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Abstract

Background: Log-binomial and robust (modified) Poisson regression models are popular approaches to estimate
risk ratios for binary response variables. Previous studies have shown that comparatively they produce similar point
estimates and standard errors. However, their performance under model misspecification is poorly understood.

Methods: In this simulation study, the statistical performance of the two models was compared when the log link function
was misspecified or the response depended on predictors through a non-linear relationship (i.e. truncated response).

Results: Point estimates from log-binomial models were biased when the link function was misspecified or when the
probability distribution of the response variable was truncated at the right tail. The percentage of truncated observations
was positively associated with the presence of bias, and the bias was larger if the observations came from a population with
a lower response rate given that the other parameters being examined were fixed. In contrast, point estimates from the
robust Poisson models were unbiased.

Conclusion: Under model misspecification, the robust Poisson model was generally preferable because it provided
unbiased estimates of risk ratios.

Keywords: Log-binomial regression, Robust (modified) Poisson regression, Model misspecification, Risk ratio, Link function
misspecification

Background
Introduction

Logistic regression is the most widely-used modeling ap-

proach for studying associations between exposures and

binary outcomes. For rare events, the odds ratio estimated

from logistic regression approximates the risk ratio (RR).

However, when events are common, odds ratios always

overestimate risk ratios [1] Zhang and Yu [2] suggested a

correction for odds ratios to give a risk ratio in studies of

common outcomes. This method was subsequently shown

to result in inconsistent point estimates as well as invalid

confidence intervals [3]. Efforts were made to modify the

data so that estimated odds ratios from a logistic

regression analysis were comparable to risk ratios [4].

However, it was found that these methods produced

prevalence greater than one [5]. Greenland [6] brought ex-

tensive literature on valid model-based estimation of rela-

tive risks and other measures to readers’ attention. Of the

model-based approaches, log-binomial [5, 7, 8] and robust

(or modified) Poisson regression models [7, 9] are most

frequently applied to estimate risk ratios for common bin-

ary outcomes. Barros et al. [7] and Zou [9] showed how

risk ratios can be estimated by using robust Poisson re-

gression with a robust error variance.

In medical and public health research, log-binomial

and robust Poisson regression models are widely used to

directly estimate risk ratios for both common and rare

outcomes. For example, they can be used to estimate the

effect of clinical characteristics (e.g. obesity, smoking,

history of stroke, exercise, or diet) on a health condition
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(e.g. a cardiovascular event, mortality, or hospital admis-

sion). Our own Medline search of articles published be-

tween 2005 and 2014 demonstrated that the popularity

of both models has increased significantly in the past

decade (Additional file 1).

Model misspecification can lead to biased estimates,

resulting in erroneous and misleading conclusions. Re-

gression models require that the relationship between

the response and the explanatory variables conforms to

a particular functional form. Omitting important ex-

planatory variables, failing to account for non-linear

components or critical interaction terms, or making

measurement errors can cause model misspecification

and thus bias the parameter estimators of one or more

of the predictors in a regression model. Under correct

model specification, the log-binomial and robust Poisson

methods have been shown to yield comparable point es-

timates and standard errors [7, 9–12]. For instance, in a

simulation study with sample size of 1000, both the

log-binomial and robust Poisson models yielded similar

unbiased estimates with good coverage probability [12].

However, the results of the following example revealed a

different paradigm.

A motivating example

A cross-sectional study was conducted at Kaiser Perma-

nente Southern California to assess the association of

fractional exhaled nitric oxide (FeNO), a marker of air-

way inflammation, and asthma burden among persistent

asthma patients who were treated with inhaled cortico-

steroids (ICS). It was hypothesized that high FeNO levels

were associated with greater asthma burden. In this

study, the primary binary outcome of interest was

whether seven or more short-acting beta-agonist (SABA)

canisters were dispensed in the past 12 months, which is

a validated administrative data surrogate for asthma im-

pairment. Previous studies based on similar patient pop-

ulations revealed that the prevalence of asthma

impairment among persistent asthma patients was high

[13]. The study population consisted of asthma patients

12 to 56 years of age who had aeroallergen sensitization

and regular ICS treatment for at least one month were

enrolled during an allergy department visit (index visit).

Information on patient demographics, FeNO, forced ex-

piratory volume in one second (FEV1% predicted) and

asthma control test (ACT) score was collected during

the index visit, while the information on aeroallergen

sensitization and SABA canisters dispensed came from

electronic medical records.

FeNO was categorized into four quartiles. Multivari-

able log-binomial and robust Poisson regression models

were applied to estimate the risk ratio of having seven or

more SABA canisters in each of the FeNO quartiles

(using the lowest quartile as the reference group),

controlling for age, gender, race/ethnicity, number of

aeroallergen sensitivities, clinical center, FEV1% pre-

dicted (≥80% vs. < 80%) and ACT score (> 19, 16–19,

< 16). Age remained as a continuous variable in the

model.

Based on the robust Poisson model, the risk ratio of

having ≥7 SABA canisters over the past 12 months was

2.05 (95% CI, 1.03–4.05) in patients whose FeNO value

was in the second quartile, compared to patients whose

FeNO value was in the first quartile (Additional file 2).

However, when the analysis was repeated by using the

log-binomial model, the corresponding risk ratio was

1.67 (95% CI, 0.83–3.57), a 19% reduction from the ro-

bust Poisson estimate. Although the point estimates for

FeNO from the two models were in the same direction,

the interpretation of the results varied because the 95%

confidence interval of the estimated RR from the robust

Poisson covered one, yet the log-binomial model did

not. The RR for patients whose FeNO values were in the

third and fourth quartiles compared to the patients in

the first quartile were also different between the two

models, although the interpretations remained the same

at the 95% level (see Additional file 2). The differences

in point estimates of RR between the two models were

in the range of 12–19%.

Current study

The inconsistent conclusions between the aforemen-

tioned simulation studies [7, 9–12] and the results from

the motivating example led us to further investigate

whether model misspecification and/or characteristics of

the data resulted in such large discrepancies between

log-binomial and the robust Poisson regression models.

An initial attempt was made to understand the impact

of model misspecification on the performance of the two

regression models when an important explanatory vari-

able was omitted, a higher order term of non-linear ex-

planatory variable was ignored, or an interaction term

was overlooked (Kaiser Permanente, Pasadena; Univer-

sity of Southern California, Los Angeles; unpublished re-

sults. Additional file 3). Although certain types of model

misspecification did bias the point estimates, both the

magnitude and the direction of the biases were compar-

able between the two models. The current simulation

study was subsequently designed to examine the impact

of misspecified link functions and truncated probabil-

ities, one type of linear predictor misspecification. To

our knowledge, the extent of such an inconsistency

between the two models has not been systematically ex-

amined. Inspired by the differences in the estimating

equations of the two models, we also examined the im-

pact of having observations with large probabilities of

developing the response on the performance of the two

models when the overall response rate varies.
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The paper is organized as follows: The “Methods”

section presents the theory behind the two models to

explain the differences in the estimation methods that

could result in variations in the estimates. The "Methods"

section also provides the details of the simulation design.

The "Results" section shows the results of simulation

under various scenarios. Lastly, we summarize the find-

ings and provide recommendations for the use of these

models in future studies in the “Discussion” section.

Methods

Generalized linear models (GLM) originate from a signifi-

cant extension of traditional linear regression models [14].

They consist of a random component that specifies the

conditional distribution of the response variable (Y) from

an exponential family given the values of the explanatory

variables X1,X2,···,Xk, a linear predictor (or systematic) com-

ponent that is a linear function of the predictors,

ƞ=β0+β1X1+β2X2+···+βkXk, where β=(β0,β1,...,βk)
T is the

vector of the parameters, and a smooth invertible link

function that transforms the expectation of the re-

sponse variable, μ ≡ E(Y), to the linear predictors:

g(μ)=ƞ=β0+β1X1+β2X2+···βkXk. For example, the most

common link for binary outcomes is the logit (i.e. log

(μ/(1-μ))) in a logistic model, the log (μ) in a Poisson

model, or a log-binomial model.

In the descriptions below, Yi and xTi ¼ ð1; xi1; xi2;…; xikÞ

denote the binary outcome and the row vector comprised of

k predictors for the ith individual (i = 1,2,…n), respectively.

The observations from the n individuals are independent.

Log-binomial regression

In the GLM framework, the conditional distribution of Yi
given the predictor variables is binomial, with the mean re-

sponse related to the predictors by the link function log

(μi). In log-binomial regression, μi is often denoted as pi, be-

cause E(Yi) is a probability with a value between zero and

one. Although there are other methods to obtain efficient

estimators, the maximum likelihood approach is used to

generate asymptotically efficient estimators (maximum like-

lihood estimates (MLE)) in log-binomial regressions [5, 8].

The MLE of log-binomial models are derived from an

iteratively reweighted least squares (IRLS) approach [15].

In a log-binomial regression, logðPiðβÞÞ ¼ xTi β where

pi(β)=Pr(yi=1|xi),0 ≤ pi ≤ 1, and xXi β < 0 (constrained).

The log-likelihood is given by

84%ℓ βð Þ ¼
X

n

i¼1

yi log pi βð Þð Þ þ
X

n

i¼1

1−yið Þ log 1−pi βð Þð Þ�

ð1Þ

It can be proven that the MLE for β can be found by

the following iteration (Additional file 4)

β tþ1ð Þ ¼ X 0WXð Þ
−1

X
0

Wz
� �

ð2Þ

where z ¼ XβðtÞ þ
Y−P β tð Þ

� �� �

P β tð Þ
� � ;X ¼ xi; j

� �

∈Rn;k
;

Y−P βð Þ

P βð Þ
¼

y1−p1 βð Þ

p1 βð Þ
;
y2−p2 βð Þ

p2 βð Þ
;…;

yn−pn βð Þ

pn βð Þ

� �T

;

andweightW ¼ Diag
pi βð Þ

1−pi βð Þ

� �

;

i ¼ 1; 2;…; n; j ¼ 1; 2;…; k:

The iteration process continues until β stabilizes. The

weights W used in the iterative process contain pi(β) in

the numerator and 1 – pi(β) in the denominator, where

pi(β) = exp (xTi β) with a range from 0 to 1. When pi(β) is

a very small number, the weight approximates pi(β).

When pi(β) approaches one, the weight approaches in-

finity. This suggested that the IRLS approach is highly

influenced by observations that have large pi(β). More-

over, the impact is also influenced by the average pi(β),

or the average weight (lower average pi(β) is associated

with lower average weight). For illustration, we con-

structed two hypothetical samples each with five obser-

vations having the following probabilities: sample 1

= {0.1, 0.3, 0.4, 0.5, 0.95} and sample 2 = {0.02, 0.03, 0.08,

0.15, 0.95}. The corresponding weights for the two sam-

ples were {0.25, 0.43, 0.67, 1, 19} and {0.02, 0.03, 0.09,

0.18, 19}, respectively. In sample 2, the observation with

weight 19 will impact the point estimate more, com-

pared the observation in sample 1 with the same weight.

Robust Poisson regression

In robust Poisson regression, a quasi-likelihood (QL)

model can be applied to fit the data with a binary out-

come [14–18]. Quasi-likelihood was first introduced by

Wedderburn (1974) as a function that has properties

analog to those of log-likelihood functions [18]. Similar

to ML method, maximum QL method can be used to es-

timate the QL estimates. In a maximum QL model, only

the relationship between the mean and the variance (i.e.

the variance is a function of the mean) needs to be spe-

cified instead of the underlying distribution of the data

[15–19]. It can be shown that when Yi comes from the

exponential family, the quasi-score function is identical

to the score function associated with the maximum like-

lihood of the GLM.

When the Poisson distribution is chosen, the

quasi-score function can be simplified to S jðβÞ ¼
1
ϕ

Pn
i¼1

ðyi−μiÞxij , resulting in quasi-score estimating equations

S jðβÞ ¼
Pn

i¼1ðyi−μiÞxij ¼ 0, which is the same as the es-

timating equations of the Poisson regression models. In

the two equations above, ϕ is the dispersion parameter,
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and j = 1,2,…k. The final estimate from the

quasi-scoring procedure satisfies the condition S jðβ̂Þ ¼ 0

and β̂ is a consistent and asymptotically unbiased esti-

mate of β [20]. β̂ does not depend on ϕ.

The quasi-likelihood estimators are not maximally and

asymptotically efficient [14]. The robust Poisson regres-

sion model uses the classical sandwich estimator under

the generalized estimation equation (GEE) framework to

provide accurate standard errors for the elements [19–21].

The variance-covariance matrix is

X

n

i¼1

E I i βð Þ½ �

" #

−1
X

n

i¼1

E ðSi βð ÞSi βð ÞT
h i

" #

−1
X

n

i¼1

E I i βð Þ½ �

" #

−1

ð3Þ

where I iðβÞ ¼ −
∂SiðβÞ
∂β

is the information matrix [22]. A

consistent estimate of the variance can be obtained by

evaluating the variance-covariance matrix at β̂.

Implementation

Both regression models were implemented in SAS [23]

(SAS Software Version 9.3 of the SAS System for Unix.

Cary, NC. SAS Institute Inc. 2011). The SAS codes can be

found in Additional file 5. For the log-binomial model, − 4

was set as the initial value of the intercept. For both

models, the weighted least squares estimates (default)

were used as initial values of parameters. The convergence

criterion was 10− 4 (default). A well-known issue of

log-binomial models is failure to converge when the MLE

is located on the boundary of the parameter space (i.e. the

predicted probability of the outcome is equal to 1). To

minimize the convergence issue, the COPY method was

applied [24, 25] in which the number of virtual copies was

set to 10,000. To ensure a fair comparison between the

log-binomial and robust Poisson models, the evaluation

was conducted by only using the results based on exactly

the same simulated data. If the COPY method did not

converge for a dataset, the same dataset was then removed

before the performance of the robust Poison models was

evaluated. The exclusion of datasets was very rare in this

study. Details on the number of excluded datasets can be

found in the “Discussion” section.

Measures of model performance

For each simulated scenario, the simulation process was

repeated 1000 times. In each of the 1000 simulated data-

sets, the log risk ratio was estimated from the

log-binomial model and the robust Poisson model, re-

spectively. For each scenario, the relative bias, standard

error (SE), and mean square error (MSE) in log scale for

all three measures were calculated by summarizing the

results from the 1000 datasets for each regression model.

Relative bias was defined as the average of the 1000 esti-

mated RR in log scale minus the log of the true RR

divided by the log of the true RR. For θ̂m , the estimated

log RR from the mth dataset using either the

log-binomial model or the robust Poisson model, the rela-

tive bias was defined as
�

1
1;000

P

m¼1

1;000
θ̂m − logðtrueRRÞ

logðtrueRRÞ

�

� 100%.

Standard error was defined as the empirical SE of the esti-

mated risk ratio in log scale over all 1000 simulations. The

MSE was calculated by taking the sum of the squared bias

in log scale and the variances, in which the bias was speci-

fied as 1
1;000

P

m¼1

1;000

θ̂m− logðtrueRRÞ.

Because both SE and MSE depended on the sample

size, the process described above was repeated for sam-

ple of size 500 for all scenarios with RR = 3.

Simulated datasets

Let Y be a common binary outcome (Y = 1 for disease

and Y = 0 for non-disease) and X be a binary exposure

variable (X = 1 for exposure and X = 0 for non-exposure).

First, uncorrelated random variables Z1 and Z2 following

the Bernoulli (0.5) and the Uniform [0, 1] distributions,

respectively, were generated for 1000 subjects. These

distributions were chosen for their simplicity in the de-

sign. Then, the exposure variable X based on the

subject-specific probability of exposure, defined by the

equation logit (P (X = 1| Z1, Z2)) = − 1.0 + Z1 + Z2 with

E(P(X = 1| Z1, Z2)) = 0.5, was created for each subject.

All of the outcome variables defined below were condi-

tional on the exposure status and the covariates. For

exposed subjects, P (Y = 1| X = 1, Z1, Z2) = 3 × P (Y = 1|

X = 0, Z1, Z2). The adjusted RR (i.e. P (Y = 1| X = 1, Z1,

Z2)) / P (Y = 1| X = 0, Z1, Z2)) was fixed at 3.0, chosen to

reflect the effect size commonly seen in real-world set-

tings, and strong enough to yield observable differences in

performance between the two regression models.

Scenarios to study the impact of truncation

The equations to generate Y took four different forms (Y1,

Y2,Y3,Y4) to enable the examination of the impact of trun-

cation. Unlike Y1, which always had a perfect linear associ-

ation with its predictors (i.e. not truncated), Y2, Y3, and Y4
were truncated such that the values of P (Yk = 1| X = 0, Z1,

Z2) depended on whether or not “Z1 + (beta of Z2) × Z2”

reached a threshold (k = 2, 3, and 4) (Table 1). For ex-

ample, in Scenario I-2, the threshold was set at 0.15,

requiring “Z1 + 3 × Z2” to be greater than 0.15 to impact

P (Y2 = 1| X = 0, Z1, Z2)). The defined threshold varied by

scenario and was chosen such that the percentages of ex-

posed subjects at the maximum P (Y = 1| X, Z1, Z2)) could

be controlled within the range of 1.4–5.8%. A truncation

yielded a spike of observations at the maximum P (Y = 1|
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X, Z1, Z2)) for both exposed and unexposed subjects.

When other parameters were fixed, a spike goes higher

with the increase of the threshold. This allowed us to

study how the volume of large P (Y = 1| X, Z1, Z2)) im-

pacted model performance.

Scenarios to study the impact of maximum P(Y = 1)

First, scenarios I-1, II-1, and III-1 were created using the

log link function. The maximum values of P (Y1 = 1| X =

1, Z1, Z2)) were set to 0.75, 0.85 and 0.95, respectively,

to study the impact of maximum P (Y1 = 1| X = 1, Z1,

Z2)) (Table 1). The selected thresholds were set at 0.15,

0.30, and 0.60 for Y2, Y3, and Y4, respectively. The per-

centages of exposed subjects who were at the maximum

values set above (0.75, 0.85, and 0.95) were 1.4, 2.8, and

5.8%. These values were derived by simulation and rep-

resented the various levels of alteration of the linear

predictors.

The intercepts were manually calculated to satisfy P

(Yk = 1 | X = 0, Z1, Z2) ≤ 0.75/3, 0.85/3 and 0.95/3, re-

spectively. For example, for the equation log (P (Y1 = 1|

X = 0, Z1, Z2)) = α – Z1–3 * Z2 in scenario I-1, α =

log(0.75/3) = − 1.38 since the logarithm is an increasing

function and hence the maximum of P (Y1 = 1| X = 0, Z1,

Z2) is achieved when Z1 = 0 and Z2 = 0. For the same

reason, for the equation log (P (Y2 = 1| X = 0, Z1, Z2)) = α

– Z1 – max (Z1 + 3 * Z2, 0.15) in scenario I-2, α =

log(0.75/3) + 0.15 = − 1.23. The 12 scenarios designed to

Table 1 Design of the simulation data

Scenario Scenario Models to generate simulation datasetsb Model
misspe-cified?c

Max P of
exposeda

Beta of Z2 Link
Function

% of exposed
at Max P

I-1 0.75 3 log 0 log (P (Y1 = 1| X = 0, Z1, Z2)) = −1.38 – Z1–3 * Z2 No

I-2 0.75 3 log 1.4 log (P (Y2 = 1| X = 0, Z1, Z2)) = − 1.23 – max (Z1 + 3 * Z2, 0.15) Yes

I-3 0.75 3 log 2.8 log (P (Y3 = 1| X = 0, Z1, Z2)) = − 1.08 – max (Z1 + 3 * Z2, 0.30) Yes

I-4 0.75 3 log 5.8 log (P (Y4 = 1| X = 0, Z1, Z2)) = − 0.78 – max (Z1 + 3 * Z2, 0.60) Yes

II-1 0.85 3 log 0 log (P (Y1 = 1| X = 0, Z1, Z2)) = − 1.26 – Z1–3 * Z2 No

II-2 0.85 3 log 1.4 log (P (Y2 = 1| X = 0, Z1, Z2)) = − 1.11 – max (Z1 + 3 * Z2, 0.15) Yes

II-3 0.85 3 log 2.8 log (P (Y3 = 1| X = 0, Z1, Z2)) = − 0.96 – max (Z1 + 3 * Z2, 0.30) Yes

II-4 0.85 3 log 5.8 log (P (Y4 = 1| X = 0, Z1, Z2)) = − 0.66 – max (Z1 + 3 * Z2, 0.60) Yes

III-1 0.95 3 log 0 log (P (Y1 = 1| X = 0, Z1, Z2)) = − 1.15 – Z1–3 * Z2 No

III-2 0.95 3 log 1.4 log (P (Y2 = 1| X = 0, Z1, Z2)) = − 1.00 – max (Z1 + 3 * Z2, 0.15) Yes

III-3 0.95 3 log 2.8 log (P (Y3 = 1| X = 0, Z1, Z2)) = − 0.85 – max (Z1 + 3 * Z2, 0.30) Yes

III-4 0.95 3 log 5.8 log (P (Y4 = 1| X = 0, Z1, Z2)) = − 0.55 – max (Z1 + 3 * Z2, 0.60) Yes

IV-1 0.95 2 log 0 log (P (Y1 = 1| X = 0, Z1, Z2)) = − 1.15 – Z1–2 * Z2 No

IV-2 0.95 2 log 1.4 log (P (Y2 = 1| X = 0, Z1, Z2)) = − 1.05 – max (Z1 + 2 * Z2, 0.10) Yes

IV-3 0.95 2 log 2.8 log (P (Y3 = 1| X = 0, Z1, Z2)) = − 0.95 – max (Z1 + 2 * Z2, 0.20) Yes

IV-4 0.95 2 log 5.8 log (P (Y4 = 1| X = 0, Z1, Z2)) = − 0.75 – max (Z1 + 2 * Z2, 0.40) Yes

V-1 0.95 4 log 0 log (P (Y1 = 1| X = 0, Z1, Z2)) = − 1.15 – Z1–4 * Z2 No

V-2 0.95 4 log 1.4 log (P (Y2 = 1| X = 0, Z1, Z2)) = − 0.95 – max (Z1 + 4 * Z2, 0.20) Yes

V-3 0.95 4 log 2.8 log (P (Y3 = 1| X = 0, Z1, Z2)) = − 0.75 – max (Z1 + 4 * Z2, 0.40) Yes

V-4 0.95 4 log 5.8 log (P (Y4 = 1| X = 0, Z1, Z2)) = − 0.35 – max (Z1 + 4 * Z2, 0.80) Yes

VI-1 0.95 3 logit 0 logit (P (Y1 = 1| X = 0, Z1, Z2)) = − 0.76 – Z1–3 * Z2 Yes

VI-2 0.95 3 logit 1.4 logit (P (Y2 = 1| X = 0, Z1, Z2)) = − 0.61 – max (Z1 + 3 * Z2, 0.15) Yes

VI-3 0.95 3 logit 2.8 logit (P (Y3 = 1| X = 0, Z1, Z2)) = − 0.46 – max (Z1 + 3 * Z2, 0.30) Yes

VI-4 0.95 3 logit 5.8 logit (P (Y4 = 1| X = 0, Z1, Z2)) = − 0.16 – max (Z1 + 3 * Z2, 0.60) Yes

VII-1 0.95 3 probit 0 probit (P (Y1 = 1| X = 0, Z1, Z2)) = − 0.48 – Z1–3 * Z2 Yes

VII-2 0.95 3 probit 1.4 probit (P (Y2 = 1| X = 0, Z1, Z2)) = − 0.33 – max (Z1 + 3 * Z2, 0.15) Yes

VII-3 0.95 3 probit 2.8 probit (P (Y3 = 1| X = 0, Z1, Z2)) = − 0.18 – max (Z1 + 3 * Z2, 0.30) Yes

VII-4 0.95 3 probit 5.8 probit (P (Y4 = 1| X = 0, Z1, Z2)) = − 0.12 – max (Z1 + 3 * Z2, 0.60) Yes

aMaximum P (Yk = 1| X = 1, Z1, Z2)
bModels to generate Yk for unexposed subjects. For exposed subjects, P (Yk = 1| X = 1, Z1, Z2) =3*P (Yk = 1| X = 0, Z1, Z2). k = 1, 2, 3, and 4
cModel was defined as misspecified when the link function was not ‘log’ or the % of exposed at maximum P (Yk = 1| X = 0, Z1, Z2) was greater than 0
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study the impact of large P(Y = 1) were listed in the first

section of Table 1 (in the first 12 rows).

Scenarios to study the impact of coefficient of Z2
To study the impact of the entire distribution of

P(Y = 1) when large P(Y = 1) existed, eight more scenar-

ios were produced, with the beta coefficient of Z2 being

2 and 4 (shown in the middle section of Table 1), to join

the four scenarios for which the beta coefficient of Z2

was set to 3 (i.e. III-1, III-2, III-3, and III-4). The distri-

bution of P(Y = 1) was shifted towards zero as the beta

coefficient of Z2 increased. Thus, these scenarios allowed

us to study the impact of the outcome distribution, or

the average P(Y = 1).

The intercepts and the thresholds were generated

using the same approach as described in the previous

section. Because Z2 follows the uniform distribution, the

thresholds increase proportionally with the beta coeffi-

cients. For example, the threshold to make 1.4% of ex-

posed subjects reached the maximum P (Y2 = 1| X = 1,

Z1, Z2) = 0.1 when the beta of Z2 was 2 and increased to

0.2 when the beta of Z2 was 4.

Scenarios to study the impact of misspecified link functions

The link function was altered from log to logit and pro-

bit in scenarios VI and VII to assess the model perform-

ance when the link functions were misspecified; refer to

the last section of Table 1. For scenarios VI-2, VI-3,

VI-4, VII-2, VII-3, and VII-4, not only were the link

functions misspecified, but also the responses depended

on covariates with truncated probabilities.

Scenarios with a weaker association between exposure and

outcome (RR = 2)

To understand the impact of misspecified link functions

and truncation when RR is different from 3.0, we also

generated scenarios with parameters identical to those in

III-1, III-2, III-3, III-4, VII-1, VII-2, VII-3 and VII-4, ex-

cept that this time RR = 2.0 instead of 3.0.

Results

Relative bias

The relative biases of the estimated RR in log scale from

the two models in each of the 28 scenarios when n =

1000 are shown in Table 2 and Fig. 1.

As expected, both models accurately estimated β1 or log

(RR) when they were correctly specified, regardless of the

value of the maximum P. When the models were misspe-

cified (as shown in the shaded areas in Table 2), the rela-

tive biases of the robust Poisson models were negligible,

while those of log-binomial models tended to negatively

bias away from null. For the log-binomial models, the

magnitude of biases increased in all scenarios when the

level of misspecification, measured by the percentage of

exposed subjects at maximum P, increased.

Large P(Y = 1) was associated with an increased level

of bias when the percentage of exposed subjects having

the max P (Yk = 1| X = 1, Z1, Z2) was fixed; refer to the

first three rows of Table 2 and Fig. 1, Panel A. For ex-

ample, when the percentage of exposed subjects whose

maximum P (Yk = 1| X = 1, Z1, Z2) was fixed at 5.8, an

increase of maximum P (Yk = 1| X = 1, Z1, Z2) from 0.75

(scenario I-4) to 0.95 (scenario III-4) resulted a change

in relative bias from − 4.1% to − 11.7%.

The impact of average P(Y = 1) was displayed from the

4th to the 6th rows of Table 2 and in Panel B of Fig. 1.

When the percentage of exposed subjects having the

max P (Yk = 1| X = 1, Z1, Z2) was fixed, the log-binomial

models were more vulnerable (larger absolute value of

relative biases) when the beta coefficient of Z2 increased

(i.e. average P (Y = 1| X = 1, Z1, Z2) decreased). For ex-

ample, when the percentage of exposed subjects whose

maximum P (Yk = 1| X = 1, Z1, Z2) = 2.8, the relative bias

changed from − 3.8% to − 8.5% when the beta coefficient

increased from 2 to 4. This indicates that the value of

the average P(Y = 1) impacts the performance of the

log-binomial models. When there were enough large

P(Y = 1), a low average P(Y = 1) away from large

P(Y = 1) was associated with a large relative bias.

When the underlying distribution of data was logit,

misspecifying the link function as ‘log’ did not signifi-

cantly influence relative biases. However, when the

underlying distribution of data was probit, the bias (−

5.9%) was noticeable even when the linear predictors

were properly specified (i.e. percentage of exposed sub-

jects having the max P (Yk = 1| X = 1, Z1, Z2) was zero).

Refer to the last three rows of Table 2 and Panel C of

Fig. 1. Misspecifying the link function from log to probit

in the presence of misspecified linear predictors had a

serious consequence. The relative bias was almost − 18%

when the percentage of exposed subjects at the max-

imum P was only 2.8.

Standard error

In all simulation scenarios, the SE of the two models

were comparable (Table 3). At the 2nd decimal point,

the SE derived from the log-binomial models were either

the same or slightly smaller compared to those of robust

Poisson models. The largest difference, 0.03 (=0.23–

0.20), occurred when the data distribution was probit,

maximum P (Y = 1| X = 1, Z1, Z2) was 0.95, and the beta

of Z2 was 3 (scenario VII-1). When the models correctly

specified (in the unshaded area of Table 3), the SE of the

two models were the same except for one scenario (V-1)

in which the SE from log-binomial models was smaller

by 0.01. The SE of the log-binomial models were always

smaller compared to those of robust Poisson models at
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the 3rd decimal place, even if the models were correctly

specified (data not shown).

Mean square error

As expected, when the models were correctly specified (in

the unshaded area in Table 4), log-binomial models

yielded the same or marginally smaller MSE compared to

robust Poisson models. When the underlying distribution

of data had a log or logit link (scenarios I-VI) and the per-

centage of exposed subjects having the max P (Yk = 1| X =

1, Z1, Z2) was 1.4% or 2.8% (in the columns labeled as ‘2’

and ‘3’ in Table 4), the MSE of the two models were still

comparable, except for one scenario. The exception oc-

curred in scenario V-3, where the superiority of the robust

Poisson models was quite noticeable; the difference in

MSE between the two models was 0.05. Recall that the

average P(Y = 1) for V-3 was smallest among all three sce-

narios (III-3, IV-3 and V-3) and followed by that of III-3.

Thus, it is not surprising to observe the difference

between the two models becoming larger from IV-3 to

III-3, and to V-3. For scenarios III-4 to VII-4, the robust

Poisson models consistently outperformed the

log-binomial models. For scenarios of VII (in which the

underlying data were generated using a probit link), the

MSE of log-binomial models, compared to those of robust

Poisson models, were slightly smaller when the linear pre-

dictors were properly specified (such as in scenario VII-1)

and significantly larger when the linear predictors were

improperly specified, even when level of misspecification

of the linear predictors was small. For example, when the

percentage of exposed subjects at the 0.95 (max P) was

only 1.4, the MSE were 0.051 and 0.038, from the

log-binomial model and the robust Poisson model,

respectively.

Distribution of P(Y = 1)

The distributions of P(Y = 1) for all simulated data (one

million data points for each scenario) are shown in Fig. 2.

Table 2 Relative bias (%) in log scale with and without model misspecification (n = 1000)

Scenario 1 2 3 4

LB RP LB RP LB RP LB RP

I- 0.4 0.6 1.0 1.5 -1.4 0.7 -4.1 1.1

II- 0.4 0.3 -0.5 0.8 -3.0 1.0 -7.1 0.9

III- 0.9 1.4 -2.3 1.0 -6.1 0.8 -11.7 0.5

IV- 0.2 0.6 -1.5 0.4 -3.8 0.2 -6.4 1.0

III- 0.9 1.4 -2.3 1.0 -6.1 0.8 -11.7 0.5

V- 0.1 0.7 -4.6 -0.2 -8.5 1.2 -15.4 1.2

III- 0.9 1.4 -2.3 1.0 -6.1 0.8 -11.7 0.5

VI- -1.7 0.6 -5.0 0.0 -6.8 1.2 -11.0 0.9

VII- -5.9 2.2 -12.8 0.9 -18.0 0.4 -21.9 1.0

Unshaded: Models were correctly specified
Light shaded: Misspecified linear predictors or misspecified link function
Dark shaded: Misspecified linear predictors and misspecified link function
LB: log-binomial, RP: robust Poisson
Change of scenarios: Increasing intercept: I→ II→ III; Increasing coefficient of β2: IV→ III→ V; Change of link function: III (log), VI (logit), VII (probit)

Fig. 1 Percentage bias in log(RR) scale. a From left to right: increasing intercept(scenario I→II→III); b From left to right: increasing coefficient of

β2 (scenario IV→III→V); c From left to right: change of link function (scenarios III, VI and VII). Red lines: Robust Poison; Blue lines: Log-binomial
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Panel A shows the distribution of P(Y = 1) with varying

maximum P(Y = 1). When the link function and beta of

Z2 were fixed at ‘log’ and 3, respectively, an increase of

max P(Y = 1) from 0.75 (scenario I) to 0.95 (scenario III)

stretched the spikes to the right (Fig. 2 Panel A).

Panel B shows the distribution with varying beta of Z2.

When the beta of Z2 increased from 2 (scenario VI) to 4

(scenario V) while the max P(Y = 1) was fixed at 0.95 and

the link function was set as ‘log,’ the distribution of P(Y = 1)

became taller, thinner, and shifted towards zero. This

provides the evidence that attributes the increase of biases

to the downward shift of the distribution of P(Y = 1) (i.e.

decrease in the prevalence of the outcome variable Y).

Panel C shows the distribution with varying link func-

tion. Spikes (i.e. vertical thin lines in all figures except

those labeled with “0% at the max P”) for both exposed

and unexposed subjects increased in all scenarios when

the percentage of exposed subjects at the max P(Y = 1)

increased from 1.4, 2.8 to 5.8%, indicating a higher level

of violation of the linearity assumption. The distribu-

tions of P(Y = 1) for data with log and logit link func-

tions were similar; however, the distributions of P(Y = 1)

for data with probit link function distinguished them-

selves significantly from those of log or logit. This obser-

vation explains the larger biases seen in Fig. 1 Panel C,

when the underlying distribution of data were probit,

compared to those of log and logit distributions, even

when the predictors were perfectly linear.

Results of moderate sample size (n = 500)

When the simulation was conducted based on samples

of moderate size (n = 500), the same pattern was observed

Table 3 Standard error in log scale with and without model misspecification (n = 1000)

Scenario 1 2 3 4

LB RP LB RP LB RP LB RP

I- 0.20 0.20 0.18 0.18 0.16 0.17 0.14 0.15

II- 0.18 0.18 0.16 0.17 0.15 0.15 0.13 0.14

III- 0.17 0.17 0.15 0.16 0.14 0.15 0.12 0.13

IV- 0.13 0.13 0.13 0.13 0.12 0.13 0.11 0.12

III- 0.17 0.17 0.15 0.16 0.14 0.15 0.12 0.12

V- 0.18 0.19 0.15 0.16 0.15 0.16 0.12 0.13

III- 0.17 0.17 0.15 0.16 0.14 0.15 0.12 0.13

VI- 0.14 0.15 0.13 0.14 0.13 0.14 0.11 0.12

VII- 0.20 0.23 0.18 0.19 0.16 0.17 0.14 0.15

Unshaded: Models were correctly specified
Light shaded: Misspecified linear predictors or misspecified link function
Dark shaded: Misspecified linear predictors and misspecified link function
LB: log-binomial, RP: robust Poisson
Change of scenarios: Increasing intercept: I→ II→ III; Increasing coefficient of β2: IV→ III→ V; Change of link function: III (log), VI (logit), VII (probit)

Table 4 Mean square error (MSE) in log scale with and without model misspecification (n = 1000)

Scenario 1 2 3 4

LB RP LB RP LB RP LB RP

I- 0.040 0.040 0.032 0.033 0.026 0.028 0.022 0.022

II- 0.032 0.033 0.026 0.028 0.023 0.024 0.023 0.019

III- 0.028 0.031 0.022 0.025 0.023 0.021 0.031 0.016

IV- 0.017 0.018 0.016 0.018 0.016 0.016 0.017 0.014

III- 0.028 0.031 0.022 0.025 0.023 0.021 0.031 0.016

V- 0.032 0.036 0.026 0.027 0.031 0.026 0.044 0.018

III- 0.028 0.031 0.022 0.025 0.023 0.021 0.031 0.016

VI- 0.019 0.022 0.020 0.019 0.021 0.019 0.027 0.014

VII- 0.046 0.052 0.051 0.038 0.063 0.028 0.076 0.021

Unshaded: Models were correctly specified
Light shaded: Misspecified linear predictors or misspecified link function
Dark shaded: Misspecified linear predictors and misspecified link function
LB: log-binomial, RP: robust Poisson
Change of scenarios: Increasing intercept: I→ II→ III; Increasing coefficient of β2: IV→ III→ V; Change of link function: III (log), VI (logit), VII (probit)
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in terms of relative biases and SE (Additional file 6, Tables

AF6.1-AF6.2). As expected, the SE based on the samples

of moderate size was larger compared to those derived

from samples with n = 1000. The same pattern was also

observed for MSE (Additional file 6, Table AF6.3); how-

ever, the differences between the two models were not as

substantial as seen in the samples of sizes 1000.

Results with a weaker association between exposure and

outcome (RR = 2)

When the simulation was conducted based on simula-

tion datasets with RR = 2, the relative biases were similar

to those of the corresponding scenarios with RR = 3

(data not shown). The standard errors derived from the

simulation datasets with RR = 2 were 12–36% smaller

compared to those of the corresponding scenarios with

RR = 3; however, the pattern remained the same. That is,

the standard errors of the two models were comparable

with those from the robust Poisson models being only

slightly larger than those from the log-binomial models.

The MSE yielded from the simulation datasets with

RR = 2 were 16–47% smaller compared to those of the

matching datasets with RR = 3. Nevertheless, similar to

the patterns observed for RR = 3, the robust Poisson had

lower MSE compared to the log-binomial models, and the

differences were more dramatic when a probit link was

used (versus a log link) and when the data had a higher

percentage of truncation.

Discussion
In this study, the statistical performances of the two

most popular model-based approaches used to estimate

RR for common binary outcomes were examined when

the link function was misspecified or when the probabil-

ity of the response variables was truncated at the right

tail. Our findings suggest that point estimates from

log-binomial models were biased when the link function

was misspecified or when the probability distribution of

the response variable was truncated for even a small

proportion of observations. For log-binomial models, the

percentage of truncated observations was positively asso-

ciated with the presence of the bias. The bias was more

significant if these observations came from a population

in which the response rate was lower, given the other

parameters being examined were fixed.

For MLE based methods, misspecification can cause

inconsistent estimators of parameters [20]. Lumley et al.

(2006) pointed out that compared to robust Poisson and

other non-MLE based models, log-binomial models

(MLE based) have very large weights when p (referred

by authors as μ) is large ([26] Fig. 1). The same authors

also pointed out that for log-binomial models, “a single

point with μ close to 1 can have arbitrarily large influ-

ence despite having bounded covariate values”. Our ob-

servation was consistent with that of Lumley et al. We

demonstrated that when the percentage of observations

with large P increased, the magnitude of bias also in-

creased. This may explain the less optimal performance

of the model applied to data generated using a probit

link compared to that of log or logit link when other pa-

rameters were fixed (Panel C of Fig. 2). It is well known

that log-binomial models may fail to convergence or

generate incorrect estimates when the covariate values

in the data are not bounded by 1 [3, 5, 8]. However, we

Fig. 2 Distribution of P(Y = 1). Y-axis: Percent; X-axis: P(Y = 1). a From left to right: increasing intercept (scenario I→II→III); b From left of right:

increasing coefficient of β2 (scenarion IV→III→V); c From left to right: change of link function (scenarios III, VI and VII)
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believe that this is a different issue than what we have

focused on, which has been the impact of large Ps. In

Scenario VII-1, truncation was not applied and none of

the observations had predicted probabilities > 1, yet the

point estimate was still biased.

On the other hand, the point estimates from the robust

Poisson models were nearly unbiased in all the scenarios

examined, including when they were applied to the data

that were generated using a probit link, which yielded

quite different probability distributions compared to those

from a log link, and/or when the distribution of 5.8% of

the exposed subjects were altered. In Chen et al. [27], both

the MLE generated by log-binomial models and the

quasi-likelihood estimators produced by robust Poisson

models deteriorated when outliers were introduced [27].

However, in the current study, the biases in point esti-

mates based on robust Poisson models were negligible,

even when both link functions and predictors were incor-

rectly specified. This interesting contrast can be explained

by a major difference in the design of the two studies. In

the previous study [27], the association between the ex-

posure and the outcome was weakened when the “out-

liers” were introduced, and thus the negative biases were

observed for the robust Poisson models. Nevertheless, in

the current study, the true RR was maintained at 3.0, (or

2.0 for some scenarios), even when the link function was

misspecified and/or when the probabilities were trun-

cated. Our simulations demonstrated that for robust

Poisson regression, the misspecification of the link func-

tion did not hinder its ability to find the true RR. This is

likely due to the fact that the quasi-likelihood method en-

ables regression coefficient estimation without fully spe-

cifying the distribution of the observed data. We

examined exposure-outcome associations with RR 3.0

and 2.0. The magnitude of the observed bias in our simu-

lation results did not change much when the association

was reduced from 3.0 to 2.0; however, it is conceivable

that the bias could be reduced in scenarios when the as-

sociation is smaller than 2.0.

Model misspecification does not always yield differences

in point estimates between the two models. In fact, in a

previous examination (Additional file 3), we found when

an important explanatory variable was omitted, a higher

order term of non-linear explanatory variable was ignored,

or an interaction term was overlooked, the two models

produced comparable results regardless of the outcome

rate, risk ratio or the strength of association between the

exposure and the confounder or between the outcome

and the confounder. Only in the scenario where an inter-

action term was ignored did the models yield large biases.

This highlights the relative importance of observations

with large weights, since in the previous examination, the

number of observations with large probabilities of having

the response was small.

Although we did not evaluate data based on other link

functions that are also suitable for modeling binary out-

comes (e.g. complementary log-log or log-log), it is ex-

pected that the results would have similar patterns. A

truncated distribution appears in many real-life datasets

where the collection of data is limited to those that are

above or under a threshold. For example, a typical scale

used in clinics or hospitals can measure height up to

200 cm and weight up to 250 kg. Subjects exceeding

these values would be truncated to these limits. In the

simulated datasets, the distributions of approximately

1.4, 2.8, and 5.8% of the exposed subjects were truncated

in that they no longer followed the distribution specified

by the link function through a combination of linear

predictors. The truncation rates (1.4, 2.8, and 5.8%) for

the exposed subjects were plausible values that can be

related to real-life applications.

In contrast to Chen et al. [27], in which no differences

were found at the second decimal point when the data

were not contaminated with outliers, we found small dif-

ferences in the variances at the second decimal point be-

tween the log-binomial and robust Poisson models under

some of the scenarios for both samples (n = 1000 and n =

500) when the models were correctly specified. This find-

ing is consistent with that of Petersen and Deddens [11],

which was based on a sample with 100 observations and a

single independent variable with a uniform distribution.

Kauermann and Carroll [28] showed that variances of

sandwich estimators were generally less efficient than

variance estimates derived from parametric models. This

weakness impacts the coverage probability, the probabil-

ity that a confidence interval covers the true RR, and

thus the ability to reject a null when the alternative is

true. Hence, log-binomial models are preferred over the

robust Poisson models when the log-binomial models

are correctly specified.

The COPY method was reported to have convergence

issue when there are continuous covariates in the model

[11]. However, convergence was barely an issue in this

study as it converged completely (i.e. 1000 out of 1000

simulations) in 23 out of 28 scenarios when the sample

size was 1000, and 21 out of 28 scenarios when the sam-

ple size was 500. In the 12 scenarios (five for sample size

1000 and seven for sample size 500) for which the COPY

method did not completely converge in all 1000 simula-

tions, there was only one out of 1000 simulations that

failed to converge for each scenario. The number of vir-

tual copies used in the study, 10,000, was reported to be

accurate to three decimal places [25].

Misspecification tests were developed [29, 30] and

proven to be able to maintain reasonable size across vari-

ous settings in simulation when they were applied to logis-

tic and beta-binomial regression models [30]. However,

the power to detect the types of alternatives commonly
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observed in practice (e.g. alternative link functions) was

low [30]. Blizzard and Hosmer [10] assessed model-fit of

log-binomial models by applying the Hosmer-Lemeshow

test (a commonly used goodness-of-fit test for logistic re-

gression models), the Pearson chi-square test, and the un-

weighted sum of squares test, finding that all three tests

exhibited acceptable Type I errors yet low-to-moderate

power. Due to the lack of powerful diagnostic tools to de-

tect any forms of model misspecification, the robust Pois-

son model may be considered a good choice because of its

ability to produce unbiased risk ratios. Efforts to establish

efficient and robust parameter estimators are ongoing. A

recent publication summarized issues with the current ap-

proaches within the GLM family to estimate relative risks

and risk differences, and provided a possible alternative to

estimate relative risks and risk differences using a

non-GLM approach [31]. The authors proposed to model

relative risks as functions of baseline covariates. Validation

of this approach is needed to determine its applicability to

studies such as those presented here.

Conclusions
Given the vulnerability of log-binomial models when they

are misspecified, a robust Poisson model should be con-

sidered the preferred choice for estimating risk ratios. This

is especially the case when the prevalence of the outcome

is low and the model contains continuous covariates. If

the result of a robust Poisson model approaches border-

line significance, consider performing a log-binomial re-

gression as well, as the increased efficiency of the

log-binomial model may increase the probability of detect-

ing the effect with a given significance level. If the point

estimates of the two models are inconsistent and the

log-binomial model is preferred, categorize continuous

variables and re-fit the model. If the data contain trun-

cated values, examine the distribution of the data carefully

and consider converting them into categorical variables if

such a conversion is clinically meaningful. The robust

Poisson model does not work well for samples that are

very small because the sample-based sandwich estimators

tend to underestimate the true standard errors [32].

In summary, we found evidence to favor the robust

Poisson model under various scenarios when models were

misspecified. Future studies to develop model misspecifi-

cation and/or goodness-of-fit tests that are powerful and

convenient to apply for log-binomial models are

warranted.
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