
Comparing Parameter Tuning Methods for Evolutionary

Algorithms

S.K. Smit A.E. Eiben

Abstract— Tuning the parameters of an evolutionary al-
gorithm (EA) to a given problem at hand is essential for
good algorithm performance. Optimizing parameter values is,
however, a non-trivial problem, beyond the limits of human
problem solving.In this light it is odd that no parameter tuning
algorithms are used widely in evolutionary computing. This
paper is meant to be stepping stone towards a better practice
by discussing the most important issues related to tuning EA
parameters, describing a number of existing tuning methods,
and presenting a modest experimental comparison among them.
The paper is concluded by suggestions for future research –
hopefully inspiring fellow researchers for further work.

Index Terms— evolutionary algorithms, parameter tuning

I. BACKGROUND AND OBJECTIVES

Evolutionary Algorithms (EA) form a rich class of stochas-

tic search methods that share the basic principles of incre-

mentally improving the quality of a set of candidate solutions

by means of variation and selection [7], [5]. Algorithms in

this class are all based on the same generic framework whose

details need to be specified to obtain a particular EA. It is

customary to call these details EA parameters, and designing

an EA for a given application amounts to selecting good

values for these parameters.

Setting EA parameters is commonly divided into two

cases, parameter tuning and parameter control [6]. In case of

parameter control the parameter values are changing during

an EA run. In this case one needs initial parameter values and

suitable control strategies, that in turn can be deterministic,

adaptive, or self-adaptive. Parameter tuning is easier in that

the parameter values are not changing during a run, hence

only a single value per parameter is required. Nevertheless,

even the problem of tuning an EA for a given application

is hard because there is a large number of options, but only

little knowledge about the effect of EA parameters on EA

performance. EA users mostly rely on conventions (mutation

rate should be low), ad hoc choices (why not use uniform

crossover), and experimental comparisons on a limited scale

(testing combinations of three different crossover rates and

three different mutation rates).

The main objective of this paper is to illustrate the fea-

sibility of using tuning algorithms, thereby motivating their

usage. To this end, we describe three different approaches

to algorithmic parameter tuning (meta-EA, meta-EDA, SPO)

and show their (dis)advantages when tuning EA parameters

for solving the Rastrigin function. While the limited scale

(one single fitness landscape and one algorithm to be tuned)

prevents general conclusions, we do obtain a convincing

Vrije Universiteit Amsterdam, The Netherlands, {sksmit, gusz}@cs.vu.nl

showcase and some very interesting insights whose gener-

alization requires much more experimental research.

II. PARAMETERS, TUNERS, AND UTILITY LANDSCAPES

Intuitively, there is a difference between choosing a good

crossover operator and choosing a good value for the related

crossover rate pc. This difference can be formalized if

we distinguish parameters by their domains. The parameter

crossoveroperator has a finite domain with no sensible

distance metric, e.g., {onepoint, uniform, averaging},

whereas the domain of the parameter pc is a subset of IR

with the natural metric for real numbers.

This difference is essential for searchability. For parame-

ters with a domain that has a distance metric, one can use

heuristic search and optimization methods to find optimal

values. For the first type of parameters this is not possible

because the domain has no exploitable structure. The only

option in this case is enumeration.

For a clear distinction between these cases we can use

the terms symbolic parameter, e.g., crossoveroperator,

and numeric parameter, e.g., crossover rate. For both types

of parameters the elements of the parameter’s domain are

called parameter values and we instantiate a parameter by

allocating a value to it.

It is important to note that the number of parameters

of EAs is not specified in general. Depending on partic-

ular design choices one might obtain different numbers

of parameters. For instance, instantiating the symbolic pa-

rameter parent-selection by tournament implies a

numeric parameter tournamentsize. However, choosing

for roulette-wheel does not add any parameters. This

example also shows that there can be a hierarchy among

parameters. Namely, symbolic parameters may have numeric

parameters under them. If an unambiguous treatment requires

we can call such parameters sub-parameters, always belong-

ing to a symbolic parameter.

For positioning algorithms for parameter tuning it is help-

ful to distinguish three layers: application layer, algorithm

layer, and design layer, see Figure 1.

The lower part of this three-tier hierarchy consists of

an EA on the algorithm layer trying to find an optimal

solution for the problem on the application layer, e.g., the

traveling salesman problem. Simply put, the EA is iteratively

generating (candidate) solutions, e.g., permutations of city

names, whose quality is determined by the given problem

on the application layer.

The upper part of the hierarchy contains a design method

that is trying to find optimal parameters for the EA on the

(a) Control flow (b) Information flow

Fig. 1. The 3-layered hierarchy of parameter tuning

algorithm layer. The design method can be, for instance, a

heuristic procedure (algorithm) or an interactive session with

the user itself. We can formalize the problem to be solved

here by denoting the symbolic parameters and their domains

by q1, . . . , qm and Q1, . . . , Qm, likewise using the notation

r1, . . . , rn and R1, . . . , Rn for the numeric parameters.1 The

problem of parameter tuning can then be seen as a search

problem in the parameter space.

S = Q1 × Q2 · · · × Qm × R1 × R2 · · · × Rn (1)

Solutions of the parameter tuning problem can then be

defined as parameter vectors with maximum utility, where the

utility of a given parameter vector p̄ ∈ S is the performance

of the EA using the values of p̄. Using this nomenclature we

can define the parameter-performance landscape, or utility

landscape, as an abstract landscape where the locations are

the parameter vectors in S and the height of a p̄ ∈ S is its

utility. Intuitively it is quite obvious that fitness landscapes

–commonly used in EC, i.e., within the context of the lower

part of the hierarchy– have a lot in common with utility land-

scapes –as introduced here for the upper part. To be specific,

in both cases we have a search space (candidate solutions

vs. parameter vectors), a quality measure (fitness vs. utility)

that is conceptualized as “height”, and a method to assess

the quality of a point in the search space (evaluation vs.

testing). Finally, we have a search method (an evolutionary

algorithm vs. a tuning procedure) that is seeking for a point

with maximum height. Table I provides a quick overview of

the related vocabulary.

TABLE I

ONE-GLANCE OVERVIEW OF PARAMETER TUNING TERMINOLOGY

Lower part Upper part

Method at work EA tuning procedure

Search space solution vectors parameter vectors

Quality fitness utility

Assessment evaluation testing

Despite the obvious analogies between the upper and the

lower halfs, there are two differences we want to note here.

First, the notion of fitness is usually strongly related to the

1Observe that by the possible presence of sub-parameters the number
of numeric parameters n depends on the instantiations of q1, . . . qm. This
makes the notation somewhat inaccurate, but use it for sake of simplicity.

objective function of the problem on the application layer and

differences between suitable fitness functions mostly concern

arithmetic details. The notion of utility, however, is based on

the performance of the EA that can be defined in essentially

different ways, for instance, based on solution quality or

algorithm speed. Furthermore, performance can be average

or peak performance over a number a EA runs. Consequently,

the definition of a good solution is more sensitive for user

preferences on the upper half (in the context of parameter

tuning) than on the lower half (in the context of an EA

application). Second, the performance of the EA depends

on the problem the EA is solving, that is, the definition of

utility depends on the definition of fitness.

III. ALGORITHMIC APPROACHES TO PARAMETER

TUNING

As mentioned in Section II, an EA has symbolic and

numeric parameters. In general, the space of symbolic pa-

rameters does not have a searchable structure and can only

be treated by enumeration or grid search methods. Therefore

we focus on the numeric parameters here and describe three

different approaches to optimizing them.

Finding a good set of parameter values is a complex opti-

mization task with a nonlinear objective function, interacting

variables, multiple local optima, noise (by the stochastic

nature of the EA to be tuned), and a lack of analytic

solvers. Ironically, it is exactly this type of problems where

EAs are very competitive heuristic solvers. It is therefore a

natural idea to use an evolutionary approach to optimize the

parameters of an evolutionary algorithm. Two of the three

methods we describe in the following are based on this idea.

A. Meta Evolutionary Algorithm

Mercer and Sampson [13] were the first to introduce a

meta-EA, but due to the large computational costs, their

research was very limited. Greffenstette [8] did conduct more

extensive experiments with his Meta-GA and showed its

effectiveness.

The individuals used in such a meta-EA (on the design

layer) are vectors of numerical values. Each of those values

belong to one of the parameters of the baseline EA to be

tuned. To evaluate the utility of such a vector, the baseline EA

is ran several times using the given parameter values. Using

this representation and utility as (meta) fitness, basically any

evolutionary algorithm can be used as the meta-EA, if only

it can cope with real-valued vectors as individuals.

In this paper we use an Evolution Strategy (ES) with Co-

variance Matrix Adaptation (CMA) as proposed by Hansen

[9] as a meta-EA. This choice is motivated by the good rep-

utation of Evolutionary Strategies as numerical optimizers.

The CMA-ES is currently the state-of-the-art improvement

of the standard ES.

B. Meta Estimation of Distribution Algorithm

Nannen and Eiben have introduced a method for Relevance

Estimation and Value Calibration of parameters (REVAC) in

[16], [15]. Although the REVAC method was not designed

with Estimation of Distribution Algorithms (EDA) in mind,

it is based on the same general idea [10]. Like all EDAs, RE-

VAC tries to find an optimal parameter vector by estimating

the distribution of promising values over the domain of each

parameter and creating specific vectors by drawing values

from these distributions. REVAC has a characteristic way

of updating the distributions after having evaluated newly

drawn vectors. In essence, REVAC is a population-based

stochastic search method, where the population consists of

parameter vectors of the baseline EA and one individual (i.e.,

one vector) is replaced in each cycle. After termination of the

algorithm, the estimated distributions per parameter represent

a model of the utility landscape. This model is rather simple

(separated by coordinates, resp. parameters, hence blind for

parameter interactions), but it can be used to get insights into

the sensitivity and relevance of the different parameters and

the costs and benefits of tuning each parameter [17].

In this paper we use REVAC with the settings from earlier

publications, not adjusted, let alone optimized, for the present

case study. In this respect, it is different from the other two

methods, where we use variants that have been much studied

and improved since their ‘birth’.

C. Sequential Parameter Optimization

Sequential Parameter Optimization (SPO), as introduced

by Bartz-Beielstein et al. [4], [1], is a search-method specif-

ically designed for parameter tuning and parameter analysis.

The approach shows some similarities is similar to a meta-

EDA in that it relies on a model of the utility landscape.

SPO starts with a initial population of vectors. Those are

tested several times to determine their utility. Based on the

results, a (regression) model is fitted to represent the relation

between the vectors and the results. Then s new vectors are

generated and tested using this model. The most promising

points are then added to the population. Although in [3], [2]

regression models are used to model the utilities, succeded by

stochastic models [4], it is in principle a general framework

suited for a large range of modeling techniques.

In this paper we have chosen to use Kriging models

for approximating the utility landscape, because of their

excellent performance on tuning problems with numerical

parameters [4].

IV. ADD-ONS FOR PARAMETER TUNING ALGORITHMS

A careful study of related work discloses that besides the

principal parameter tuning algorithms, like meta-EA, REVAC

or SPO, there are a number of useful ‘add-ons’, i.e., methods

for increasing search efficiency, that are independent from

the main tuner and can be combined with different tuning

algorithms. It this section we highlight two of such promising

add-ons.

A. Racing

Racing was introduced by Maron and Moore [12]. The

purpose of racing is to decrease the number of tests needed

to estimate the quality of parameter vectors, and thereby

the total runtime of a tuner algorithm. The main idea is

that the number of tests performed to estimate the utility

of a parameter vector, n, is not used as a universal constant

throughout the search, but as a variable maximum. Using

racing we initially perform only a few tests for each vec-

tor, separate the ones that are clearly good, and iteratively

increase the number of tests for those vectors only that are

not significantly worse or better than the good ones. This

method can save a substantial number of tests compared to

the simple each-vector-n-tests approach.

Yuan et al. [19] used this feature in their (1 + λ) ES for

tuning an evolutionary algorithm. In their approach, at each

generation, a set of λ new vectors is created using a Gaussian

distribution centered at the current best vector. Racing is

then used to determine which vector has the highest utility.

This approach can be easily extended to a (µ + λ) ES, by

using racing to determine the µ best individuals instead of

the single best.

B. Sharpening

Sharpening has not been introduced before as a separate

technique for testing, although it has been used previously,

inside the SPOmethod by Bartz-Beielstein et al. [2]. Thus,

in this paper we do not invent it, but designate it as an

independent add-on, and give it the name sharpening. The

purpose of sharpening is to decrease the number of tests

needed to estimate the quality of parameter vectors as

compared to the simple each-vector-n-tests approach. Like

racing, it is to reduce the total runtime of a tuner algorithm.

The main idea is to start the tuning algorithm with a small

number of tests per vector, but when a certain threshold

is reached the amount of tests per vector is doubled. This

means that the algorithm is able to explore the search space

very quickly. If a promising area is found, the method

focuses on improving the estimates by reducing the effect

of possible outliers on the utility. Therefore, at the moment

of termination, the current best vector is tested very often.

This can lead to better results than algorithm that tests each

vector only a couple of times.

C. Combining Racing and Sharpening

Observe that racing and sharpening are opposing forces.

Sharpening is increasing the number of tests, while racing

is reducing them. Nevertheless, they can be combined very

easily. In a combined setup sharpening will increase the

maximum number of tests that can be used by racing to

select the best parameter vectors. In the beginning of the

tuning-run the effect of racing will be very small, due to

the small ’budget’, but during the run, when more and

more tests are required to sharpen the estimates, the role

of racing will get more important. By using racing not

much effort is spent on vectors that are not very promising,

even if sharpening already increased the number of tests.

In principle, we can get the best of both worlds using this

setup. By combining sharpening and racing much more effort

is spent on promising vectors while the effort wasted on bad

vectors is reduced.

V. SYSTEM DESCRIPTION AND EXPERIMENTAL SETUP

As described in Section II, the complete system consists of

three different layers with a control and information flow. On

the application level we have chosen to use a 20 dimensional

Rastrigin function. The Rastrigin function [18] is a popular

non-linear, highly multimodal, scalable benchmark function

with an optimal value2 of 0. In this system, we have chosen

for the implementation from the ECJ [11] library which is

open source and freely available.

For the Algorithm layer we again choose for an imple-

mentation from the ECJ library. This library is widely used

by EC practitioners and serves as a framework for a whole

range of evolutionary algorithms. It is written in Java and

allows users to configure Evolutionary Algorithms using Java

code or parameter-files. We have chosen for a ’standard’

configuration of the middle-layer algorithm (Table II).

This setup requires 6 parameters to be defined by the

design algorithm from the top layer.

For the top layer, we have tested three different algorithms

combined with the two additional add-ons namely:

• CMA-ES

• CMA-ES with Racing

• CMA-ES with Sharpening

• CMA-ES with Racing and Sharpening

• SPO (uses Sharpening)

• REVAC

• REVAC with Racing

• REVAC with Sharpening

• REVAC with Racing and Sharpening

The three base algorithms, CMA-ES [9], SPO [2] and

Racing [14], are open source and freely available from the

websites of the corresponding authors. The additional add-

ons are handcrafted changes to the three algorithms and

their exact implementations are algorithm specific. All of the

tuning algorithms are ran with their default parameter values

and setup (Table III, IV and V).

A. Control Flow

The control flow between the application and the algorithm

is trivial and only requires the definition of two parameters.

Both layers are defined in the ECJ library and fit into the

same framework. However, implementing the the control

flow between the algorithm and the design level is slightly

more difficult. The CMA-ES is implemented in Java, so

creating the link between both layers is quite straightforward.

By implementing a Java interface that sets the algorithm

parameters and executes the ECJ algorithm, both layers

are connected. REVAC and SPO are both implemented in

Matlab, which is also able to communicate directly with

Java libraries. For REVAC the user needs to write a Matlab

function that communicates with a Java class. This Java class

can be the same as used with the CMA-ES implementation.

SPO can be linked to any function or executable as long as

2Because we have a preference for maximization problems, a negative
transformation is applied

it can read and write SPO property files. This requires a bit

more work, but it is more flexible.

B. Information Flow

The information flow between the layers uses the same

interfaces or property files as used in the control flow. The

information that is passed to the algorithm layer by the

application layer is a single value representing the fitness

of the current vector. The algorithm layer, however, does not

send a single value to the design layer, but a list of utilities.

The design layer algorithm defines how many tests have to be

executed in order to evaluate a single parameter vector. If the

design algorithm requests for s tests of a certain parameter

vector, the corresponding information that is send contains

s values, which represent the best fitness values from each

of the s test runs. In this setup the tuning is focused on

improving the fitness.

The same setup can be used to tune for speed. But in

that case, the algorithm layer have to send the s number of

evaluations used to solution as information for the design

layer.

C. Measures

Each of the tuning-algorithms is allowed to perform a total

of 1000 tests and is repeated 10 times. To measure the quality

of each tuning-algorithm the following criteria are used:

• Average Performance

• Maximum Performance

• Variation of Performance

• Effectiveness of the Tuning Algorithm

The average performance is measured by the Mean Best

Utility over the 10 runs. To estimate the utility, the best

vector that is found in each run, is tested 50 times. The

utility is equal to the average fitness values over the 50 runs.

Maximum performance is measured similarly, but instead of

the average utility over the 10 runs, the maximum utility is

used.

To measure the variation in performance, the difference

in top and lower quantiles of the utility distribution of the

10 runs is used. Finally, to measure the effectiveness of the

tuning algorithm we identify the ’target’ area, namely the

area of the utility landscape with the highest performance.

For each parameter the minimum and the maximum value is

calculated over the 10 best vectors. The effectiveness of the

algorithms is defined by its ability to reach the area enclosed

by these values.

VI. RESULTS

Tuning an algorithm requires a lot of computer power,

while some people argue that this is a waste of time. General

thumb rules as a population size of 100 and low mutation

sizes are supposed to perform reasonably well. The question

rises how beneficial tuning, and more specific automated

tuning, is even to experienced practitioners.

For quick assessment of the added value of algorithmic

tuning we tested an EA using parameter values defined by

‘common sense’ (Table VI).

TABLE II

SETUP OF THE ALGORITHM LAYER

Value Parameters

Population Single population Population size (POPSIZE)

Parent Selection Tournament selection Tournament proportion (TOURPROP)

Elitism Yes Generation gap (GENGAP)

Crossover Uniform Crossover probability (CROSSPROB)

Mutation Gaussian Mutation probability (MUTPROB) and σ (MUTSIZE)

Termination 20.000 fitness evaluations

TABLE III

PARAMETER VALUES CMA-ES

Parameter Value

µ 4

λ 9

Racing

Minimum # evaluations 2

Maximum # evaluations 5

Sharpening

Factor 1.5

Threshold 18

TABLE IV

PARAMETER VALUES SPO

Parameter Value

Initial design points 60

Samples per point 1

Candidates 10

TABLE V

PARAMETER VALUES REVAC

Parameter Value

Population size 100

Selected Points 50

Smoothing 5

Racing

Minimum # evaluations 2

Maximum # evaluations 5

Sharpening

Factor 1.5

Threshold 100

The average performance of this manually chosen param-

eter vector is -44.00, while the EAs using parameter vectors

optimized by the tuners easily reach utility levels around -

0.05.

Table VII shows the minimum and maximum performance

of the 10 runs. It also indicates the median performance,

and the four quantiles. Because algorithm tuning is a kind

of design problem [7] the maximum(peak) performance is

probably the most interesting value. Tuning an algorithm

is not a repetitive task, in the sense that it is not required

to deliver a good value each time it is ran. The average

performance is therefore less important than the maximum

performance that can be reached.

The best parameter settings are found by the CMA-

ES, racing and sharpening combination, followed by SPO.

REVAC shows on average a significantly worse performance,

however when combined with both racing and sharpening,

the best performance gets close to the performance of the

other algorithms. The main cause of the bad performance of

REVAC is the speed. From more detailed results, not shown

here, we observe a steady increase in performance during

the run. However, the 1000 allowed tests, forces REVAC to

terminate prematurely.

It is clear that the combined effect of racing and sharpening

increases the maximum performance in this setup, however,

the effect on the CMA-ES is quite different than the effect

on REVAC. When combining racing or sharpening with

CMA-ES, the variance increases and sharpening alone even

decreases the overall performance. However, when combined

with REVAC, all three combinations decrease variance and

increase the best and the overall performance. Adding those

components to the algorithm is therefore probably beneficial,

although it is difficult to predict the effect on performance.

Our experimental data can not only be used to learn about

tuning algorithms, but it could also tell about high quality

settings of the baseline EA. For this purpose we investigate

the 10 best parameter vectors found in all runs. Table VIII

shows these 10 parameter vectors, together with the tuner that

found them and the corresponding utility, being the mean best

fitness of the EA using the given parameter vector, averaged

over 50 independent runs.

Interestingly, there are rather big differences between

the top 10 parameter vectors, depending on the specific

parameters. For instance, the optimized population size varies

between 11 and 448. Also for the generation gap we find

optimized values far from each other, e.g., 4% (in combi-

nation with population size 23) and 84% (in combination

with population size 14). To obtain more information about

the spreading of optimized parameter values we performed

experiments with the best variant of each of the three basic

methods: CMA-ES with racing and sharpening, REVAC

with racing and sharpening, and SPO. We executed 10

independent runs with each of them, resulting in 3 times

10 optimized parameter vectors. The outcomes are shown

in Figure 2, split by parameter, the dots showing the actual

parameter values. These results show that even if we use the

same tuning algorithm, we can get very different optimized

values, although this picture varies per parameter and by

tuning algorithm. For instance, the CMA-ES and SPO are

consistent in their values for mutation probability, but this

does not hold for REVAC. As for the population size, all

three algorithms show a wide range of good values. For

TABLE VI

MANUAL CHOICE OF PARAMETER VALUES

Value

Population size 100

Tournament proportion 3%

Generation gap 2%

Crossover probability 0.8

Mutation probability 1

σ 0.1

TABLE VII

THE MINIMUM, MAXIMUM, MEDIAN AND QUANTILES OF THE ALGORITHM UTILITIES

Algorithm Max Q1 Q.75 Median Q.5 Q.25 Min

CMA-ES -0.0508 -0.0508 -0.0542 -0.0589 -0.0783 -0.0844 -0.1761

CMA-ES (Racing) -0.0545 -0.0545 -0.0608 -0.0667 -0.0747 -0.0847 -0.0847

CMA-ES (Sharpening) -0.0508 -0.0508 -0.0542 -0.0713 -0.0910 -0.1085 -0.2317

CMA-ES (Racing , Sharpening) -0.0388 -0.0388 -0.0490 -0.0751 -0.0966 -0.1381 -0.1381

SPO -0.0457 -0.0457 -0.0482 -0.0623 -0.0776 -0.0776 -0.0776

REVAC -0.1031 -0.1031 -0.1588 -0.3502 -83.6759 -40.9933 -83.6759

REVAC (Racing) -0.0678 -0.0678 -0.2934 -0.9423 -2.3175 -2.3175 -67.7445

REVAC (Sharpening) -0.0822 -0.0822 -0.0936 -0.2762 -5.1779 -5.1779 -357.4347

REVAC (Racing , Sharpening) -0.0573 -0.0573 -0.0784 -0.1642 -19.7132 -19.7132 -102.5977

Illustration of the quantiles. Mind the different scales

comparison with the results concerning the overall top 10

vectors, we augmented Figure 2 with blocks exhibiting the

‘target areas’, where the upper/lower borders of the block

show the maximum/minimum values from Table VIII, and

the middle line belongs to the mean. The overall picture that

arises is that, except the mutation parameters, it is hard for

tuners to consistently reach the areas with the best EA setup.

This shows that it is needed to run each tuning-algorithm

several times in order to find a good parameter setup.

VII. CONCLUSIONS AND OUTLOOK

The main objective of this paper is to illustrate the feasibil-

ity of using algorithms for tuning parameters of EAs. To this

end, we performed experiments with ten tuning algorithms,

based on three different approaches, meta-EA, REVAC, and

SPO. As mentioned before, due to computational and time

limitations these tests have a limited scale (one single fitness

landscape and one EA to be tuned). While this prevents

general conclusions, we did obtain a convincing showcase

and some very interesting insights that motivate further

research and development.

Perhaps the most important conclusion is that using algo-

rithms for tuning parameters of EAs does pay off in terms

of EA performance. To be specific, the best guess (i.e.,

the parameter vector with the highest utility) of all of the

algorithms we tested greatly outperforms the best guess of a

human user. Simply put, no matter what tuner algorithm you

use, you will likely get a much better EA than relying on

your intuition and the usual parameter setting conventions.

Further to the EA performance benefits, tuner algorithms

are also useful for they go for the best parameter vectors

without being hindered by those rules-of-thumb human users

rely on. This can lead to surprising parameter settings,

TABLE VIII

THE 10 BEST PERFORMING PARAMETER VECTORS FOUND

Algorithm Utility POPSIZE MUTPROB MUTSIZE CROSSPROB TOURPROP GENGAP

1 CMA-ES (R, S) -0.0388 37 0.0510 0.5641 0.5225 0.8702 0.5535

2 CMA-ES (R, S) -0.0457 14 0.0502 0.5684 0.4537 0.8782 0.8443

3 SPO -0.0457 448 0.0540 0.6219 0.5000 0.3503 0.0215

4 SPO -0.0472 23 0.0686 0.6130 0.7789 0.8580 0.0408

5 SPO -0.0482 33 0.0472 0.6370 0.7536 0.6725 0.2173

6 CMA-ES (R, S) -0.0490 122 0.0631 0.5897 0.6525 0.5108 0.1582

7 CMA-ES (S) -0.0508 271 0.0557 0.5955 0.3886 0.9207 0.1078

8 CMA-ES -0.0508 271 0.0557 0.5955 0.3886 0.9207 0.1078

9 CMA-ES (S) -0.0514 11 0.0416 0.6358 0.5791 0.4946 0.6300

10 CMA-ES -0.0514 11 0.0416 0.6358 0.5791 0.4946 0.6300

Percentage of Total Range 54.63 % 2.70 % 7.29 % 39.02 % 57.04 % 82.28 %

Fig. 2. The parameter values found by the best variants of our three methods (dots) and the ’target’ area (blocks). See text for explanation.

thereby offering a critical look on such rules-of-thumb. For

instance, in most EA publications the tournament size is

typically in the range of 2 to 10. The optimal values, however,

seem to higher, in the range of tens (while population sizes

are rather conventional). Strictly speaking, this only holds

for the Rastrigin function and the EA we investigated here,

but we do believe that the conventional wisdom is wrong in

many more cases and tuning algorithms can help to show

this.

Our results also support preferences regarding the tuning

algorithms to be used. For a careful advise, we need to

distinguish two functionalities tuners can offer. First and

foremost, they can optimize EA parameters, second they can

provide insights into the (combined) effects of parameters

on EA performance. Regarding the insights offered the three

methods we tested are quite different. On the low end of

this scale we have the CMA-ES that is a highly specialized

optimizer building no model of the utility landscape. REVAC,

and meta-EDAs in general, does create a model, the marginal

distributions over the ranges of each parameter. The fact

that these distributions only take one parameter into account

means that the model is simple, it is blind to parameter

interactions. On the other hand, REVAC is able to provide

information about the entropy associated with the parameters,

hence showing the amount of tuning each parameter requires.

SPO is situated on the high end of the insights scale, since

it is inherently based on a model of the utility landscape. In

principle, this model is not restricted to a specific form or

structure, offering the most flexibility and insights, includ-

ing information on parameter interactions. Based on these

considerations and the outcomes of our experiments our

preferred method is the CMA-ES if a very good parameter

vector is the most important objective, and SPO if one is also

interested in detailed information over the EA parameters.

Regarding future work we see a number of promising

directions. The most straightforward track is to extend the

scope of the present study and perform much more experi-

ments using more objective functions and different EAs. This

is needed to refine and consolidate our present findings and

will most likely disclose new facts. From the practical point

of view, the development of a toolbox is the most urgent task.

Such a toolbox should contain one or more parameter tuning

algorithms allowing their combinations with racing and/or

sharpening. Furthermore, such a toolbox should be easy to

use. That is, it should enable EC practitioners with limited

time and computer experience to plug in their EA and the

problem to be solved and produce good parameter settings.

REFERENCES

[1] T. Bartz-Beielstein, C.W.G. Lasarczyk, and M. Preuss. Sequential pa-
rameter optimization. In IEEE Congress on Evolutionary Computation,
volume 1, pages 773–780 Vol.1. IEEE, Sept. 2005.

[2] T. Bartz-Beielstein, K.E. Parsopoulos, and M.N. Vrahatis. Analysis
of Particle Swarm Optimization Using Computational Statistics. In
Chalkis, editor, Proceedings of the International Conference of Nu-

merical Analysis and Applied Mathematics (ICNAAM 2004), pages
34–37, 2004.

[3] Thomas Bartz-Beielstein. Experimental Analysis of Evolution Strate-
gies: Overview and Comprehensive Introduction. Technical Report
Reihe CI 157/03, SFB 531, Universität Dortmund, Dortmund, Ger-
many, 2003.

[4] Thomas Bartz-Beielstein and Sandor Markon. Tuning search algo-
rithms for real-world applications: A regression tree based approach.
Technical Report of the Collaborative Research Centre 531 Computa-
tional Intelligence CI-172/04, University of Dortmund, March 2004.

[5] K.A. De Jong. Evolutionary Computation: A Unified Approach. The
MIT Press, 2006.

[6] A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter Control
in Evolutionary Algorithms. IEEE Transactions on Evolutionary

Computation, 3(2):124–141, 1999.

[7] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computation.
Natural Computing Series. Springer, 2003.

[8] J.J Greffenstette. Optimisation of Control Parameters for Genetic
Algorithms. In IEEE Transactions on Systems, Man and Cybernetics,
volume 16, pages 122–128, 1986.

[9] N. Hansen. The CMA evolution strategy: a comparing review. In J.A.
Lozano, P. Larranaga, I. Inza, and E. Bengoetxea, editors, Towards a

new evolutionary computation. Advances on estimation of distribution

algorithms, pages 75–102. Springer, 2006.

[10] Pedro Larraanaga and Jose A. Lozano. Estimation of Distribution

Algorithms: A New Tool for Evolutionary Computation. Kluwer
Academic Publishers, Norwell, MA, USA, 2001.

[11] S. Luke et al. A java-based evolutionary computation research system.
http://www.cs.gmu.edu/∼eclab/projects/ecj/.

[12] O. Maron and A. Moore. The racing algorithm: Model selection for
lazy learners. In Artificial Intelligence Review, volume 11, pages 193–
225, April 1997.

[13] R.E. Mercer and J.R. Sampson. Adaptive search using a reproductive
metaplan. Kybernetes, 7:215–228, 1978.

[14] V. Nannen and A. E. Eiben. Efficient Relevance Estimation and Value
Calibration of Evolutionary Algorithm Parameters. In IEEE Congress

on Evolutionary Computation, pages 103–110. IEEE, 2007.

[15] V. Nannen and A. E. Eiben. Relevance Estimation and Value
Calibration of Evolutionary Algorithm Parameters. In Manuela M.
Veloso, editor, IJCAI, pages 1034–1039, 2007.

[16] V. Nannen and A.E. Eiben. A Method for Parameter Calibration and
Relevance Estimation in Evolutionary Algorithms. In M. Keijzer,
editor, Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO-2006), pages 183–190. Morgan Kaufmann, San
Francisco, 2006.

[17] V. Nannen, S.K. Smit, and A.E. Eiben. Costs and benefits of tuning
parameters of evolutionary algorithms. In G. Rudolph, Th. Jansen,
S.M. Lucas, C. Poloni, and N. Beume, editors, Parallel Problem

Solving from Nature – PPSN X, volume 5199 of Lecture Notes in

Computer Science, pages 528–538. Springer Berlin / Heidelberg, 2008.
[18] Aimo Torn and Antanas Zilinskas. Global optimization. Springer-

Verlag New York, Inc., New York, NY, USA, 1989.
[19] B. Yuan and M. Gallagher. Combining Meta-EAs and Racing for

Difficult EA Parameter Tuning Tasks. In F.G. Lobo, C.F. Lima,
and Z. Michalewicz, editors, Parameter Setting in Evolutionary Al-

gorithms, pages 121–142. Springer, 2007.

