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Abstract

The literature on the modeling and management of data generated through the lifecycle

of a manufacturing system is split into two main paradigms: product lifecycle management

(PLM) and product, process, resource (PPR) modeling. These paradigms are complementary,

and the latter could be considered a more neutral version of the former. There are two main

technologies associated with these paradigms: ontologies and databases. Database technology

is widespread in industry and is well established. Ontologies remain largely a plaything of the

academic community which, despite numerous projects and publications, have seen limited

implementations in industrial manufacturing applications. The main objective of this paper

is to provide a comparison between ontologies and databases, offering both qualitative and

quantitative analyses in the context of PLM and PPR. To achieve this, the article presents

(1) a literature review within the context of manufacturing systems that use databases and

ontologies, identifying their respective strengths and weaknesses, and (2) an implementation

in a real industrial scenario that demonstrates how different modeling approaches can be used
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for the same purpose. This experiment is used to enable discussion and comparative analysis

of both modeling strategies.

Keywords Ontology · Database · Comparison · Data modeling · Product lifecycle

management

1 Introduction

The advent of computer science and information communication technologies (ICT) in

diverse fields such as manufacturing, healthcare and smart cities has improved the manner in

which information is created and exchanged between multiple stakeholders [1]. Furthermore,

paradigms such as service-oriented architecture (SOA) [2] and cloud computing (CC) [3] can

be implemented in order to permit the remote access, storage and manipulation of resources.

These can be physical or cyber resources, which are, in turn, mapped to different physical

elements such as industrial equipment or measuring devices. This is achieved through the

modeling and management of data. More precisely, any domain that can be described within

a data model may use models as engineering artifacts for different purposes, e.g., simulation,

inference, monitoring and control.

Nowadays, in the case of manufacturing systems, databases seem to be the most com-

mon technology used by organizations in order to represent, store and share information

[4] with databases currently being used for product lifecycle management (PLM) and prod-

uct, process and resource (PPR) data modeling [5,6]. Databases are widespread in industry

and are more established than ontologies as a means for representing system knowledge

[7]. Nevertheless, the design of ontologies for this domain has, in the last decade, gained

momentum—particularly in academia. This is evidenced by the increase in published research

on this matter in various research portals [8].

Selection of data modeling approach should depend on the needs and desire of end users.

However, such decisions are frequently made by software engineers who tend to select a

solution according to their knowledge and experience, tending toward those that they are

comfortable with. The authors of this paper consider there to be a lack of comparative

studies that offer sufficient means for deciding between the employment of ontologies and

databases, particularly for those unfamiliar with the former. Some of the few existing studies

can be found in [9,10]. However, such works need to be supported by research that provides

representative examples to enable a comparison of the capabilities of both technologies within

the context of the requirements placed upon them. It is important to state that other knowledge

representation (KR)-based solutions, such as production rules or frames, are used in industry;

this work considers that, based on contemporary trends, the prominent technologies to be

compared are ontologies and databases.

This paper aims to present a qualitative and quantitative comparison between ontologies

and databases, demonstrating some of the capabilities of each technology when facing the

same issue in the context of manufacturing systems. The main contribution of this article is to

provide a study that permits an assessment of the strengths and weaknesses of both technolo-

gies for a specific domain—manufacturing systems—which requires robust technologies for

storing, accessing and updating data dynamically, at runtime. To achieve this, this research

presents a concrete and industrial use case whereby a manufacturing system is described

within different semantic models to be accessed and updated. Further, this paper addresses
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real-world benefits of both data modeling technologies and discusses a set of research ques-

tions that need to be answered.

The rest of the paper is structured as follows: Sect. 2 presents a literature and industrial

practices review within the scope of this research. More precisely, the review contains an

introduction to data modeling and management as well as the definition of ontologies and

databases, including a classification and introduction of their main principles. Finally, there

is also a description of state-of-the-art transformation solutions. Section 3 describes the

methodology that has been followed in order to achieve the reported results. Section 4 presents

the test environment that has been designed for the required implementation of this research.

Section 5 presents the use case that has been applied to obtain both qualitative and quantitative

results for the comparison between ontologies and databases. Section 6 presents and discusses

the results with Sect. 7 concluding the article and identifying future directions.

2 Literature and industrial practices review

2.1 Datamodeling andmanagement

A vast amount of data are currently generated throughout the product realization process—

from design, through to process planning, and then on to manufacturing system design and

engineering. Prior to the emergence of the present-day engineering software, models were

limited to those instantiated within the physical world, such as mock-ups and prototypes for

testing products and processes, as well as some digital versions such as spreadsheet-based

calculations to predict costs and cycle times [11]. However, the amount of complexity in

a typical manufacturing system has increased due to the emergence of more sophisticated

technologies (both within products and manufacturing systems), requiring the expertise of

multiple domains for realization. In addition, there is an ongoing paradigm shift toward

mass customization and product personalization [12,13]. These factors are the cause of an

exponential rise in the amount of data that are now generated by the manufacturing industry,

with sources ranging from customer requirements to production systems and the supply chain

[14].

Although much can be gleaned from these data, it is necessary for it to be managed and

analyzed, to allow maximum value to be extracted from it. Some data are generated from

physical systems during operation; however, a considerable amount of data are also generated

through the modeling of products and systems. This is done in order to support design activ-

ities and to understand the interactions of components—carrying out simulations to predict

performance, and visualization to communicate requirements and the desired outcome.

To help manage these data, the key paradigm, recognized as state of the art by the industry,

is PLM. PLM manages the storage and exchange of information supporting design and engi-

neering, and integrates it with business processes [5]. PLM is envisioned to allow stakeholders

to make data- or information-driven decisions throughout the lifecycle of the product. The

implementation of PLM is intended to create a so-called unbroken “digital thread” that pre-

vents the loss of information and ensures that the data are an up-to-date, truthful representation

of reality. PLM software acts as a hub or platform that brings together a suite of engineering

tools and business processes. Relational database management systems (RDBMS) are a core

part of all major, existing, PLM platforms and are renowned for their scalability and stability

[15]. However, with the exponential rise in the volume and type of data that now need to be

managed by such systems, the efficacy of RDBMS is called into question, particularly within
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the context of adaptability, expressiveness, interoperability and extensibility [10,16,17]. To

continue to support the industry, it is vital for some form of PLM to continue to exist; how-

ever, with the increasing complexity and demands on such systems, it is necessary to consider

whether new data management and modeling techniques are required.

2.2 Ontologies

2.2.1 What is an ontology?

The word “ontology” has different meanings depending on the context. Firstly, there is the

philosophical discipline which is an uncountable noun written as “ontology,” which deals

with nature and the structure of “reality” [18]. Aristotle dealt with this subject and defined

ontology as the “science of being.” Unlike the scientific ontology, this branch of metaphysics

focuses on the nature and structure or reality independent of how this information would be

used.

Contrastingly, the use of ontologies in this research stems from the field of computer

science, where it refers to a type of information object. An ontology is a form of KR and is

defined by Gruber [19] as “an explicit specification of a conceptualization” while Borst [20]

extends this definition to “formal specification of shared conceptualization.” Ontologies are

a form of KR for a given domain that uses formal semantics and can be used to arrange and

define a concept hierarchy, taxonomy and topology.

Ontologies can be accessed for querying and/or modification purposes and they can be

implemented using several semantic languages [21,22]. Resource description framework

(RDF)-based languages remain dominant, using XML as the syntax option for writing expres-

sions. RDF-based models (e.g., RDF graphs) are sets of triples composed of a subject, a

predicate and an object. The Ontology Web Language (OWL) [23] is a description language

that extends RDF with cardinality constraints, enumeration and axioms, enabling the creation

of richer and more accurate models. OWL comprises three sublanguages: OWL Lite, OWL

DL and OWL Full, in order of increasing expressivity, respectively. OWL 2 extends OWL

with additional features, including extended datatype support and annotation capabilities.

However, OWL remains the prevalent ontology language, with a large number of supporting

editors.

The information from OWL models can be queried using an RDF-based query language

such as SPARQL [24]. In addition, SPARQL Update [25] can be used for retrieving and

updating ontological models. Rule-based languages such as the Semantic Web Rule Language

(SWRL) [26] can be employed within ontologies. These rules are defined on top of such

ontological models, as presented in [27]. Through the use of rules and RDF triples, semantic

reasoning engines can infer implicit knowledge and validate the consistency of a model

[28,29].

2.2.2 Types of ontologies

There are different types of ontologies, as reported in [30], with two main criteria that are

used to categorize them: the level of formalization, and the level of specificity. In the for-

mer, there exist “lightweight” and “heavyweight” ontologies, while in the latter, there exist

“foundational,” “core,” and “domain” ontologies.

– Levels of ontological formalization: Lightweight ontologies are based on simple tax-

onomies with simple parent child relationships between concepts [31]. Examples of this
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type of ontology include WordNet [32], and a number of international standards within

the context of product data management, such as STEP [33]. This type of ontology has

limited concept constraints such that their semantics are insufficient to support interop-

erability, i.e., to integrate different domain models [34]. To address this, particularly for

the STEP format, the ONTOSTEP ontology was developed, which addressed the lack

of logical formalism of EXPRESS so that reasoning and semantic operability could be

realized [35]. Thus, heavyweight ontologies describe concepts, relationships and logic

constraints for automatic prediction and logical inference.

– Levels of ontological specification: Foundational ontologies aim to cover the semantics

of “everything” and therefore cover the semantic base for any given domain. Examples

of foundational ontologies include DOLCE [36], and the Basic Formal Ontology (BFO)

[37]. The concepts in foundational ontologies are generic and as a result are often too

broad to be used in a practical engineering context. Core ontologies are limited in the

literature and sit at a level of specificity between foundational and domain ontologies.

The objective of core ontologies is to cover a set of semantics that are shared across

multiple domains [38]. As a result, they lend themselves to reuse and are of particular

importance within the context of interoperability. Domain ontologies have the greatest

level of specificity and, due to their focus and distinct semantics, interoperability between

domain ontologies is challenging. Within the context of supporting manufacturing system

lifecycles, it is therefore incumbent on the domain ontology development team to identify

domain touchpoints and to ensure that links and mappings exist between the relevant

concepts.

2.2.3 Ontology development methodologies

As a result of over two decades of development and learning, a number of methodologies

have evolved to support the development of ontological models from the modeling process

through to implementation and use. In 1994, the U.S. Air Force defined an ontology method to

structure semantic information modeling called IDEF5 [39]. An ontology acquisition process

was developed based on five basic steps [40].

1. Organizing and Scoping of Project: The structure and content of the project is described

in this part and the main objectives of ontology development are clearly specified.

2. Data Collection: The raw data are defined and classified to enable the development of the

ontology and the data collection methods are summarized from different domains.

3. Data Analysis: This part is used to analyze the existing data material to establish an initial

ontology for knowledge engineers and the domain developer.

4. Initial Ontology Development: By developing prototype ontologies, ontology classes,

properties, attributes and relationships are refined and given detailed specifications.

5. Ontology Refinement and Validation: This phase integrates the known information with

the ontology. Through a refinement procedure, ontologies are summarized in specification

form for evaluation by domain experts.

Based on the IDEF5 methodology, [41] a documentation stage is added to standardize the

ontologies and to support the foundation for future ontology development. METHONTOL-

OGY introduced the iterative development of an ontology, with a focus on maintenance [42].

Reusing knowledge from existing ontologies forms part of a seven-step guide for ontology

creation by Noy and McGuinness [43]. Other than the knowledge reuse aspect, the method

remains similar to what is proposed by [40]. An important conclusion derived by Noy and

McGuinness is that there is no single correct ontology for a given domain, despite following a
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common methodology. Determining whether the “right” ontology has been created can only

be done by using it in the application for which it was developed [44].

2.3 Databases

2.3.1 What is a database?

The concept of the database appeared following development of direct-access memory, i.e.,

immediately after stored computer data became feasible. The term database appeared in the

early 1960s, and since that moment, multiple database implementations have emerged [45].

The term database in computer science is understood as a structured collection of data [46].

This collection includes several kinds of objects, such as schemas, tables and queries, that

permit the representation of data to enable it to be interpreted and reused by computer systems

and by humans.

As the deployment, across multiple domains, of IT-based solutions for managing and

storing data has grown over the last few decades, specific types of databases have been

selected and implemented, according to the requirements of the field of application. The

authors suggest the following non-exhaustive expectations for a database in the modern

production environment:

1. Databases are expected to be medium sized, i.e., smaller than global social network

databases occupying the data centers around the world, but large enough to accommodate

all relevant production information.

2. Database models are expected to be of average complexity. Due to standardization of

the production processes and components, the allowed abstraction level can be relatively

high.

3. Database models are expected to be stable. This is because changes made to adequately

designed database models are only made in relation to significant changes in the produc-

tion.

4. Databases are expected to ensure data consistency, i.e., corrupt data should be spotted

early, while the failure is still recoverable.

5. Databases are expected to provide high data throughput, accessibility and robustness.

Basically, a database should not be a bottleneck of the production process.

The authors of this research work claim that, in the manufacturing domain, databases should,

at least:

1. be medium-sized models in order to easily manage, access and update them;

2. allow the description of static schemas, not affected by a highly dynamic number of

requests;

3. ensure data robustness and consistency;

4. permit the processing of multiple requests from/to different data providers and consumers

in parallel.

2.3.2 Types of databases

There are many ways to classify different kinds of databases as they can be differentiated

according to their structure, contents or application area. These characteristics affect inter-

related concepts such as data storage, organization and access. Data storage typically refers

to the number of levels of abstraction between the data and its representation in computer
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memory. The levels of abstraction add functionality to the database but increase memory

usage and, generally, the access time. The data can be stored in its binary form directly in the

database (DB) program memory, on a disk as a file in binary format, in DB-specific format,

or even in plain or marked-up text format. Furthermore, the stored data can be present in a

single place in memory or can be replicated across clusters.

Different organization approaches influence the storage and access options as well as the

performance and applicability of certain techniques for representing data. In turn, represented

data affects several aspects such as consistency, synchronization, redundancy and robustness.

Among the access options, the most common ones include direct access as well as several

querying languages, such as SQL [47], NoSQL [48] and some customized and/or proprietary

ones, such as Hyper Text SQL (HTSQL).1 One of the main objectives of this manuscript is

to provide a qualitative and quantitative comparison between ontologies and databases. This

research considers relational SQL, NoSQL and graph databases [45], which can be mapped

to RDF-based models.

From the first databases that emerged in the 1960s, such as the network-based CODASYL

[49] or the hierarchy-based IMS [50], to the recent models, many different types of database

have been designed and implemented for diverse applications. It is important to note that

database engines are capable of handling specific types of databases. For instance, Oracle2

allows, as a primary data model, a relational database management system (DBMS). How-

ever, some database engines permit additional secondary data models or even multi-model

functionality, i.e., processing different database types as primary data models. For example,

while Oracle permits document store and key-value store as a secondary data model, the

OrientDB3 allows the implementation of document store, graph DBMS and key-value store.

2.3.3 Database development methodologies

There are many methodologies that database designers and developers may follow in order

to create coherent and consistent data models [51–53]. As there are many different types of

databases that can be developed, it is not feasible to find a methodology that supports the

creation of any kind of data model, covering all the required steps.

Nevertheless, there are many common steps regardless of the database type being created.

Fundamentally, the development of a database model starts with a decision on terminology

for certain concepts such as entities, relationships, attributes and constraints. This convention

of terms is similar to the fourth step presented in the basic step list for designing ontologies

in the previous section. Following this step, is it necessary to check for any redundancy in

the model for simplification purposes [54].

2.4 Previous work on comparison of different approaches for data modeling

A number of works have been published that present some level of comparison between

ontologies and databases. In some cases, only a passing comment is made, while others

delve deeper. In order to demonstrate the value and contribution of this work, the authors

present what has already been discussed in this area alongside the remaining questions.

Ontologies differ from a database approach as their focus is on the preservation of meaning

to facilitate interoperability, whereas the main purpose of a database schema is to store and

1 http://htsql.org/.

2 https://www.oracle.com/database/index.html.

3 http://orientdb.com/orientdb/.
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query large data sets [9]. One of the most comprehensive reviews on the topic was presented in

[10], which aimed to clarify the differences and similarities between ontologies and databases.

Similar points were also raised in [55]. A summary of the conclusions made concerning the

differences are as follows:

– Design approach: Databases are created from scratch for a specific purpose, whereas

ontologies may be created by reusing existing ontologies. Although ontologies can also

be created from scratch to be used for a specific purpose, their inherent dependence on

semantics facilitates reuse for unforeseen applications—unlike databases.

– Manner of KR: Databases relies on closed world assumption (CWA), which means that the

assumption is that the model represents complete information. This has the consequence

that what is not known to be true, must be false. Ontologies, however, use an open world

assumption (OWA), whereby if a query does not return a result, the interpretation would

be that the information is unknown.

– Syntax: Databases utilize entity-relationship diagrams, which represent the logic of the

database, whereas ontologies are expressed in languages with which you can describe

logics. By extending this notion, semantic features are the underlying foundation of

ontologies, but are unimportant for databases.

There are also some similarities: the expressiveness of the respective tools resembles each

other to some degree (classes ≇ tables, properties ≇ attributes, and axioms ≇ constraints).

Thus, we conclude that the key differences are derived from how the respective tools are

used: databases are for storing large data sets, while ontologies are focused on integrating

semantic data or exchanging information between heterogeneous systems. An example of

exchanging data between heterogeneous software is present within PLM [56,57]. As such, it

has been proposed that ontologies can make databases entirely redundant within this context.

This is because the conceptual model is stored together with the instances. Additionally,

when transforming the conceptual model associated with a database to physical and logical

models, there is an associated semantic loss [58].

In [59], a framework for representing functional knowledge within ontologies to retain

design intent is presented. The authors explicitly decide not to use databases specifically

because they have been known to hinder the reuse of documents due to the lack of semantic

constraints for functional knowledge. Within the context of the work, the authors define a

semantic constraint as a restriction that allows the description of a model that complies with

the conceptualization committed by the author.

Research that presented a comparison of databases and ontologies through implementation

within a medical data management system concluded that SPARQL, querying triple stores,

retrieved instance data via the Virtuoso Universal Server faster than SQL, querying a relational

database [16]. Comments were also raised concerning the usability of SPARQL versus SQL,

whereby the former adhered to a clearer standard which was not always the case for SQL-

capable systems. A further advantage of the ontological approach was its flexible schema

that could be extended without comprehensive system redesign. On the other hand, the

OWA offers no constraint validation, requiring implementation of this functionality in the

application layer.

Finally, in the scope of this research, Bizer and Schultz presented the Berlin SPARQL

Benchmark (BSBM) [60], which is a study of the querying performance on a variety of

different RDF and SQL-based stores via SPARQL and SPARQL-to-SQL queries. The authors

performed a set of queries where the data size and the number of clients (representing the

number of the end users) changed in order to add realism to the conducted tests. As a result,

the SPARQL-to-SQL rewriters slightly outperformed the RDF as the data set increased. It is
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important to highlight that the authors did not discuss the low-level specification of different

technologies used. An analysis of their experiment infrastructure would provide a benchmark

for comparing the results presented in this research work.

2.4.1 Transformation tools

Moving on from the comparison above, it is clear that there are some areas where the respec-

tive data modeling methods are complementary. A number of transformation tools have been

developed to allow the benefits of the respective approaches to be exploited. Such tools enable

the sharing and reuse of knowledge structures to support domain experts in addressing the

integration and analysis of existing data sets. Relational database-based conversion tools

serve as a method to facilitate ontology development by reducing development lead times,

examples include DB2OWL, RDB2Onto and OWL2DB [61].

– DB2OWL: DB2OWL is a conversion tool that can automatically generate ontologies

from relational databases via mapping database tables and description logic using OWL

DL language [62]. Based on their algorithm, database concepts are translated to a related

ontology component. For example, tables will be classes in ontology description; columns

and rows are represented by properties and instances; the relation in database schema is

relationship between domain ontologies. The advantage of this tool is that it can auto-

matically generate records for logging ontology mapping processes including (1) each

corresponding description for the ontology component, (2) the conceptual relationship

between ontology and database, and (3) the mapping history of instances and attributes

[63]. However, this tool depends only on a particular case or database table, and current

databases only support Oracle and MySQL due to limited metadata. In addition, data

mapping cannot occur across different databases to generate one ontology.

– RDB2Onto: The automatic generation of ontologies usually focuses on mapping a rela-

tional database with ontology concepts, such as, such as DB2OWL, D2R and R2O [64].

RDB2Onto is an SQL-query-based RDF/OWL translation tool that can transfer existing

data to ontology templates using only SQL queries. In order to analyze XML schema in

an ontology template, data are merged to an ontology data format. This tool is developed

in the Java environment using the Sesame and Jena library, which support SPARQL to

connect an ontology with a MySQL database, but it can also be used for any other rela-

tional database. The advantage of this solution is its simplicity and ease of operation via

a visual user interface [65]. RDB2Onto also provides the ability to customize instances

and create decision-making rules through an ontology library. Unlike DB2OWL, this

approach cannot directly generate database instances to ontology. Furthermore, the main

components of this tool are the OWL Builder and the OWL Writer, which cannot preserve

the ontology structural constraints. Thus, this tool does not support reasoning tasks for

extending ontology with predication of rules.

– Others: There are solutions that permit transformation from OWL to relational databases

[66]. In fact, the work reported in [66] describes the main principles for mapping OWL

elements to relational database schemas within a specific tool, based on the OWL2DB

transformation algorithm. Furthermore, a qualitative comparison between similar trans-

formation solutions is provided. The research works compared are, predominantly, the

ones reported in [67–72]. The aforementioned articles demonstrate that the mapping

between ontology and database models is feasible and must be taken into account in

environments that employ both types of modeling approach. However, OWL2DB focuses

on a one-to-one class relationship and breadth-first search method. As a result, the per-

123



1280 B. Ramis Ferrer et al.

Table 1 Research questions

about ontologies and databases
# Research question Requirements

1 What is the effect on

performance (as a set

of characteristics) as the

volume of data within

a given model is incre-

mentally increased?

Investigate the differ-

ences on processing

when using each tech-

nology. This should be

tool-agnostic and focus

on the performance

differences between

fundamentals of ontolo-

gies and databases

2 How could database

models and ontologies

interact with each other

in a future scenario?

Investigate the

employment of

ontological models

in conjunction with

databases to sup-

port complex and

demanding needs of

ICT-based platforms

3 What is the perceived

difference in effort for

implementing and main-

tenance of a database

versus an ontology for

common applications?

Evaluate the required

effort to create script,

model and resources

of each solution. In

addition, research about

the effort of modifica-

tion and maintenance

of models at different

phases (e.g., design and

operation)

formance of this tool is limited by the transformation algorithm. Depending on different

cases, this tool may not create all the relationships between tables or classes. Further,

knowledge can only be transformed in terms of OWL Lite syntax and a part of OWL DL

syntax.

3 Open questions and amethodology for comparing digital data
modeling technologies

The review of literature and industrial practices in the scope of PLM and PPR data modeling

led to the discovery of a set of unanswered questions. As shown in Table 1, this section

presents a set of research questions (RQs) and required research actions to address them.

These RQs are the starting point of this research. The following steps have been performed

to compare different data modeling technologies:

1. Model and environment design: This consists of the selection of the main methods and

tools for designing similar data models to describe and control the same system using

different data modeling technologies (ontologies and databases). The decisions and the

final environment that was selected for this research are described in the following sec-

tion; the decision has three core aspects: data collection, applications and tools, and test

environment.
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2. Implementation: This concerns the implementation of the test environment and the data

models. The completion of this step provides an experimental setup that permits the

assessment of different features of the data modeling technologies. In relation to RQ3,

this step illustrates some of the aspects of model implementation that require management.

3. Test and compare: This is the final step of the methodology. It involves testing both

technologies to obtain results for analysis and discussion. The testing of each model

demonstrates directly the effects on performance, which is the concern of RQ1. In addition,

the discussion of the experimental tests leads to the identification of potential synergies

between databases and ontologies.

4 A test environment for the lifecycle engineering databases and
ontology comparison

As a representative case in the scope of PLM and PPR data modeling, this research work

implements a means of data collection for retrieving information from a discrete assembly

line. Principally, the objective is to collect random events that are triggered by industrial

controllers located in such a line. These events describe the status of each machine in the line.

More precisely, an orchestrator engine has been designed in order to produce one variation

among the available products. While the line is producing the products, the orchestrator

records all triggered events. Over a period of 12 hours, the line produced 100,000 random

events. The authors of this research believe that the randomness and unconstrained nature of

the data are representative of a real manufacturing environment. In fact, the randomness is

generated by the nature of the manufacturing systems, where events can be triggered once a

change occurs. For example, a change can include pallet position, machine status, operations

feedback or safety alarms. The event collection routines are not linked to the current process

or status of the production system.

Besides the data collection, the research methodology requires the selection of the appli-

cations that are to be used for the comparison. The goal is to exploit the same tools and

frameworks for each kind of modeling technology to ensure a valid comparison. The selection

study took more effort than was expected, since the available support for both technologies

is significantly different. This contrast originated from several factors; for example, the life

span of the technology was the major factor, since the two technologies have many years

of difference in terms of maturity. Besides that, the level of usage and maturity also plays

an important role in terms of technical and programming support. The authors use the Java

development environment4 with similar libraries, due to the availability of frameworks such

as SQL5 provided by Java, which suits each of the technologies being compared. In addi-

tion, the Java Microbenchmarking Harness (JMH)6 framework is used for measuring the

operation-to-time ratio for both implemented technologies. Within this setup, each technol-

ogy to be compared had similar programs for making the required benchmarking test. The

MySQL7 data store has been used to implement the database store, and Jena ARQ8 has been

used to store the data for the ontology model.

4 https://www.java.com/en/.

5 https://docs.oracle.com/javase/7/docs/api/java/sql/package-summary.html.

6 http://tutorials.jenkov.com/java-performance/jmh.html.

7 https://dev.mysql.com/.

8 https://jena.apache.org/documentation/query/.
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Fig. 1 Deployment environment for database and knowledge-based technology validation

Finally, the decision on the deployment environment has ensured similar impact due to

computational resources such as central processing unit (CPU) capabilities, random access

memory (RAM) size and background services. The objective is to execute both benchmark-

ing applications on the same machine with the same operating system (OS) conditions and

background services. Furthermore, it is important to deploy both applications without them

affecting or interfering with each other. As these requirements could be achieved by employ-

ing virtual machines or containers, “Docker”9 containers have been built based on Linux

Ubuntu images for the deployment of the benchmarking tests. As shown in Fig. 1, both

tests are deployed on similar Docker images—the difference being the data store, since the

technology is different.

9 https://www.docker.com/.
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Fig. 2 A completed mobile phone from the FASTory line

5 Lifecycle engineeringmodels in manufacturing: a use case

5.1 The FASTory line

The FAST-Lab (Future Automation Systems and Technologies Laboratory)10 FASTory line

is a production line that demonstrates the assembly process of mobile phones by drawing

different variants on sheets of paper that are located on special pallets. Up to three components

are drawn: the frame, screen and keyboard. Each of the mobile parts may be drawn in any

one of three different colors and three different models. This means that the line can produce

81 different mobile models and 729 different mobile variants, taking into account different

color options. Figure 2 shows the FASTory line and an example of a finalized product.

The FASTory assembly line contains a workstation (WS1) for loading/unloading papers

to/from the pallets using a SCARA robot. Another workstation (WS7) is used for load-

ing/unloading pallets from the assembly line served by a human operator. Ten workstations

are used for drawing purposes. These workstations are identical and are able to draw all

mobile models with different colors. All workstations include a segment of the central trans-

port system, which is based on a belt conveyor. All workstations used for drawing operations

have a path for pallets to bypass the workstation if it is operating—reducing the possible

delays or traffic in the overall production process. This is appreciable from Fig. 3, which

shows the interface of a FASTory line web-based simulator. In addition, each conveyor is

divided into multiple zones that have one presence sensor to detect the presence of the pallet,

one stopper to stop the pallet and an RFID reader for pallet recognition. Each red-filled tri-

angle of four represents a different stopper, each located at a different zone of the conveyor.

Each drawing workstation has up to five conveyor zones, while WS7 and WS1 have only

four zones.

The FASTory line has evolved during the implementation of several European projects,

such as the eSonia11 and eScop12 projects. Some of the tasks performed during the eScop

project made it possible to create a remotely accessible virtual replica of the production line to

support the project developers. This virtual replica is referred to as the FASTory Simulator.

In this research work, the FASTory Simulator13 is used to collect the event logs for the

comparison tests of ontologies and databases, with it being the system description container.

10 https://www.tuni.fi/en/research/fast-lab#expander-trigger-field-group-members.

11 https://artemis-ia.eu/project/18-esonia.html.

12 https://cordis.europa.eu/project/id/332946.

13 http://escop.rd.tut.fi:3000/fmw.
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Fig. 3 FASTory layout shown in the FASTory web-based simulator

5.1.1 Collecting data in the FASTory line

To achieve the aim of collecting data from the FASTory Simulator, a web-service-enabled

orchestrator has been designed. This engine consists of two main blocks: the JobExecuter

and the Logger. As depicted in Fig. 4, the orchestrator is an application that runs on a

normal personal computer (PC) and is connected to the FASTory network through an Ethernet

socket. Figure 4 shows that a switch has been used to connect to different remote terminal

units (RTUs) which, in turn, are connected to different devices (robots and conveyors) of

the FASTory line. The RTUs are devices profile for web services (DPWS)-enabled devices

that permit the description of service operations that can be executed in order to control the

performance of the robots and conveyors. In Fig. 4, the RTUs are labeled according to the

type of device and number of web services that they control, i.e., ROB1 RTU denotes an

RTU connected to the robot located at WS1 and CNV12 RTU denotes an RTU connected to

the conveyor located at WS12.

At the initialization phase, the orchestrator subscribes to each event in the FASTory line.

This subscription allows the Logger block to be notified whenever any change occurs in the

line. The Logger then creates a JSON object to store all the notifications. Hourly records are

stored for each day. In the experiment performed for this research, up to 106,154 events have

been collected over a total of 12 operating hours. The JSON-formatted records allow parsing

for further analysis.

The JobExecuter (JE) block is capable of managing a simple production process. The

production process tested in this research experiment requires the participation of all work-

stations. This scenario provides several events of different types, sent from multiple senders.

Figure 5 shows all possible event types that could be generated, including their main infor-

mation. As depicted, each event type (ET) includes three principal objects: timestamp, event

(which in turn contains id and senderId), and finally the payload object. It is the payload

object that categorizes the ET. While ET1 includes a payload object with palletID, ET2 also

contains the recipe item. Additionally, ET3 includes color information.

The difference between the ETs is originated by each event sender. Each type of event is

linked to specific operations that are executed in the line. ET1 originates from CNV RTUs
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Fig. 4 Data collection orchestrator integration

Fig. 5 Information included in each ET

whenever a pallet moves to a new conveyor zone (i.e., a new position). The first operation

linked to ET1 is Z_CHANGED. In addition, ET1 is issued when executing PAPER_LOADED

and PAPER_UNLOADED operations, which notify the load or unload of papers in WS1.

Secondly, ET2 is linked to the DRAW_START_EXECUTION operation, which is executed

for starting a drawing with any robot from WS2 to WS6 and from WS8 to WS12. Finally,

ET3 is linked to the DRAW_END_EXECUTION, which is triggered once a robot finishes

the drawing process. Figure 6 shows an example of the JSON format of an ET3.

5.2 An ontology-basedmodeling approach for the FASTory line

This subsection presents the ontology model designed to describe the FASTory line. In

the UML class diagram presented in Fig. 7, the model that this research employs for stor-

ing, retrieving and reasoning information generated from FASTory events via ontologies is

described.
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Fig. 6 ET3 JSON format example

Fig. 7 FASTory ontology model represented within the UML class diagram

Figure 7 illustrates that the ontology is composed of 11 classes. Besides the depicted range

and domain of the object properties, the model includes the datatype property senderURL,

which is used for describing the URL of event senders, i.e., robot and conveyor RTUs. In

order to demonstrate the implementation of the presented model, Fig. 8 shows the model

in Protégé.14 Protégé has been used as the ontology editor at the design phase to create the

model and to perform both consistency tests and execution of queries in order to validate the

model.

As presented in Fig. 8, the model includes certain instances by default. There is one

instance for each robot and conveyor as well as the senderURL datatype property value,

which is a string indicating the sender URL. Furthermore, all robots are linked to the color

RED, as the default color that any robot of the FASTory line will use for drawing operations.

This research requires the population of different models in order to evaluate each modeling

14 https://protege.stanford.edu/.
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Fig. 8 FASTory model seen via the Protégé user interface

Fig. 9 SPARQL query for ET3 population

approach. The population of each model has been done in the environment described in

Sect. 4. Figure 9 shows, as an example, the query that permits populating events of type 3

(ET3), as presented in Fig. 6. This illustrates the structure of the implemented update queries.

Since the ontology population is about updating the model, the executed queries are

SPARQL Update queries, which are usable within RDF-based models, as described in Sect. 2.

It is important to mention that the words in between “%” characters are variables, to be

replaced by the Java code in order for a query to be fully executable. These variables are

taken from each incoming event for the model population.

Besides similar queries for populating the ontology with ET1 and ET2 events, this research

required the design and implementation of SPARQL SELECT queries for retrieving infor-

mation that is useful for supporting RQ1 and RQ3. This is then presented to aid discussion

and to demonstrate the results and required efforts during the research.
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Table 2 Data type events
Path Data type Mandatory

timeStamp TIMESTAMP Yes

event.id VARCHAR[20] Yes

event.senderId VARCHAR[10] Yes

event.payload.palletId CHAR[13] Yes

event.payload.recipe VARCHAR[5] No

event.payload.color VARCHAR[5] No

5.3 A DB-basedmodeling approach for the FASTory line

An open-source database system named PostgreSQL15 is used for DB-based modeling. The

data modeling for this research employed generic RDBMS and does not exploit the specific

features provided by PostgreSQL, being instead representative of SQL technology in general.

The RDBMS’s features include the ability to store and to query the data in JSON format—

similar to other document-oriented DBs. Storing the event data in JSON format may decrease

the querying performance of a DB, but does significantly simplify the design process, as the

message itself can persist in the DB. There are several steps in the design of a relational DB.

Firstly, the data to be stored in the system should be classified to data primitives. Secondly,

the data should be organized across DB tables and connected via relations.

As described in Sect. 5.1.1, the events generated by FASTory line are similar in structure

and share multiple similar data parts. These events must therefore have an associated times-

tamp, type, sender, pallet, and may have recipe and color in the model. The timestamp can be

directly mapped to the TIMESTAMP data primitive to allow advanced operations with the

column. The event id, sender id, recipe and color are varying length strings, while the pallet

id is a constant length string. All the fields shown in Table 2 are present in all the events with

the exceptions of color and recipe.

The next step involves defining the tables and the relations between them. The structure

of the tables depends mainly on the data structure, considering aspects such as the relation

between fields in the data and which parts of the data are continuously updated. The design

of the queries that are needed could affect the table’s structure where some SQL commands

depend on the technology employed. As a result, the developer needs to find the balance

between query performance and the nature of data for constructing tables in the database.

In some cases, the exact set of expected queries to be run on the database is known in the

design phase; this can also be true of industrial DB deployments. This issue becomes more

apparent with the contemporary trend for a more iterative approach. As a result, the process

of DB design becomes more complicated, as not all the requirements are available and future

changes cannot always be anticipated.

Hence, the most simple and straightforward approach for the case described in the paper

would be to place all the data in the same table. Such an approach provides a reasonable

structure for available data, since only a few fields could be skipped in the events in the

system. In addition, such an approach should deliver a good performance for the expected

queries. The structure for such a table is shown in Fig. 10.

15 https://www.postgresql.org/.
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Fig. 10 Structure of the table

Fig. 11 Organization for query

population

Fig. 12 DB model tables

For such a structure, the population queries are to be organized as shown in Fig. 11. During

the population phase, all question marks are to be replaced with the proper values following

the same order in the insert command.

Another approach to data modeling used in this research comprises splitting the data

according to the content into three separate tables: one defining event payloads, one defining

other event description, and one connecting the events to the timestamps. The events table

should include a reference to an entry of event details table, which in turn should include a

reference to the payload entry. The separation of the data into three tables, shown in Fig. 12,

makes the queries more complicated, which leads to higher execution overhead in some

cases.

The creation of the three tables is presented in Fig. 13. Once created, the tables are

populated by the query as shown in Fig. 14. In a similar manner to the single-table structure,

the question marks are replaced by proper values to form the raw data during the population

phase.

6 Results and discussion

This section presents the querying benchmark tests performed on different data models (DB

and ontology), which have been populated as described in Sects. 5.2 and 5.3. More precisely,

three query types have been generated in order to compare the performance of the two data
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Fig. 13 Creation of DB tables

Fig. 14 Query to be executed for population

modeling technologies. Since the tests depend on the technology implementation, this may

affect the overall results. Nevertheless, the tools employed for these experiments are among

the most frequently used by data model designers, and so the results are reflective of common

implementation performance.

The design of the three queries provides similar functionality for both DB and knowledge

base (KB, ontology) implementations. These queries are presented in Tables 3, 4 and 5.

– The first query counts the number of triggered events for a given event ID.

– The second query counts the number of products that were produced using a specific

pallet, which is filtered using the desired pallet ID.

– The third query returns all events that have been triggered in a specific period by giving

the start and end timestamps.

A performance analysis of both data modeling technologies is achieved through the execution

of the aforementioned queries. In the case of DBs, as discussed in the previous section, two

different data models have been designed in order to study the effect of data structure on

the performance. The first model considers the data to be stored as one single table, whereas

the second approach stores the data in three tables (payloads, event_details and events). This

difference in the database structure requires different queries for each functionality. Table 3

presents the three types of query for a single-table database. Although it is simpler to build a
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Table 3 DB single-table queries

Query type Query statement

Count events types SELECT events.action_id,

COUNT(events.action_id)

FROM events;

GROUP BY events.action_id;

Count products made on pallet SELECT events.pallet_id,

COUNT(events.pallet_id)

FROM events

WHERE events.action_id =’DRAW_END_EXECUTION’

GROUP BY events.pallet_id;

Count events in time scope SELECT events.sender_id,

COUNT(events.sender_id)

FROM events

WHERE events.ts

BETWEEN ’2017-08-03 11:00:00.000’::timestamp

AND ’2017-08-03 11:15:00.000’::timestamp

GROUP BY events.sender_id;

query for a single table, this could decrease the flexibility should the data structure change.

The query “Count events types” allows the counting of the number of events for a certain

event ID. It returns the list of event_id and the count of appearance for each event. The second

row shows the count of the products that have been in a certain pallet. Finally, the third query

counts the number of events within a given time window.

Similar to the single-table data structure, the three-table DB structure uses the same queries

but with some changes, as shown in Table 4.

The queries for the KB are presented in Table 5; it is apparent that the structure of the

queries is somewhat different from the DB queries. This is due to the different syntax of

the languages that are used for querying the distinct data models. Nonetheless, the queries

maintain, at some level, the same structure since they are used to extract the same information.

As mentioned in Sect. 4, the JMH framework has been used to create benchmarking tests.

This framework allows programmers to examine the performance of Java routines. These

tests measure the performance of a Java routine by executing the routines successively within

a preconfigured period, which is known as iteration. Next, the programmer configures the

framework to run the iteration several times. Depending on the configuration, the programmer

can allocate some of the iterations to the warmup iteration. During the measurement, the

JMH returns the number of times that the routine is executed during the specified period

for each iteration. Then, once the framework completes all benchmarking tests, the average

value of each benchmark across all iterations is obtained. A higher number indicates a better

performance of the tested routine.

To achieve a satisfactory and relevant result for the objectives of this research, the JMH

framework has been configured to run ten warmup iterations and ten benchmarking iterations

taking one second for each iteration—this means that the unit for the results are operations

per second (Ops/s). For the test routines, four benchmarking tests have been created for each

model. Three routines execute the queries listed in Tables 3, 4 and 5. In addition, another
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Table 4 DB three-table queries

Query type Query statement

ount events types SELECT DISTINCT action_id, COUNT(action_id)

FROM event_details;

GROUP BY action_id;

Count products made

on pallet SELECT payloads.pallet_id, COUNT(payloads.pallet_id)

FROM event_details, payloads

WHERE event_details.action_id = ’DRAW_END_EXECUTION’

AND payloads.id = event_details.payload

GROUP BY payloads.pallet_id;

Count events in time

scope SELECT event_details.sender_id, COUNT(event_details.sender_id)

FROM events, event_details

WHERE events.ts

BETWEEN ’2017-08-03 11:00:00.000’::timestamp

AND ’2017-08-03 11:15:00.000’::timestamp

AND event_details.id = events.event_ref

GROUP BY event_details.sender_id;

routine executes the populating routine for the DB and KB models in Figs. 9, 11, and 14,

correspondingly. These benchmarking tests have been deployed in Docker containers to

avoid disturbances from different OS processes. For this purpose, three Docker containers

have been created and deployed, one for each model. For the single-table and three-table DB

models, the measurements were similar but a slightly better performance is shown by the

three tables. It is noticeable that there are, in both cases, drops in performance that could

be related to the DB query cache feature.16 In this context, MySQL caches the results of

SELECTED queries by default in order to improve the performance. Due to conditions such

as the complexity of the query, size of data, size of the results and hardware capability, this

cache can be flushed or cleared automatically by the optimizer to prevent any possible errors.

On the other hand, the Population benchmarking test showed greater variation from normal

performance, as illustrated in both Figs. 15 and 16.

In the ontology model case, the performance is different from that of the DB, as presented

in Fig. 17. During testing of the three queries routines, the warmup iteration showed incre-

mental performance improvement until it reached a saturation value. Afterwards, the warmup

continued at a steady performance. This steady performance was present in the benchmarking

measurements as well. The dramatic difference between the performance results of ontolo-

gies compared with DBs is due to several technological and tool-based factors. The main

reason for such a difference could be the buffering of the queries in the Jena ARQ,17 since

KB do not repeat the existing instance. This allows for caching of the paths between nodes.

Unlike the query tests, the population was similar to the DB population benchmarking results.

After finishing all the benchmarking tests, the JMH framework presented the overall

results, which are presented in Fig. 18 and Table 6. As shown, the results show a very distinct

16 https://dev.mysql.com/doc/refman/5.5/en/query-cache.html.

17 https://docs.oracle.com/database/122/RDFRM/rdf-suipport-for-apache-jena.htm#RDFRM246.
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Fig. 15 Single-table DB benchmarking measurements

Fig. 16 Three-table DB benchmarking measurements
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Fig. 17 KB benchmarking measurements

Fig. 18 Overall results for all benchmarking tests

performance difference between updating and querying the models. In the case of population

benchmarking, the DB shows much better performance, with an average difference of 200

Ops/s. This difference could be generated by the nature of the technology, since the DB inserts

data directly without extra mapping operations as the DB table is constructed. In contrast, the

ontology update operation requires a mapping process in order to not duplicate the instances

of the classes.
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Table 6 Overall average benchmarking results

Test name DB single-table

model [Ops/s]

DB three-table

model [Ops/s]

KB [Ops/s]

Count events benchmark 251.727 208.406 931.421

Count products benchmark 282.039 171.624 12291.206

Count event in time scope benchmark 168.307 169.658 9437.583

Population benchmark 475.498 473.017 8.831

Furthermore, the ontology model had the upper hand in the data retrieval process with

a difference of approximately 9000 Ops/s. This difference could be caused by the caching

feature, provided by the JENA ARQ, which caches the path between nodes for a querying

operation—providing better performance. In this research, these parameters were kept at the

default configuration settings to represent a common client trying to use the tool directly

from the box. It is important to highlight that these tests depend on the search engine for

each technology; therefore, the specific indexing algorithm should be further analyzed. These

results can be compared with other research that addressed the same problem; however, the

comparison can be unfair for some technologies since the tests and experimental techniques

might vary, with different configurations and parameters. As an example, while the BSBM

in [60] used an HTTP interface to connect with the JENA TDB; this research interfaces with

the JENA TDB using the Java API (application programming interface) directly. This could

affect the test results, where HTTP services can add latency to the system.

This section has presented the experimental results that have enabled a performance com-

parison of DB and ontology technologies. On the performance level, the tests intend to

eliminate the technology effects, as close as possible, by following the same test conditions

and using the same OS. However, as the vision was to try to deploy these tests with the most

commonly used tools available in order to reflect the real-world scenario, this has been a

challenging experiment. Instead of comparing both technologies, it is important to highlight

that both technologies may work side by side—each providing unique features for the user.

As an example, from the tests, ontologies should perform better than DBs at querying pro-

cesses, which makes it a more reasonable choice to be used as a knowledge provider. On the

other hand, DBs show more consistent performance for both querying and updating, which

makes them suited for use as a data store. In addition, an ontology-based model permits more

rich representation of the data. This fact suggests that ontologies would be a better choice for

applications that require reasoning and for inferencing implicit knowledge of the data model.

With regard to RQ2, the boundaries between databases and knowledge-base technologies

must be investigated. Due to the involvement of the authors of this research in several EU

projects, they have experience of the evolution of both data modeling technologies (DBs

and ontologies) with new concepts. As an example, the Cloud Collaborative Manufacturing

Networks (C2NET)18 project includes both technologies within the same solution, in order

to exploit different features of each one. In this context, the C2NET project provides key

functionalities for the smart and medium-sized enterprises (SMEs) on the enterprise resource

planning (ERP) level in the well-known automation pyramid described in the ISA-95 standard

[73]. These features, which are provided as web services in the C2NET project, include i)

optimization, ii) monitoring and iii) assessment of production, delivery and logistics plans.

Besides this, the C2NET platform also allows the companies to interact with other companies

18 https://cordis.europa.eu/project/id/636909.
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in the same supply chain, acting as a network for the exchange of information and facilitating

communicating through the web.

In regard to its architecture, and related to the synergy of databases and ontologies, the

C2NET platform employs both technologies. The data collected by the C2NET platform from

SMEs—potentially ERP or factory shop-floor data—pass through a transformation process

where it is homogenized with the schemas or standards of the C2NET platform data. The

transformation is applied within the ontology technology since each company can provide the

data in a different schema or format. The C2NET platform then uses the database technology

to manage the transformed data before it is utilized by the aforementioned features.

Similar to C2NET, and as described in Sects. 5.2 and 5.3, both DB- and KB (ontology)-

based approaches may work in conjunction and support each other since each one might have

it is own specialized role to play. Although it is discussed in the following section, at first

glance it can be argued that the knowledge base provides more flexibility and adjustability

for the data format, whereas the database provides better performance and robustness to the

system.

7 Conclusions and further work

The core objective of this research was to compare two data modeling approaches that are

used in the context of PLM and PPR: ontologies and databases. In order to achieve this, the

authors explored the literature to identify what work existed in this area. The knowledge gap

that was identified gives rise to a limited comparison of the two technologies for common

applications with limited quantitative and qualitative analyses. To address this gap, three RQs

were synthesized:

– RQ1 focused on understanding how the data modeling approaches performed as data

volume increased. This is important because databases are currently used extensively in

industrial environments, handling large volumes of data, and it is necessary to understand

how the ontological approach compares. The authors worked to create data models in

a way which enabled a fair comparison with benchmarks that presented data on the

following: event counting, product counting, event-in-time counting, and data model

population. The results found that the ontology performed more than three times better

in the event counting benchmarks, and orders of magnitude better than databases in

all other test—apart from the population test. It is proposed that this is due to the fact

that when an instance is created in an ontology, the respective mappings must also be

created based on rules, which is not necessarily the case for databases (accounting for the

poor performance of ontologies in executing population tasks). By comparison, once the

instance exists, it is much easier to access and manipulate it in an ontological model than

in a database due to the benefits that these mappings provide. In addition, it is important

to keep in mind the effect of the tools used for such a study. The tool itself might play

an important role since each tool is supported by optimization algorithms to enhance the

performance. This could be the subject of further study to gain insight into the potential

optimization process.

– RQ2 considered the idea that, ultimately, databases and ontologies have been developed

for two quite distinct purposes and it is therefore necessary to understand how these

respective technologies may complement each other. Drawing on experience from previ-

ous projects (e.g., [6,74,75]), the authors describe a scenario where myriad standards are

homogenized using an ontological model and the data then instantiated within a database.
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This type of complementary working addresses an environment where there may be a need

to realize interoperability between heterogeneous software. Such an environment is typ-

ical of a manufacturing system. The results do demonstrate, however, that the population

rate of an ontological model gives cause for concern in a high-data-volume environment.

Given the significant differences in performance between ontologies and databases, it

would be of value to investigate if the high-speed data instantiation of databases could be

brought into a system where the high-speed querying of ontologies could be exploited.

– RQ3 aimed to examine the maintainability of databases in comparison with ontologies,

but was not directly addressed in this work. This question was included as the authors

appreciate the need to examine the respective technologies holistically and therefore

require a lifecycle assessment from system design, through to implementation and then

reconfiguration—this is true for both physical and digital systems. This article lacks a

study that evaluates the maintenance efforts, although the authors do shed some light

on the creation of the respective models. To address this, the authors are working on a

further piece of research to introduce a change to system requirements and to assess the

efforts required to realize them. This proposed study will consider the hypothesis that

the perceived difference in effort for implementing and maintaining the data models will

depend significantly on the engineer’s familiarity with the respective technology, even

though design tools can abstract users from fully understanding the model syntax.

This research concludes that ontologies and databases should not replace, but rather comple-

ment each other. The experiments show that both technologies present differences in their

performance and that the decision for using one instead of the other will depend on the imple-

mentation and application. Nevertheless, it may be seen that the experiments presented do

not allow the full exploitation of ontologies, due to the low expressivity of event information.

To address this, the authors will further increase the complexity of event content—enabling

the demonstration of other features such as implicit knowledge inference.

In summary, the work presented in this research contributes significantly to the body of

knowledge by:

– Developing a methodology for comparing data modeling approaches.

– Quantitatively comparing ontological models and databases with a view to understanding

how data volume affects performance.

– Considering how databases and ontologies may complement each other in the future and

the scenarios in which they exist in a system whereby their whole is greater than the sum

of their parts.
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