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Comparing neural correlates of visual target detection in serial 
visual presentations having different temporal correlations
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Most visual stimuli we experience on a day-to-day basis are continuous sequences, with 

spatial structure highly correlated in time. During rapid serial visual presentation (RSVP), this 

correlation is absent. Here we study how subjects’ target detection responses, both behavioral 

and electrophysiological, differ between continuous serial visual sequences (CSVP), fl ashed 

serial visual presentation (FSVP) and RSVP. Behavioral results show longer reaction times for 

CSVP compared to the FSVP and RSVP conditions, as well as a difference in miss rate between 

RSVP and the other two conditions. Using mutual information, we measure electrophysiological 

differences in the electroencephalography (EEG) for these three conditions. We fi nd two peaks 

in the mutual information between EEG and stimulus class (target vs. distractor), with the 

second peak occurring 30–40 ms earlier for the FSVP and RSVP conditions. In addition, we 

fi nd differences in the persistence of the peak mutual information between FSVP and RSVP 

conditions. We further investigate these differences using a mutual information based functional 

connectivity analysis and fi nd signifi cant fronto-parietal functional coupling for RSVP and FSVP 

but no signifi cant coupling for the CSVP condition. We discuss these fi ndings within the context 

of attentional engagement, evidence accumulation and short-term visual memory.
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 followed by distractor images. It has been shown that replacing a 
distractor image with a uniform gray image at the T1 + 1 position 
in the RSVP sequence, i.e., T1 is followed by a blank image, results 
in improved detection accuracy of both T1 and T2 (Bowman and 
Wyble, 2007; Chun and Potter, 1995; Raymond et al., 1992). It has 
also been shown that the greater the similarity of T1 + 1 with T1, 
the longer it takes to identify T1 (Chun and Potter, 1995; Peterson 
and Juola, 2000). These fi ndings suggest that the detection of a 
target can be affected by the correlations of image frames across 
time, and that the effect is likely due to the difference in the inter-
action between the instantaneous visual input and stored visual 
information, potentially from persistent activity.

Starting from these fi ndings, we hypothesize that the temporal 
correlation of image frames will affect target detection in the two 
following ways: (1) temporally-continuous sequences will result in 
increased response times (RTs) and lower miss rates (MRs), relative 
to RSVP stimuli, since there is additional evidence in the incom-
ing stimulus that can be accumulated over time and (2) tempo-
rally-discontinuous RSVP will result in masking of target images 
by non-relevant distractor images, with detectability of the target 
image reduced relative to that for continuous sequences or fl ashed 
presentations with no distractor images.

We expect that the two hypothesized observations would lead 
to differences in neural activity between serial visual presenta-
tions having different temporal correlation. These would include 
differences in the timing and/or amount of information which 
can be decoded from the neural activity that could be used to 
predict the stimulus class (i.e., target vs. distractor). Moreover, 
it has been suggested by Honey et al. (2002) that increased func-
tional connectivity between prefrontal and parietal cortices is 

INTRODUCTION

We typically observe the world within the context of moving 
imagery – i.e., the visual scene is temporally continuous and highly 
correlated in time. This is in contrast to a visual paradigm that is 
commonly used in the experimental settings called rapid serial 
visual presentation (RSVP) (Chun and Potter, 1995; Potter and 
Levy, 1969), where a sudden onset of a target stimulus is followed 
by non-relevant stimuli (e.g., distractor images). Two attractive 
elements in the RSVP paradigm are: (1) images are presented so 
rapidly that eye movements play little if any role in the task (Öquist 
et al., 2004) and (2) the speed of visual processing and decision 
making can be driven to the limits of temporal processing (Keysers 
et al., 2001). However in RSVP, the correlation in space and time 
is typically discontinuous, i.e., the targets in RSVP only appear 
for a very brief time period before they are masked by subsequent 
distracting frames, while targets in a continuous sequence normally 
are present for a much longer time.

To understand the target detection process in the context of 
natural vision, one must consider the possible differences between 
target detection during a continuous sequence and the experimen-
tally-used RSVP stimuli. However, to the best of our knowledge, 
no one has yet systematically studied this topic. The study of atten-
tional blink (Broadbent and Broadbent, 1987; Chun and Potter, 
1995; Raymond et al., 1992) has shed some light on how target 
detection is affected by the correlations of image frames across 
time – i.e., spatio-temporal correlations in the sequence. The atten-
tional blink is the phenomenon that when two targets are pre-
sented amongst distractors during RSVP, the correct identifi cation 
of the fi rst (T1) is followed by poor detection of the second target 
(T2) when the two targets are separated by 200–500 ms and T1 is 
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related to higher demand for maintenance and executive processes 
during a working memory task. Consistent with this fi nding, we 
would expect to see functional connectivity differences between 
a continuous sequence and a sequence with little temporal cor-
relation, if in fact the latter requires short-term visual memory 
and visual persistence.

To test these hypotheses and their corresponding neural cor-
relates we consider three stimulus conditions in this paper: (1) 
continuous serial visual sequences (CSVP), where the visual input is 
concatenated video clips so the input and the stored representation 
are highly correlated; (2) fl ashed serial visual presentation (FSVP), 
where the visual input only appears for a very brief period of time 
and there is no masking from subsequent distractor images; and 
(3) RSVP, where the inputs are independent/random frames and 
there is no correlation between the input and the stored visual 
representation.

It is widely accepted that target detection elicits the P300 (Hruby 
and Marsalek, 2003; Menon et al., 1997; Picton, 1992; Squires et al., 
1976; Tanaka et al., 1998), which is a large positivity in the aver-
age event-related potential (ERP) difference between target and 
distractor trials starting at around 300-ms post-stimulus and is 
maximal over the parietal scalp. Although differences exist in the 
scalp distribution and time course of the P300, it is believed that 
the P300 is independent of sensory modality (auditory, visual, and 
somatosensory; Ji et al., 1999; Naumann et al., 1992). Evidence also 
has shown that the P300 is closely related to a post-perceptual, 
capacity-limited stage in target detection (Dell’Acqua et al., 2003; 
Kranczioch et al., 2003; Nieuwenhuis et al., 2005b; Rolke et al., 
2001; Vogel and Luck, 2002; Vogel et al., 1998), and thus is directly 
linked to processes such as evidence accumulation and short-term 
memory retrieval.

A traditional way to analyze electroencephalography (EEG) 
is by averaging across multiple trials to compute the mean ERP 
difference between target and distractor. However, this method 
only provides the mean difference between conditions and cannot 
quantitatively measure the discriminability of the EEG for the two 
conditions – i.e., it does not incorporate the variance across tri-
als. Mutual information has been widely used in the neuroscience 
community (Borst and Theunissen, 1999; Chen et al., 2007; Jeong 
et al., 2001; Rozell and Johnson, 2005) and is seen as an informative 
measure of the statistical relationship between the stimulus and the 
response (Rozell and Johnson, 2005). In this paper, we use mutual 
information as a metric to quantify the target-related information 
content in the EEG as well as a means to estimate functional con-
nectivity between clusters of electrodes at the peak target-informa-
tive times. We focus our analysis on electrophysiological correlates 
whose timing overlaps with the P300 ERP. We show that the neu-
ral correlates of target detection processes, as measured via our 
mutual information framework, show systematic differences for the 
three stimulus conditions, suggesting that the interaction between 
short-term visual memory and the incoming visual stimulus can 
substantially impact perceptual decision making.

MATERIALS AND METHODS

SUBJECTS

Ten healthy right-handed subjects (one female and nine male, age 
from 25 to 31, mean age 29 years) participated in the study. All 

subjects had normal or corrected to normal vision and reported no 
history of neurological problems. Informed consent was obtained 
from all participants in accordance with the guidelines and approval 
of the Columbia University Institutional Review Board.

STIMULI

To generate our stimuli, video clips from movies were manually 
extracted and inspected to make sure all clips had no scene changes 
and minimal camera/angle changes (i.e., smooth temporal cor-
relation). If a video clip contained a target (defi ned as a person 
somewhere in the image frame), we also made sure that the target 
appeared through-out the entire clip (from fi rst to last frame) and 
was clearly visible to subjects. The presentation rate was set to 25 
frames per second (i.e., 40 ms per frame). The duration of each 
video clip was uniformly distributed between 18 and 30 frames 
(720–1200 ms). The size of each frame was 352 × 288 pixels. A Dell 
Precision 530 Workstation (Round Rock, TX, USA) with nVidia 
Quadro4 900XGL graphics card (Santa Clara, CA, USA) was used 
for stimulus presentation. A program was specially designed, 
using Visual C++, to present the stimuli and to ensure the timing 
of each frame during display. Visual stimuli were presented on a 
front projection screen using an LCD projector (InFocus LP130, 
Wilsonville, OR, USA) through an RF-shielded window. Stimuli 
subtended 19° × 17° of the visual fi eld.

EXPERIMENTAL PARADIGM

The main experimental paradigm was designed to compare the 
behavioral and neuronal responses to target presentation in 
CSVP, FSVP, and RSVP sequence. A secondary paradigm (see 
Supplementary Material) was used to assess the effect of the behav-
ioral response (button press) on target-related EEG signals.

The experiment consisted of three stimulus conditions: CSVP, 
FSVP, and RSVP. The task for subjects was to detect targets in a 
sequence of frames by pressing a button with their right index 
fi nger as soon as possible. The targets were defi ned as human(s) 
somewhere in the frame. Thus, the target could be at any posi-
tion, scale or pose and low level features were unlikely to be 
 discriminative. Each clip was considered a trial, with trials con-
taining people termed “target trials”, and otherwise they were 
“distractor trials”.

Each CSVP sequence began with a fi xation cross followed by 
eight clips. Every CSVP sequence had a corresponding FSVP and 
an RSVP sequence. For the FSVP, the fi rst two frames of each clip 
in CSVP were presented at the same relative place in the sequence 
(i.e., same frame number), with blank (black) frames replacing the 
remaining frames in the clip. For RSVP, only the fi rst two frames of 
target clips were kept the same as the other two types of sequences; 
the rest were non-target frames randomly picked from the same 
CSVP sequence. Figure 1 shows an illustration of the three types 
of sequences used in this paradigm.

There were 70 sequences for each stimulus condition, with 50 of 
these containing one and only one target clip (trial). The remaining 
20 sequences were distractor only trials. Sequences were randomly 
presented to subjects. For sequences with a target, the target could 
appear from the second to the last (eighth) clip. All subjects par-
ticipated in this experiment and EEG was simultaneously recorded 
for each subject.
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DATA ACQUISITION AND PREPROCESSING

EEG data were recorded in an electro-statically shielded room 
(ETS-Lindgren, Glendale Heights, IL, USA) by a Sensorium EPA-
6 Electro-physiological Amplifi er (Charlotte, VT, USA). We used an 
EEG cap having 60 Ag/AgCl electrodes (Electro-Cap, Eaton, OH, 
USA), with electrodes positioned according to the International 
10–20 system. All channels were referenced to the left mastoid and 
chin ground. Data were sampled at 1 kHz with analog band-pass 
fi ltering of 0.01–300 Hz. Raw EEG data were visually-inspected and 
trials with large eye movements were excluded. One subject was 
later excluded from data analysis because this subject’s EEG data 
contained frequent eye-blink artifacts. Following data acquisition, 
a software-based second-order 0.5 Hz Butterworth high-pass fi lter 
was used to remove DC drifts. The 60-Hz noise and 120-Hz har-
monics were fi ltered out by two second-order Butterworth band-
stop fi lters. Eye-blink and eye-movement activities were recorded 
and later removed from EEG recordings using a maximum differ-
ence method (Parra et al., 2005).

USING MUTUAL INFORMATION TO QUANTIFY TARGET DETECTION

We use mutual information as a metric to quantify the discrimi-
nability of the EEG and identify neural correlates of the target 
detection process in each of the three stimulus conditions. The 
approach enables us to, within the same framework, investigate 

coupling between electrode activities, thereby providing a means 
for inferring functional connectivity.

The mutual information between two variables measures the 
mutual dependence of the two variables, and is defi ned as (using 
discrete random variables as an example),

I( , ) P( , )log
P( , )

P( )P( )
,X Y x y

x y

x yx Xy Y

=
∈∈
∑∑  (1)

where P(x,y) is the joint probability distribution function of the 
variables X and Y, and P(x) and P(y) are the marginal probability 
distribution functions of X and Y, respectively. Mutual informa-
tion measures how much knowing one of the two variables reduces 
the uncertainty of the other. If X and Y are independent random 
variables, i.e., P(x,y) = P(x) P(y), their mutual information is zero, 
meaning the variables are not informative about one another; oth-
erwise, the value of mutual information is greater than zero. The 
widely-used units of mutual information include the “bit” and the 
“nit”, with one bit being the amount of information required to dis-
tinguish between two equally likely possibilities. In this paper, we use 
the natural logarithm to compute the mutual information, so units 
are in “nits” (one nit of mutual information equals 1/ln2 bits).

We fi rst estimate the mutual information between spatio-tem-
poral EEG signals and their class labels (targets vs. distractors), 

FIGURE 1 | Schematic representation of each type of sequence used in this study. Each image represents two successive frames (80 ms in duration). For each 

type of sequence, subjects fi rst fi xated on the center of the screen and were subsequently presented distractor or target clips. They were instructed to make a 

button response when they detected a target.
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across time and on each electrode for each subject, to quantify 
the information the EEG provides about target detection. If the 
mutual information is estimated at each sample in time, a large 
number of trials are needed for estimating the probability density 
functions from each subject. The number of trials in our experi-
ment is limited, so we compute the mutual information within 
temporal windows. If St iδ ,  represents all EEG samples in a temporal 
window starting at a post-stimulus onset time tδ with a duration 
of δ on channel i, and C represents the corresponding class labels 
(C ∈ {0,1}), Eq. 1 can be rewritten as,

I( , ) p( , )log
p( , )

p( )p( )
d .

,

,

S C s c
s c

s c
st i

s Sc C
t i

δ

δ

=
∈∈
∫∑  (2)

Here c = 1 indicates a target trial (clip) and zero a non-tar-
get trial. In terms of the temporal window length δ, it should be 
long enough to include suffi cient data samples for the mutual 
information estimation, but not so long such that we are esti-
mating over different processes and/or noise that is not informa-
tive about the class – i.e., within the temporal window the signal 
should be stationary. In our analysis, we fi xed the window length 
to be 50 ms (δ = 50 when fs = 1000 Hz). As an example, if for 
one subject there are 100 target trials (c = 1) and 200 distractor 
trials (c = 0), with window length δ = 50 ms, sampling frequency 
fs = 1000 Hz, and a post-stimulus window ranging from t to t + δ, 
then (100 + 200) × 50 = 15,000 EEG samples per channel are used 
to estimate the mutual information between EEG and class labels 
for that subject. We shift the 50-ms window every 10 ms, and 
estimate the mutual information between EEG signal and class 
across time, for each channel and for each type of sequence (CSVP, 
FSVP, and RSVP). The result is a spatio-temporal distribution of 
the mutual information between EEG and class labels. In this way, 
we focused on the discriminating activity, i.e., the target detection 
process, irrespective of the perceptual difference introduced by 
the different types.

Similar to displaying ERP responses on a series of scalp plots 
over time, the spatial distribution of the mutual information can be 
displayed in the same way, with different scalp plots representing the 
mutual information estimated over different temporal windows.

Mutual information can also be used to quantify the mutual 
dependence of two EEG signals. For example,

I( , ) p( , )log
p( , )

p( )p( )
d dS S s s

s s

s s
s s

s Ss S

1 2 1 2
1 2

1 2

1 2

2 21 1

=
∈∈
∫∫  (3)

is the mutual information between EEG signals S
1
 and S

2
. Here S

1
 

and S
2
 are two sets of EEG samples, for example for some temporal 

window on a particular set of channels from a subject. In this paper, 
we used this method to study the functional connectivity of EEG 
recorded from different clusters of electrodes. In the Supplementary 
Material, we show the discriminating activity between target and 
distractor conditions identifi ed by a receiver operating charac-
teristic (ROC) analysis and compare the results with that of this 
mutual information method. We also compare the utility of linear 
correlation for studying the functional connectivity between EEG 
clusters. In sum, we fi nd the mutual information method is more 
suited for studying the neural correlates of target detection than 
the ROC analysis and linear correlation.

ESTIMATING MUTUAL INFORMATION

Mutual information, as defi ned in Eq. 1, requires three probabil-
ity distribution functions P(x), P(y), and P(x,y) to be estimated. 
When estimating the one-dimensional distributions P(x) or P(y), 
we fi rst construct a histogram with the variable x or y binned by 
either two levels (zeroes and ones, for class labels) or m levels (for 
EEG signals). To quantize EEG variables, the range from the lower 
bound to the upper bound of the EEG signal is equally divided into 
m bins. The probability distribution function is computed as the 
histogram divided by the total number of samples. Likewise, the 
two-dimensional histogram with the variable x and y is constructed 
to estimate the joint distribution P(x,y).

A crucial parameter for estimating mutual information for a 
continuous variable is m. In previous work (Luo and Sajda, 2006), 
we used mutual information to identify a set of features for clas-
sifying EEGs and obtained good results, where we did the binning 
within each of the 50-ms windows with a bin size of eight (m = 8). 
Specifi cally, for each 50-ms temporal window and on each elec-
trode, we combined all the target and distractor trials and found 
the lower and upper bound of the EEGs, divided the range between 
these two bounds into eight bins with equal size, and computed 
the probability that EEG falls into each of these bins. In this paper, 
we started with this method and compared results with different 
values of m.

RESULTS

BEHAVIORAL RESPONSES

Statistical analysis of the subjects’ RTs and MRs across all trials is 
shown in Figure 2. One can see a signifi cant delay in the behavioral 
response for the CSVP targets condition. Although for the RSVP 
condition the mean RT was slightly longer than for the FSVP case, 
there was no signifi cant difference between their RTs. A Wilcoxon 
signed-rank test was performed and showed that the average RT 
to CSVP targets is signifi cantly larger than that of the FSVP and 
RSVP cases across subjects (p < 0.05 for both cases, with 9 degrees 
of freedom). Also note that the MR in the RSVP was signifi cantly 
higher than the other two stimuli. Surprisingly, the MR in FSVP 
was only slightly higher than in the CSVP stimuli, although the 
duration of the target presentation in FSVP was the same as that 
of RSVP (80 ms), and was much shorter than in CSVP (lasting 
from 720 to 1200 ms).

AVERAGE ERP RESULTS

As a fi rst step in analyzing the EEG data, we constructed scalp plots 
of the group average ERP difference (target minus distractor trials) 
across all subjects, locked to clip (trial) onset time [see Figure 3 
(top)]. For targets, only correct trials were included in this analysis. 
Figure 3 (bottom) shows the average ERP difference on channels 
FCZ, CZ, and P1 (for the locations of these channels please refer 
to Figure 5). These ERPs showed an earlier defl ection in response 
to FSVP stimuli than to the other two stimuli. Using a Wilcoxon 
signed-rank test we found that the ERP activity is signifi cantly 
earlier during the FSVP cases than during the CSVP and RSVP 
cases across subjects (p < 0.05, 9 degrees of freedom). There was 
no signifi cant difference in the timing of ERPs between CSVP and 
RSVP trials. This result cannot explain why RTs to FSVP and RSVP 
stimuli were signifi cantly shorter than that of CSVP stimuli in the 
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behavioral results. However as we have stated, the average ERP 
difference only considers the mean response, it does not consider 
the variance, which also holds important information about the 
discriminality of the EEG. Therefore, as a next step, we estimated 
the mutual information between EEG and class labels to exploit 
variance, and potentially higher order statistical information, to 
identify discriminating activity.

QUANTIFYING DISCRIMINATING ACTIVITY BETWEEN TARGET 

AND DISTRACTOR TRIALS: MUTUAL INFORMATION BETWEEN EEG 

AND CLASS LABELS

Figure 4 shows the temporal evolution of the mutual information, 
averaged across subjects, between the EEG (for each electrode) 
and the corresponding class labels for all three stimuli conditions. 
At approximately 300–350 ms after stimulus onset, central scalp 
electrodes were most informative (e.g., EEG is discriminating of 
class label) and the latency of the peak was earlier for the FSVP 
condition relative to the other two conditions (p < 0.05, Wilcoxon 
signed-rank test, with 9 degrees of freedom). This is consistent 
with the average ERP result. After 450 ms, two areas (one frontal 
and one left-parietal) were informative for target detection for all 
three types’ conditions. Interestingly, at this time the latencies of 
the peaks of the mutual information were earlier, by approximately 
30 ms, in the FSVP and RSVP cases (p < 0.05, Wilcoxon signed-rank 
test with 9 degrees of freedom on left-parietal electrodes; electrodes 
were selected based on Figure 5). Note that this fi nding differs 
from what one sees in the average ERP analysis results, where these 
two conditions differ in their latencies for the ERP peaks around 
450–500 ms. The mutual information result is in fact consistent 
with the behavioral results, where the two conditions have more 
similar mean RTs than for the CSVP condition, and this can be 
inferred from the relative time of the peaks in Figure 4.

Figure 4 also illustrates a rapid reduction in discrimination in 
left-parietal electrodes late in the trial. For example for electrode P1 
(Figure 4, bottom) the mutual information was “suppressed” after 

450 ms for the RSVP condition while the discriminating activity 
in FSVP persisted. To test the signifi cance of this early reduction 
in discriminability for the RSVP condition, for each subject we 
measured the duration in which the mutual information between 
channel P1 and class label was above 75% of the second peak value 
in the FSVP and RSVP cases. We found that the duration of the 
second peak in mutual information in the RSVP condition was 
signifi cantly shorter than that of FSVP (p < 0.05, Wilcoxon signed-
rank test, 9 degrees of freedom; for this channel).

QUANTIFYING THE MUTUAL DEPENDENCE BETWEEN BRAIN SIGNALS: 

MUTUAL INFORMATION FOR INFERRING FUNCTIONAL CONNECTIVITY

As we have stated in Section “Materials and Methods”, we can use 
mutual information to quantify the mutual dependence of two EEG 
signals to study the functional connectivity of brain responses at 
different incidents/areas. In this section, we identifi ed a set of EEG 
clusters involved in target detection and quantifi ed their mutual 
dependence, comparing results between the three conditions.

Identify discriminating clusters between target and distractor trials

In the previous section, we identifi ed three EEG clusters that were 
most discriminating: one with a central scalp topography, occurring 
approximately 300-ms post-stimulus; one with a frontal topogra-
phy and the third with a left-parietal topography, both occurring at 
about 450-ms post-stimulus. To investigate the functional connec-
tivity among these clusters we evaluated their mutual dependence 
with respect to each cluster’s corresponding EEG signals. Gerson 
et al. (2005) found that the discriminating activity between target 
and distractor trials was locked to both stimulus onset and response, 
and as time progressed from stimulus onset to response, discrimi-
nating activities became more locked to response. Thus to identify 
the exact timing of these clusters for each trial, we fi rst quantifi ed 
their degree of locking relative to stimulus onset and RT.

Figure 5 shows channels and approximate latencies that were 
used for identifi cation of the three clusters. In our analysis, we used 
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the sum of the selected channel data as the input to estimate the 
mutual information. Figure 6 shows each subject’s peak latency of 
mutual information in each cluster as a function of their average 
RTs. Similar to Gerson et al. (2005), linear fi tting was performed to 
quantify the degree in which the EEG was locked to the stimulus 
and response, as Eq. 4 shows,

PL RT= ±s bi ,  (4)

where PL represents the peak latency of the mutual information 
between EEG and class labels on each cluster, RT is response 
time, and b is the intercept on the axis RT = 0. A slope of s = 0 
indicates the latency is strictly locked to the stimulus while 
s = 1 means it is 100% locked to the response. From Figure 

6, we see that all peak values of the mutual information co-
varied with RT, while the two late clusters (frontal and left-
parietal) were more locked to RT [s

frontal
 = 0.61 ± 0.09 (SE), 

s
parietal

 = 0.65 ± 0.08 (SE)] and the early cluster was more locked 
to stimulus [s = 0.19 ± 0.06 (SE)]. This is consistent with find-
ings of Gerson et al. (2005).

Once b and s were found, using linear fi tting for each subject, we 
were able to identify subject-specifi c cluster latency for each trial 
and stimulus condition, given a stimulus onset and an RT.

Mutual information between EEG clusters

Next we estimated the mutual information between EEG clusters 
extracted from all correctly-responded target trials. As we have 
mentioned, discretizing EEG signals with different bin sizes can 
produce different results. If the bin size is too small, the detailed 
structure in the signal distribution might be lost; while if the bin 
size is too large, the estimation might be biased as there are not 
enough samples. In a previous analysis, we started with a bin size 
of eight (Luo and Sajda, 2006). In this paper, when estimating the 
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mutual information between EEG clusters, we varied the number 
of bins from 6 to 12 (bin size is in µV).

The dots in Figure 7 (left) show the group average mutual informa-
tion for central-frontal, central-parietal, and frontal-parietal clusters 
for the three types of targets. To test the signifi cance of these results, 
a bootstrap procedure was also performed: (1) for each subject, we 
sampled M trials with replacement from the original data, where M 
is the number of the subject’s correctly-responded trials, and then 
extract their fi rst EEG cluster; (2) we repeat the method in step 1 
to extract the second and the third EEG clusters, so that the three 
clusters generally did not come from the same trial, and computed 
the mutual information between each pair of these three clusters; (3) 
we computed the group average mutual information across subjects; 
and (4) repeated steps 1–3 1000 times, to calculate statistics for each 
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stimulus condition. The dashed lines in Figure 7 (left) show the upper 
bound of the 95% confi dence interval of the group average mutual 
information, computed via this procedure. The solid line shows the 
mean bootstrap result. For all nine plots (three stimulus types × three 
pairs of clusters), we see consistent results across different number 
of bins, i.e., the group average mutual information is either consist-
ently signifi cant [when the dots are above the dashed line in Figure 

7 (left)] or nearly signifi cant, or consistently not signifi cant [when 
the dots are below the dashed line in Figure 7 (left)]. This shows the 
estimation of mutual information was not overly sensitive to the 
number of bins for the range we considered.

We further summarized these results in Figure 7 (right), where 
for each stimulus condition two scalp plots are shown, with the fi rst 
representing the early central cluster, and the second representing 
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tion between the EEG and class label and identifi ed three clusters 
of EEG electrodes that are most informative of target detection. 
We also demonstrated that these clusters were not identifi ed using 
a traditional ERP analysis. In the following, we relate our fi ndings 
to current cognitive theories of target detection and explain the 
differences in the timing of these neural activities for serial visual 
presentation having different temporal correlations.

VISUAL TARGET DETECTION, ATTENTIONAL AROUSAL, AND THE P300

Many cognitive models of visual target detection argue that a post-
perceptual capacity-limited stage is crucial for target  identifi cation 
(Nieuwenhuis et al., 2005a; Shapiro et al., 1997). For example, 
Shapiro et al. (1994) “interference theory” assumes that all stimuli 
are processed to a varying degree and that they then compete, most 
likely during retrieval from visual short-term memory. Another 
model by Chun and Potter (1995) proposed that target detection 
involves a two-stage process, in which a pre-attentive stage of a 
short-lived visual representation is followed by a capacity-limited 
target identifi cation/decision-making process (the second stage). 
The second stage is initiated by a transient attentional arousal 
response that actively selects the target and is followed by the 
identifi cation and consolidation of the targets (decision making). 
Evidence shows that this post-perceptual capacity-limited stage is 
refl ected in the P300 (Nieuwenhuis et al., 2005a). For example, it 
was suggested by Chun and Potter (1995) that this stage of process-
ing happens between 200 and 500 ms, which of course overlaps with 
the P300. In attentional blink studies, it was found that the P300 is 
completely suppressed during the attentional blink period, while 
P1, N1, and N4 in EEG are not affected. Note that the P1 and N1 
are thought to refl ect early sensory processing and N4 semantic 
analysis (Dell’Acqua et al., 2003; Kranczioch et al., 2003; Rolke et al., 
2001; Vogel et al., 1998). Further, Vogel and Luck (2002) assumed 
that the P300 indicates the consolidation of transient perceptual 
representations into a more durable short-term memory. Menon 
et al. (1997) suggested that the P300 marks the completion of initial 
sensory processing and the onset of a process of directed attention 
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the late frontal and left-parietal clusters. Clusters that had mutual 
information signifi cantly above chance are connected with a solid 
line; otherwise they are connected with a dashed line. For CSVP 
targets, there was no strong connectivity among the three most dis-
criminating clusters; while for the other two conditions, especially 
the FSVP case, the connectivity between the areas was signifi cant.

DISCUSSION

In this paper, we study how the temporal correlation of the visual 
stimulus affects target detection. We estimated the mutual informa-
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leading to conscious awareness of salient stimuli. Together these 
studies suggest a strong link between the P300 ERP, target detec-
tion and attention.

The time course and scalp topography of the discriminating 
activity between target and non-target conditions in our task are 
in general analogous to previously reported visual P300 activity (Ji 
et al., 1999; Sangal and Sangal, 1996), although our results show a 
relatively stronger frontal activity and a more negative defl ection 
at the onset of the ERP. Most previous studies used simple visual 
or auditory odd-ball tasks to study the P300, while we used much 
more complex stimuli in which targets (i.e., people) were defi ned 
with variable position, scale and/or pose, and low level features 
were unlikely to be discriminative. This may account for the dif-
ference in the evoked P300 between our results and other visual 
odd-ball paradigms.

We fi nd three clusters of activity related to target detection 
and occurring during the timing of the P300. Menon et al. (1997) 
speculated that a small fronto-central discriminating activity hap-
pening at around 300-ms post-stimulus may characterize the ini-
tial orienting response, and may be due to the smaller or deeper 
activation of the anterior cingulate. The scalp topography and 
timing of this activity are analogous to that of the temporally-
early central cluster found in our analysis. The temporally-late 
clusters identifi ed in our mutual information analysis, which have 
a frontal-parietal topography and happen at around 350–700 ms 
post-stimulus, is analogous to the previously reported P3b com-
ponent [see Picton (1992) for a review] and thus may underlie the 
post-sensory processing of stimuli for evaluation, identifi cation 

and decision making (Menon et al., 1997). Thus, our functional 
connectivity analyses links the orienting response, stimulus identi-
fi cation, and decision making to the specifi c temporal correlations 
in the visual stimulus.

DIFFERENCES IN BOTH BEHAVIORAL RESPONSES AND EEG MEASURED 

NEURAL CORRELATES FOR CSVP, FSVP, AND RSVP STIMULI

One prominent difference between the stimulus conditions is that 
we fi nd the RTs for CSVP targets are signifi cantly longer than the 
RTs for both FSVP and RSVP targets. This fi nding is consistent with 
our fi rst hypothesis, namely that the temporally-continuous stimu-
lus would result in an increased RT to the target. Such a behavioral 
delay is also refl ected in the EEG response, with both the early and 
late cluster activities delayed in the CSVP condition relative to the 
FSVP and RSVP conditions. The behavioral and electrophysiologi-
cal delays we fi nd are in agreement with Chun’s two-stage model 
(Chun and Potter, 1995): once an item has been engaged in the 
consolidation stage, the time to process that item is a function of its 
discriminability relative to the previous item (Peterson and Juola, 
2000). Thus, it takes longer for the limited-capacity second stage 
to identify the CSVP targets.

We can also view these differences within the context of a deci-
sion-making process. In the diffusion model of decision making 
(Ratcliff, 1978; Ratcliff and Rouder, 1998, 2000), two-choice deci-
sions are described in terms of an evidence accumulation process. 
In this case, the decision mechanism accumulates information over 
time, modeled via a drift rate at which information is accumulated, 
and after which the evidence crosses a threshold representing one 
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study the functional connectivity between EEG measured at dif-
ferent scalp locations. For CSVP, we found that the connectivity 
between the three most discriminating clusters is weaker than that 
for the FSVP and RSVP cases. This reconciles with Honey et al. 
(2002), where the authors found that during a working memory 
task the connectivity between prefrontal cortex and parietal area 
increases, and speculated that it refl ects greater demand for main-
tenance and executive processes. In the CSVP condition, subjects 
do not have to recruit memory stores but instead can rely on the 
instantaneous input to form a decision. For FSVP, there are strong 
connections among all three clusters, which may also contribute 
to the improved performance (shorter RTs and lower MRs) in 
this case.

CONSISTENCY WITH PREVIOUS STUDIES

In a two-letter identifi cation experiment (Ratcliff and Rouder, 
2000), the authors varied the stimulus duration from 12 to 84 ms 
and found as stimulus duration increases, responses are faster 
and more accurate. This is in contrast to our results that show 
responses are slower for stimuli having longer duration (such 
as CSVP  targets). However, we believe these two results do not 
confl ict. The fi rst and more obvious explanation is that the span 
of the stimulus duration for the two experiments does not over-
lap. The second and more interesting explanation refl ects basic 
properties of simple decision making. As the diffi culty of the 
decision increases, accuracy decreases and RTs get longer. This 
is refl ected in Ratcliff and Rouder (2000): as the signal strength 
decreases with shorter presentation durations, so too does the rate 
of information accumulation, producing a decrease in accuracy 
and an increase in RT. However, subjects can trade-off speed and 
accuracy and respond rapidly and inaccurately, or slowly and 
accurately, as the task requires (Smith et al., 2004). This trade-off 
can also be affected by the very nature of the stimulus presenta-
tion, for example the abrupt ending of a stimulus forces a faster 
RT at the cost of accuracy. This is consistent with our fi nding 
that in the CSVP condition subjects are able to accumulate more 
information to make slow but accurate decisions, while in the 
RSVP case, the sudden change in the image characteristics (target 
vs. distractor) forces a decision which is also accompanied by 
masking of the visual representation of the target image in short-
term memory. The result is then subjects make faster responses 
with more errors.

CONCLUSIONS

In this paper, we study the effects that the temporal correlation 
in visual stimuli has on one’s behavioral and electrophysiological 
responses for target detection. We report longer reaction times for 
CSVP compared to the FSVP and RSVP conditions, and a differ-
ence in MR between the FSVP and RSVP conditions. Using mutual 
information, we fi nd neural correlates of these behavioral obser-
vations. These neural correlates were not identifi ed by traditional 
ERP analysis. We also investigate functional connectivity between 
clusters of electrodes and fi nd signifi cant fronto-parietal functional 
coupling for the FSVP and RSVP conditions but no signifi cant 
coupling during the CSVP condition. These fi ndings suggest that 
the interaction between visual short-term memory and the visual 
input can impact the target detection process.

of the two possible response criteria. From the perspective of this 
model, in the FSVP and RSVP conditions, the characteristics of the 
stimulus, namely an abrupt change in the stimulus from a target to 
non-target frame, forces the evidence accumulation to stop and in 
turn forces a decision. In terms of the diffusion model, this could be 
representative of an earlier starting point for the accumulation of 
evidence, a larger drift rate, or lower decision/response threshold, 
all of which could potentially results in faster RTs for these two 
stimulus conditions.

In terms of the neural activations differentiating the stimulus 
conditions, our results show that the early central cluster of activity 
elicited by FSVP targets is earlier than that seen for the RSVP and 
CSVP conditions. This is possibly an indication of an earlier orient-
ing response which results when a target appears for a very short 
period of time after which attentional resources that are needed 
are reduced. This reconciles with the theory of Bowman and Wyble 
(2007), namely that targets followed by blanks trigger a stronger 
and faster attentional gating response.

Another factor that may contribute to the earlier neural com-
ponent seen in the FSVP compared to the RSVP and CSVP con-
ditions is that for the FSVP condition the stimuli before a target 
presentation are also blanks frames. Thus at the time of target 
onset, visual storage is empty and ready for new inputs (Chun and 
Potter, 1995). Smith et al. (2004) found that inattention delays the 
entry of stimuli into short-term memory. This may also account 
for the delayed central component seen in the RSVP and CSVP 
conditions.

Although the statistics of RTs to RSVP targets is about the same 
as that of FSVP stimuli, RSVP’s MR is signifi cantly higher than that 
of FSVP. This result is consistent with our second hypothesis that 
when a short presentation of a target is masked by non-relevant 
natural image distractors, its detectability will be reduced. The neu-
ral correlate of this may be the earlier reduction of the discriminat-
ing activity in the parietal cortex at around 450-ms post-stimulus 
in RSVP case, refl ective of a loss of the target representation in 
visual storage, or a reduction in iconic memory (Coltheart, 1980; 
Sperling, 1960). The masking (i.e., overwriting of a visual buffer) 
by distractor images that follow the target results in a mismatch of 
the incoming input (distracting images) to the internal representa-
tion of targets in RSVP condition. This is consistent with Smith 
et al. (2004) and Kawahara et al. (2001), that visual masks limit the 
visual persistence of stimuli. Similarly, in an attentional blink study, 
the authors found that distractor images following T1 resulted in 
poorer detection of T1, compared to blank images (Chun and 
Potter, 1995; Raymond et al., 1992). In contrast, it seems that in 
the FSVP condition the visual input is allowed to persist in iconic 
memory. In Philiastides et al. (2006) and Philiastides and Sajda 
(2007), the authors used an FSVP stimulus design and showed that 
neural activity of a “late neural component” refl ective of evidence 
accumulation within a stored representation of the stimulus was 
in fact localized to visual areas previously reported to be the site 
of iconic memory and visual persistence.

FUNCTIONAL CONNECTIVITY DIFFERENCES BETWEEN CSVP AND FSVP/

RSVP PROCESSING

One of the attractive aspects of using mutual information as a 
quantitative metric for analyzing EEG is that it can be used to 
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