz. Spikes
were identified by a threshold of 50–70µV after filtering between
600Hz and 9 kHz and sampled at 32 kHz. The animal’s positions,
sampled at 33Hz, were tracked by two diodes mounted to the
tetrode drive and recorded by an overhead camera.

The recording was made while the animal was running back
and forth (two trajectories) for food or water rewards on a novel
track and while resting in a box. The track was ∼2m long and
rectangle in shape with two reward sites at one corner (Cheng and
Ji, 2013). The recording lasted for 15–35min on the novel track
and 20–60min in the resting box. However, the spike data were
analyzed only within the first 6 running laps (on each trajectory)
on the track and within the first 20min of resting in the box.

Histology
After the recording, animals were sacrificed with pentobarbital
overdose (50 mg/kg). A 30µA current was passed to each tetrode
for ∼10 s to produce a small lesion at each recoding site. The
brain was dissected, fixed with 10% formalin or cryoprotected in
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30% sucrose, sectioned at 50–100µm thickness, and stained with
0.2% Cresyl violet. Recording sites at the CA1 pyramidal layer
were identified by the lesions.

Data Analysis
Single units (spikes from single neurons) were sorted offline using
a manual clustering program xclust (M. Wilson, MIT). Cluster
quality was assessed using isolation distance (Schmitzer-Torbert
et al., 2005). Only putative pyramidal neurons active on at least
one of the two trajectories, identified as overall firing rate on the
trajectory between 0.5 and 5Hz, were included in the analysis.
For quantitative comparisons on place cell properties, only those
cells with isolation distance >10 were included. For theta and
replay decoding analysis, all sorted cells active on a trajectory
were considered. However, the cells on some of the rat andmouse
trajectories were randomly selected to equalize the number of
cells per trajectory between rats and mice. Results were presented
asmedian and [25, 75]% range values, unless described otherwise.
Statistical comparisons were made by the Wilcoxon test, the
binomial test, or the Student’s t-test.

Place Cell Properties and Place Field Analysis
The two trajectories of the novel track were linearized. For each
cell active on a trajectory, its firing rate curve was computed
as the average firing rate among the first 6 laps at each spatial
bin of the linearized trajectory with a bin size of 2.5 cm. The
start and end portions (∼20 cm) of each trajectory were excluded
from the rate curve computation. The time periods when animals
stopped (speed <5 cm/s for at least 0.5 s) in the middle of the
trajectory were also excluded. Spatial information of the rate
curve in bit/spike was computed from the standard formula
(Skaggs et al., 1993). We computed spatial information for each
cell separately on each of its two possible active trajectories (cell
× active trajectory). Directional similarity was computed as the
Pearson correlation between a cell’s two firing rate curves on the
two running trajectories of the track. A cell’s rate change index
between the two rate curves was defined from their peak rates as
their absolute difference divided by their sum.We also computed
the firing rate curve for each of the first 6 laps. Spatial stability was
the average correlation value among all pairs of laps’ rate curves.
Spatial information was computed at each lap for every cell to
obtain the lap-by-lap dynamics. The correlation between a lap’s
rate curve and the average of the last two laps (5, 6) was computed
for every cell to characterize the stabilization of novel place fields.
Place fields were identified by a peak rate ≥3Hz and boundaries
were determined by a threshold of 10% of peak rate. Only place
fields with a minimum of 5 cm were considered. Because here
we applied a threshold of peak rate of 3Hz to our identification
of place fields, not all cells active on a trajectory had identifiable
place fields, which was observed more often in the first a few laps
of a novel track since place fields were premature (Frank et al.,
2004).

Theta Power and Theta Phase Precession
For each animal, we analyzed LFPs recorded by one channel
of a tetrode at the CA1 pyramidal cell layer, identified by the
presence of prominent ripples during resting and at least 3 single

units. We computed the power spectral density (PSD) of raw
LFPs during active running on the novel track, using a multitaper
method in Matlab. PSDs were then normalized by the total
power between 2 and 400Hz. Theta power was the integration
of PSDs within 6–10Hz. For theta phase precession analysis,
each raw LFP was filtered within 6–12Hz and its peak times
were identified. Theta phase of each spike of an active place
cell was computed from its spike time relative to the closest
peak time (0◦/360◦). The spike phases and spike locations of all
spikes within a place field were used to compute a circular-linear
correlation as previously described (Ravassard et al., 2013). We
also computed an optimal linear correlation between spike phases
and spike locations (O’Keefe and Recce, 1993). In this case, the
spike phases of all spikes were shifted 1◦ by 1◦. A linear regression
between spike phases and spike locations were computed at every
shift and the corresponding correlation and regression slope were
obtained. The optimal linear correlation was the one with the
maximum absolute correlation value. Its associated slope was
used to measure how fast theta phases processed within a place
field.

Ripple Analysis
Sharp-wave ripples were detected from LFPs filtered within [100,
250] Hz and recorded during the track running session and
during resting in a box. For each filtered LFP trace, its standard
deviation (STD) was computed and a threshold of 6 STDs was
used to detect ripple events (Csicsvari et al., 2000). Ripple start
and end times were determined as the time points crossing a
threshold of 2.5 STDs. Events with a gap <30ms were combined
to a single event. Only events with durations within [30, 500] ms
were considered as ripple events. We quantified each ripple with
its peak amplitude, duration, frequency (number of cycles per s).
Among all detected ripples, we randomly downsampled them to
6 ripples per animal per session (track running session or resting
session). We then compared the ripple parameters between
mice and rats for these downsampled ripples. In addition, we
computed the average value of each ripple parameter among all
detected ripples in a session in an animal, as well as an occurrence
rate (number of ripple events per se). We also compared these
average values of individual animals between mice and rats.

Bayesian Decoding
We used Bayesian decoding to quantify the accuracy of
population spatial coding of the novel track. First, we used the
average firing rate curves of all cells active on a trajectory as
a template. However, in order to compare the spatial coding
between rats and mice fairly, we only used those templates with
at least 12 cells, and for those with too many cells we randomly
removed some of the cells to make the cell number below 21. In
the end, 6 templates were obtained from 3 mice and 6 templates
from 3 rats. We then divided the active running time periods
of the first 6 laps on a trajectory into 100-ms time bins. The
spikes within each time bin were used to decode the probability
distribution at each possible position of the trajectory, following
a standard Bayesian decoding scheme (Zhang et al., 1998). The
position with the peak probability was considered the decoded
position at the time bin. The decoding error for the time bin
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was the absolute difference between the decoded position and
the animal’s actual position at the time bin. The median error
of all time bins in a lap was used as the decoding error for
the lap.

Theta Sequences and Replay Sequences
We applied the same Bayesian decoding method at small time
bins (10ms) to quantify theta and replay sequences (Johnson and
Redish, 2007; Davidson et al., 2009; Karlsson and Frank, 2009).
The idea is that if a firing sequence of multiple place cells in a
time window (a theta cycle or a ripple event) matches the cells’
behavioral sequence on a trajectory, the decoded positions within
the window (from the trajectory’s template) should match with
a portion of the trajectory. For theta sequences, we identified
those theta cycles (peak to peak times) with at least 4 active
template cells as candidate cycles. For each candidate cycle, we
divided it into 10-ms bins. We obtained the decoded position
at each time bin by Bayesian decoding and then computed a
correlation between the decoded positions and bin numbers of
all time bins within a cycle. We then randomly shuffled the time
bins 1,000 times and re-computed the correlation.We considered
a candidate cycle with its correlation value >95% of the shuffled
correlation values as a match cycle. Match ratio, which measured

the overall quality of theta sequences given our templates, was
the number of match cycles over the total number of candidate
cycles. Match ratio was computed for each animal separately and
for all mice or all rats combined. Replay events were determined
similarly. However, since spikes in a ripple could replay one of the
two template, we considered a candidate ripple where its decoded
positions matched a portion of a trajectory based on any of the
two templates on the track as a replay event (Karlsson and Frank,
2009). Replay ratio was the number of ripples over all candidate
ripples before the end of the 6th lap on the track or during the
first 20min of resting. The replay ratio was computed for each
animal and for all mice or all rats combined.
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