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Comparing Platform-Aware Control Design Flows For

Composable and Predictable TDM-Based Execution

Platforms
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We compare three platform-aware feedback control design �ows that are tailored for a composable and
predictable Time Division Multiplexing (TDM) based execution platform. The platform allows for independent
execution of multiple applications. Using the precise timing knowledge of the platform execution, we accurately
characterise the execution of the control application (i.e., sensing, computing, and actuating operations) to
design e�cient feedback controllers with high control performance in terms of settling time. The design
�ows are derived for Single-Rate (SR) and Multi-Rate (MR) sampling schemes. We show the applicability of
the design �ows based on two design considerations and their trade-o�: control performance and resource
utilisation. The design �ows are validated by means of MATLAB and Hardware-In-the-Loop (HIL) experiments
for a motion control application.
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1 INTRODUCTION

Feedback control applications are used in a wide range of applications developed for cost-sensitive
industries that include industrial automation, consumer applications, automotive, avionics, and
many others. A great number of these applications demand high performance, low cost, and a short
time to market. Their control task is implemented by three sequential and repetitive operations:
sense or measure data from the system under control (plant), compute the actuation signals,
and apply the actuation signals to the plant such that its behaviour is regulated. In many real-
life scenarios, the controllers are implemented onto embedded platforms with severe resource
constraints (e.g., on computation and communication).

The current practice is to dedicate an embedded platform for each application to avoid sharing
resources. This guarantees interference-free execution of applications which is essential to achieve
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a high performance and reduce Time to Market (TTM). Without resource sharing, such design
solutions often lead to expensive implementations due to high cost of hardware.
Bringing multiple applications within a single embedded platform is a potential solution for

such expensive implementation, but it poses several challenges. The most notable among them is
to deal with inter-application interferences. Common approaches to tackle this challenge include
the use of multi-core embedded platforms, where each core of the platform is allocated to a single
application. However, other shared resources such as cache memories and interconnections lead to
interference between applications [Subramanian et al. 2015]. An alternative approach is to partition
(or virtualize) resources in both time (e.g scheduling) and space (e.g. memory regions) such that all
interference between applications due to resource sharing is avoided, and the development and
integration of multiple applications in the platform is eased and sped up.
Implementing precise Time Division Multiplexing (TDM) policies onto the embedded platform

execution is one technique to partition shared resources. One such example is the Composable and
Predictable System on Chip (CompSOC) embedded platform [Goossens et al. 2017]. This platform
uses the Composable and Predictable Microkernel (CoMik), which cycle-accurately partitions the
processor execution in �xed duration slots [Nelson et al. 2014]. In each of these slots, an application
executes without any interference from other applications. We consider TDM-based execution
platforms, such as CompSOC, as the implementation platform for the feedback control applications.
Generally, the feedback control applications are required to guarantee stability and provide a

required performance. However, complying with requirements and enhancing performance do not
only depend on meeting timing deadlines as is commonly regarded in real-time applications but, as
we will see, it also depends on richer timing characteristics that are derived from both the platform
and the application executions.

Platform-aware model-based design of control systems has been reported to improve the control
application performance [Morelli and Natale 2014]. That is, the knowledge of the precise execution
time information can explicitly be considered in the design of the controller to achieve a higher
performance, as well as to meet the design constraints. In this work, we present feedback control
design �ows for e�cient deployment of controllers onto composable and predictable platforms.
As a study case, we exploited the CompSOC platform timing mechanisms to use equidistant and
non-equidistant sampling intervals in the controller design.

Contributions: The contributions of this paper are detailed as follows:

• Single-Rate (SR) design �ow: Platform con�gured with equidistant sampling. This con-
troller design has been adapted from [Valencia et al. 2015] by replacing the pole-placement
design with an Linear Quadratic Regulator (LQR) controller [Åström and Murray 2008]. We
use the settling time as the control performance metric. Thus, the LQR is tuned to optimise
the performance. We use Particle Swarm Optimization (PSO) for the LQR tuning [Medina et al.
2017]. We show that the SR design �ow is suitable when the demand for the performance is
relatively low (i.e., a longer settling time is acceptable). Better performance can be achieved
with a higher resource utilisation.

• Multi-Rate Local Optimal (MRLO) design �ow: Platform con�gured to obtain a �nite
sequence of periodic and non-equidistant sampling intervals. We further identify the most
frequently occurring sampling interval (nominal sampling interval) in the sequence. We
optimise the controller design for the nominal sampling interval. We adapted this design
from [Valencia et al. 2015] by replacing the pole-placement controller with an LQR controller
accompanied with the PSO tuning technique. We ensure the overall switching stability
between the non-equidistant sampling intervals by using a Lyapunov-based Linear Matrix
Inequality (LMI) stability condition. We show that theMRLO design �ow is suitable when the
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performance demand is also high (i.e., a short settling time is required). Better performance
can be achieved with a higher resource utilisation.

• Multi-Rate Global Optimal (MRGO) design �ow: Platform con�gured to obtain a �nite
sequence of periodic and non-equidistant sampling intervals. The controller is designed by
using a time-lifted formulation of the overall system (i.e., augmented system that results
from the non-equidistant sampling intervals) such that it is transformed into a classic LQR
design problem. We adapted this design from [Valencia et al. 2016] by adding a continuous-
time (CT) LQR heuristic technique. We show that theMRGO design �ow is suitable when
the performance demand is high, and a higher resource utilisation is acceptable. Better
performance can be achieved with a higher resource utilisation.

• Experimental study case: A fourth-order motion control system plant has been considered
to study the design �ows. This plant is mainly composed of a mechanical setup where the
two masses are connected to each other by a �exible bar, and a motor is directly connected
to one of the masses. Such type of plant represents the characteristics of a wide range of
industrial settings (e.g., automotive, avionics, biomedical devices).

• Hardware-In-the-Loop (HIL) experiments: We present a HIL experiment on the Comp-
SOC platform. In this simulation, the controllers (i.e., derived from the SR,MRLO, andMRGO

design-�ows) are implemented on a processor where applications run under a TDM schedul-
ing scheme. On a separate processor, the CT plant dynamics are emulated by running the
discrete-time (DT) plant dynamics at a high sampling frequency.

• Validation: The design �ows are validated with MATLAB and HIL experiments. In both
experiments, the settling time is evaluated for di�erent amount of resources that are assigned
to the control application. The comparison shows the feasibility of implementing the proposed
design �ows onto an embedded platform to control a real plant.

• Design guidelines: We provide design guidelines that explain how to select and con�gure
the best design �ow depending on the design considerations, namely settling time and
resource utilisation.

The remainder of the article is organised as follows. In Section 2 we present the related work
from which we have taken many inspiring ideas. The composable and predictable TDM-based
execution platform used in our work is presented in Section 3. The control application and the
characterisation of its timing properties are described in Section 4. In Section 5 we describe the
SR design �ow, followed by the Multi-Rate (MR) design �ows in Sections 6 and 7. In Section 8 we
present the experimental study, where we give details about the motion control study case, the
MATLAB and HIL experiments, the trade-o� analysis between performance and resources allocated
to the application, the impact of the platform settings recon�gurations on the performance, and
the suggested design design guidelines. We �nally draw conclusions in Section 9.

2 RELATED WORK

This work deals with the e�cient implementation of feedback control applications on embedded
platforms. For decades, the development of embedded control applications has been based on the
separation of concerns principle between theoretical control and embedded systems disciplines
[Årzén and Cervin 2005]. The former is focused on control design with equidistant sampling
intervals with hard execution deadlines. The latter is focused on developing scheduling mechanisms
and computational models such that control applications meet these timing requirements during
runtime. This design philosophy led to simpler control system models that often restrict control
performance and stringent execution models with signi�cant resource over-dimensioning. In
contrast, a huge body of work has been reported on the platform-aware design philosophy where
the emphasis is on co-design of control strategies and platform con�gurations [Cervin et al. 2003;
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Chang et al. 2017; Samii et al. 2009; Valencia et al. 2016; Wolf 2009]. The idea is to take into account
properties of platform resources in the control design and thereby, improve the control performance.

The literature on platform-aware control design can broadly be classi�ed based on the resource
category, namely computation [Aminifar et al. 2015, 2016; Biondi et al. 2018; Cervin et al. 2003,
2011; Goswami et al. 2013; Medina et al. 2017; Samii et al. 2009; Schneider et al. 2013], communi-
cation [Bauer et al. 2014; Deng et al. 2016; Goswami et al. 2014; Roy et al. 2016], memory [Chang
et al. 2017], and power [Chang et al. 2014].

The key considerations of computation-aware control design methods are the trade-o� analysis
between resource usage and control performance, e�cient implementation and performance
optimisation. A trade-o� analysis between the number of processing units used for the control
application and the performance is presented in [Medina et al. 2017] for data intensive control loops.
Integrated communication and computation (priority-based) scheduling for distributed control is
solved by constraint logic programming formulation in [Samii et al. 2009]. The works in [Aminifar
et al. 2015; Cervin et al. 2003] present analysis frameworks to analyse the e�ect of execution jitter
on control performance. To this end, the sampling interval and delay play crucial role both in
control performance and scheduling. They are often used as an interface between the control and
embedded systems design paradigms. The optimal sampling interval is found with respect to the
control performance in [Cervin et al. 2011; Goswami et al. 2013] and similarly, the delay is optimised
in [Schneider et al. 2013]. [Aminifar et al. 2016] presents a response time analysis with self- and
event-triggered execution of control applications. Similarly, [Biondi et al. 2018] presents response
time analysis for controllers running under variable sampling intervals such as an engine control
system.
Along the direction of communication-aware control design, there has been emphasis on con-

trol/schedule co-design considering industrial bus systems such as FlexRay [Goswami et al. 2014;
Roy et al. 2016], CAN [Deng et al. 2016] as well as wireless networks [Bauer et al. 2014]. The key
consideration is optimisation and analysis of the control performance taking account the band-
width restrictions, scheduling policy, and uncertainty of the communication systems in distributed
implementations. Co-optimisation considering memory-mapping of control applications has been
reported recently in [Chang et al. 2017]. In the context of electric vehicle, the power consumption
by the controller becomes a crucial design parameter and hence, optimised for a longer battery life
and control performance in [Chang et al. 2014].

Overall, many state-of-the-art strategies o�er synthesis frameworks to schedule and map applica-
tions onto a targeted embedded platform taking into account computation, communication, memory,
and power resources. Our approach di�ers in a number of aspects and takes inspiration from many
works (see Table 1). First, we deal primarily with feedback control applications implemented onto a
composable and predictable platform that allows for resource sharing between applications (e.g.,
CompSOC platform [Goossens et al. 2017]). This platform uses a TDM scheduling protocol that
virtualises the resources that are assigned to applications into time partitions where applications
execute. This virtualisation enables independent development and execution of applications, simpli-
fying the mapping and scheduling of the applications to time partitions per application [Çela et al.
2014], unlike works that must include the scheduling of applications in their designs [Aminifar
et al. 2012; Arzen et al. 2000; Chang et al. 2018; Goswami et al. 2012; Schneider et al. 2013]. The
time-triggered behaviour of the virtualisation mechanism brings resource utilisation limitations for
classical control approaches that are based on equidistant sampling intervals [Aminifar et al. 2012;
Arzen et al. 2000; Åström and Wittenmark 1990; Cervin et al. 2003; Goswami et al. 2012; Schneider
et al. 2013]. In contrast, we exploit frequent execution of the control application within its assigned
partitions to increase the sampling frequency and potentially the control performance, at the cost of
dealing with non-equidistant sampling intervals, similar to works [Chang et al. 2018; van Zundert
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and Oomen 2018]. We present di�erent control laws (i.e., LQR, LMI-based) and we investigate their
stability and optimisation (e.g., PSO-based LQR tuning). We show how the design �ows can be
used to integrate manual and automated procedures for each control strategy. We use MATLAB
and HIL experiments to validate our design-�ows [MathWorks 2018]. As seen in Table 1, many
works focus on timing analysis experimentation whereas in our work we propose a HIL framework
to verify the feasibility of implementing our control designs in a real platform. We draw the design
guidelines that are based on the tradeo�s that we have explored on the resources assigned to the
applications, their performance, and the impact of the platform settings to the aforementioned
design constraints.

In summary, our work is based on the TDM scheduling scheme that simpli�es timing analysis of
the applications, provides time-based performance metrics that allows to have real estimation of
the e�ectiveness of our designs, allows for equidistant and non-equidistant sampling schemes to
exploit performance, presents tradeo�s explorations to help the design �ow selection, and presents
HIL experiments to validate the implementation of our designs in a real embedded platform.

Table 1. Comparison with state-of-the-art works.

Work Scheduling
Performance

Evaluation
Sampling Trade-o�

Design

Flow
Experiments

[Arzen et al. 2000]
- rate monotonic
- earliest deadline �rst

- error between
reference and
measured output

- SR
- performance vs.
resource utilisation

no - not speci�ed

[Aminifar et al. 2012]
- static-cyclic
- priority-based

- expected control
performance
- worst-case
control performance

- SR
- runtime vs.
# of applications

yes - MATLAB

[Schneider et al. 2013]
- �xed-priority
preemptive
scheduling

- stability margin - SR

- schedulability vs.
performance
- performance vs.
utilisation

partial
- Co-sim.
framework

[Goswami et al. 2012] - time-triggered
- quadratic cost
function

- SR

- performance vs.
delay
- performance vs.
execution load

yes
- ILP based
optimisation
- MATLAB

[Chang et al. 2018]
- �xed-priority
preemptive
scheduling

- settling time - MR - not speci�ed no - INCHRON

our work - TDM-based - settling time
- SR
- MR

- performance vs.
utilisation
- performance vs.
platform settings

yes
- MATLAB
- HIL

3 COMPOSABLE AND PREDICTABLE TDM-BASED EXECUTION PLATFORM

TheCompSOC platform is con�gurable with processing units (processor tiles), interconnect Network
on Chip (NoC), and memory units (memory tiles) [Goossens et al. 2017]. An example architecture is
shown in Figure 1. The processor tile is composed of a MicroBlaze soft-core processor, instruction
and data memory, and Direct Memory Access (DMA). The memory tile contains the Static Random-
Access Memory (SRAM) memory interface, and the NoC provides the interconnections between the
tiles. Resources are shared between applications with composable TDM arbiters, which means that
the time slots allocated to each application are strictly periodic in time and of �xed duration with
precision of a single clock cycle. This mechanism is used to partition the resources, such that the
applications are loaded and run without a�ecting or being a�ected by other applications by even a
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MicroBlaze

imem

dmem

DMA mem

processor tile: plant simulation

!"#$ = &!" + ()"

shared system states and actuation signals

embedded platform

NoC

SRAM memory

other app. slot

CoMik slot

control app. slot

MicroBlaze

imem

dmem

DMA mem

processor tile: sensing, 

computing, actuating

...λC λ2 λC λ2 λC

0 1 2 3 0

TDM frame length * ѱ+ ω = 4 ѱ + ω

ѱ ω

slots

sensing data transfers

computing data transfers

actuating data transfers

sensing-plant-actuating data transfers

Fig. 1. Le�: example of a TDM-based execution platform. Right: example for N = 4, with applications λC
and λ2 (where λC is the control application). The black blocks indicate the CoMik slots while the blue and

white blocks indicate the application slots for applications λC and λ2, respectively. The TDM frame repeats

infinitely. The numbers below the TDM frame denote the slots, which are indexed from 0 to 3.

single clock cycle. This makes it possible to implement a controller and emulate plant dynamics
independently of other applications.
The CoMik micro-kernel partitions each processor execution in a TDM frame of size N slots,

where each slot is comprised of an application slot (i.e., where applications execute) of �xed duration
ψ seconds and aCoMik slot (i.e., where themicrokernel switches applications) of durationω seconds.
Thus, during runtime, each application is executed in its allocated slots and it is suspended every
time a new CoMik slot starts. Its execution is only resumed in the next application slot assigned
to it. This execution scheme is illustrated on the top-right side of Figure 1. Two applications λC
and λ2 execute independently of each other within their allocated blue and white application slots,
respectively.

4 EMBEDDED CONTROL SYSTEMS

Control applications regulate the dynamical behaviour of the plant. We deal with a common class
of dynamical systems that are modelled as a CT Linear Time-Invariant (LTI) system

Ûx(t) = Acx(t) + Bcu(t), (1)

y(t) = Ccx(t), (2)

where x(t) ∈ Rn is the state of the plant, Ac ∈ Rn×n , Bc ∈ Rn×m , Cc ∈ Rn are the state, input, and
output matrices, respectively. y(t) ∈ R1 is the output of the plant. u(t) ∈ Rm is the actuation signal

(i.e., signal used by the actuators to be applied to the plant) that is computed by the control law.

4.1 Embedded execution

A control task is the sequence of sensing (reading of sensors), computing (computation of actuation
signals), and actuating (writing to actuators) operations. The execution of these operations de�nes
the control task execution time and the sampling interval which are essential control design
parameters.

• Control task execution timeT : The control task does not execute instantaneously. Each of
its operations has a �nite execution time and the communication in the sensor-to-computing,
computing-to-actuating, and actuating-to-plant paths has also �nite execution time. This
results in an execution that begins with the sensing operation and terminates at the end of
the actuating operation, and it is denoted by T .
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• Sampling interval Sk : The sampling interval is de�ned as the time between two consecutive
sensing operations at samples k and k +1 and it is described by Sk = tk+1− tk , where k ∈ N≥1.
For the implementation we make sure that the sampling interval is longer than the control
task execution time T , i.e., Sk > T .

These concepts are illustrated in Figure 2. In this work, we limit the scope to the delay resulting
from the control task computation, since all the operations (i.e., sensing-computing-actuating)
are performed within the embedded platform. Our methods can further be generalised to include
the delay resulting from the communication between actuators-plant-sensors encountered in a
distributed system.

…

t

Plant …

control task

sensing operation

actuating operation

communication between operations

computing task

!"
" " + 1

%

&" '" &"+1

Fig. 2. Timing diagram of the control application.

4.2 Plant discretisation

The plant dynamics, described in Equation (1), are sampled at DT instances tk with sample index
k ∈ N≥1. Thus, the state of the plant can be described in DT as xk = x(tk ). Additionally, the
actuation signal is updated under a Zero-Order Hold (ZOH) actuating scheme as u(t) = uk for
t ∈ [tk +T , tk+1 +T ). The DT system dynamics (with time delay) can be represented by [Åström
and Wittenmark 1990],

xk+1 = σxk + βuk + γuk−1 (3)

with

σ = Φ(Sk ), β = Γ3(Sk ), γ = Γ2(Sk ),

where

Φ(τ ) = eACτ , Γ1(τ ) =

∫ τ

0

Φ(s)dsBC , Γ2(τ ) = Φ(τ −T )Γ1(T ), Γ3(τ ) = Γ1(τ −T ).

We de�ne the augmented system state

zk =
[
xk uk−1

] ′
(4)

obtaining the augmented higher-order system that can be written in a DT form

zk+1 = Âzk + B̂uk =

[
σ γ

0 0

]
zk +

[
β

I

]
uk (5)

yk = Ĉzk =
[
Cc 0

]
zk (6)

where I and 0 are the identity and zero matrices, respectively.

4.3 Control performance

The objective of the feedback control application is to control the continuous-time system described
in Equation (1) such that the output y(t) → r as t → ∞, where r is the constant input reference
signal. The time it takes for the system output y(t) to reach and stay in a close region (≤ 2%) around
the reference value r is the settling time.
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In this work, the control performance is measured in terms of the settling time achieved by a
controller, and we de�ne the Quality of Control (QoC) as the inverse of the settling time as follows

QoC =
1

settling time
, (7)

where a shorter settling time leads to a higher QoC. Note that the presented design �ows are not
restricted to any performancemetric and they can be used considering other performancemetrics. In
Section 8.4, we will consider settling time (i.e., QoC = 1/settling time) and Integral Time-Weighted
Absolute Error (ITAE) (i.e., QoC = 1/

∑
tk |yk − r |) metrics. However, since settling time has direct

implications on the real-time system behavior, we mainly focus on the results based on the settling
time.

4.4 Resource allocation and utilisation

Consider a TDM frame of size N slots, where the total TDM frame duration is given by N (ψ + ω)

seconds.
• Resource allocation: The periodic execution of the control application λC requires evenly
distributed allocated slots for an equidistant sampling. Considering the TDM frame of N
slots, they can be numbered as {0, 1, 2, · · · ,N − 1}. Thus, the resource allocation for λC is
given by a sequence A(λC ) = (a1,a2, · · · ,aM ), where ai ∈ {0, 1, 2, · · · ,N − 1}. The number
of slots allocated to λC is denoted byM = |A(λC )| withM ≤ N .M = 1 implies that only one
slot is allocated to λC and the allocation is periodic with period of N slots. For the cases with
M > 1, to ensure even distribution of slots, the following conditions are imposed,1

ai+1 > ai ∀ ai ∈ A(λC ), (8)

aM − aM−1 = aM−1 − aM−2 = · · · = a2 − a1 = a1 + N − aM , (9)

mod(N ,a2 − a1) = 0. (10)

where Equation (8) is given to de�ne the order of the slot allocation, such that each slot
allocation ai is followed by a slot allocated in the future ai+1, and not otherwise. Equation (9)
conditions the slots allocation to have a period aM − aM−1 = aM−1 − aM−2 = · · · = a2 − a1.
Also, the expression a1 + N − aM considers the period from the last allocated slot aM and the
�rst allocated slot a1 of the following TDM frame. Finally, the condition in Equation (10) is
given to guarantee that N is a multiple integer of the separation between two consecutive
allocated slots within the TDM frame and therefore to achieve periodic allocation.

• Resource utilisation: Utilisation is referred as the resource the control task of a control
application λC uses as a fraction of the total TDM frame. This is given by

U (λC ) = M
ET

N (ψ + ω)
100%. (11)

where E is the number of executions of the control task within ψ . E = 1 for SR sampling

(detailed in Section 5.1) and E = ⌊
ψ

T
⌋ for MR sampling (detailed in Sections 5.1 and 6.1). Note

that λC execution is not interrupted withinψ . λC is designed such that withinψ the control
task runs once or multiple times with execution time T .

In Figure 3, we show examples of resource allocation and utilisation for N = 4. Within the white
slots any application may run (e.g., multimedia application) but we focus on the blue slots where
λC executes. In the top of the �gure, we present examples of evenly distributed slots. Whereas
at the bottom of the �gure, we present an example of unevenly distributed slots. We detail these
examples (labeled from (a) to (e)) as follows:

1mod denotes the modulo operator.
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• In (a), when all the slots are used A(λC ) = {0, 1, 2, 3},M = 4, and the control task runs twice
withinψ , the resource utilisationU (λC ) = 4 2T

ψ+ω
100%.

• In (b and c), for allocations A(λC ) = {0, 2} and A(λC ) = {1, 3},M = 2, and when the control
task runs three times withinψ , the resource utilisationU (λC ) = 2 3T

ψ+ω
100%.

• Alternatively, in (d) a single slot can be allocated to λC with M = 1, and when the control
task runs only once withinψ ,U (λC ) =

T
ψ+ω

100%.
• In (e), we present an example of unevenly distributed slots allocated to λC , where A(λC ) =
{0, 1},M = 2, and the control task runs twice withinψ . From Equations (8-10), note that the
�rst and third conditions are met, meaning that the number of slots are correct. However,
the second condition is violated with a2 − a1 , a1 + N − a2, and the periodicity is violated by
not allocating evenly distributed slots.

Unevenly

distributed slots

Evenly 

distributed slots

TDM frame length! ѱ + $ = 4 ѱ + $

ѱ $

0 1 2 3 0

...M = 4

A(λC) = {0,1,2,3}

λC λC λC λC λC

T T T T T

M = 2

A(λC) = {0,2}

...

λC λC λC

...M = 2

A(λC) = {1,3}

λC λC

...M = 1

A(λC) = {0}

T T

λC λC

...M = 2

A(λC) = {0,1}

T T T

λC λC λC

Slots

other app. slot

CoMik slot

control app. slot

control task

T T

T T T

T T T

(a)

(b)

(c)

(d)

(e)

t

t

t

t

t

Fig. 3. Resource allocation examples for application λC , using a TDM frame with N = 4 slots. Top (a,b,c,d):

evenly distributed application slots. Bo�om (e): unevenly distributed application slots - this allocation is not

allowed in the remaining of the paper.

4.5 Platform-awareness and its constraints

We consider the TDM-based execution scheme in the CompSOC platform illustrated in Figure 1,
and the control task execution described in Section 4.1 and illustrated in Figure 2. These executions
give us the precise timing information that can be used in the design of the controller. This is what
we refer to as platform-awareness and to compare the SR andMR design �ows presented in this
paper, we have constrained the platform-awareness with the following conditions:

• The number of slots allocated to λC is constrained by the conditions in Equations (8-10). Such
an allocation allows us to directly compare the three design �ows, because it allows both SR

andMR sampling. It is important to notice that the allocation of slots forMR controllers is
not limited to evenly distributed slots but also contiguous and unevenly distributed allocation
of slots can be used, as presented in [Valencia et al. 2016], where contiguous allocation led to
a higher QoC.
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• The control task of λC always starts running at the beginning of the allocated application
slots and its operations (i.e., sensing, computing, actuating) execution do not spread across
multiple slots.

• Given λC , its control task runs E = 1 time for the SR design �ow and E = ⌊
ψ

T
⌋ times for

the MR design �ows within each of its allocated application slots. To that end, we con�gure

ψ ≥ ⌊
ψ

T
⌋T .

5 SINGLE-RATE DESIGN FLOW

In this section we present the platform-aware design �ow for feedback controllers whose execution
is based on a SR sampling scheme.

5.1 Single rate sampling

A SR sampling (equidistant sampling interval) scheme for λC is achieved by customising the platform
such that it meets the constraints de�ned in Section 4.5. Recall that for this type of sampling the
control task runs only once withinψ . Thus, the single rate sampling interval for λC with allocation
A(λC ), and a TDM frame with N ,M ,ψ , and ω is given by

hSR =
N

M
(ψ + ω). (12)

Let us consider an example where the TDM frame is comprised of N = 4 slots, and allocation
withM = 2 slots to λC (depicted in Figure 4). The SR sampling interval is hSR = 2(ψ + ω) seconds.
At k-th sample, the sampling interval is given by Sk = h

SR.

control task CoMik slot other app. slot

...
T

ℎ"
#$

λ&

T

ℎ"
#$

λ&

T

ℎ"
#$

λ&

', ) ', ) ', )

λ* λ*

control app. slot

TDM frame length + ѱ + . = 4 ѱ + .

Control task

Sampling interval

Feedback and 

feedforward gains

...

t

Fig. 4. SR platform-aware sampling scheme for λC with allocation A(λC ) = {0, 2}.

5.2 Control design

The design of the SR controller can be done with a classical model-based control methodology
[Kuo 1992] e.g., pole-placement or LQR.
Control law: The control law in this design design �ow is updated with a sampling interval hSR

and it is of the form

uk = Kzk + Fr when Sk = h
SR
, (13)

where K and F are the feedback and feedforward controllers, zk is de�ned as per Equation (4), and
r is the constant input reference signal.

Closed-loop system dynamics: Given the control law in Equation (13), the closed-loop system
dynamics are obtained by using the DT augmented higher-order system from Equation (5) as

zk+1 = (Â + B̂K)zk + B̂Fr . (14)
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Feedback control gain K : The feedback gain K is designed using the LQR methodology that
minimises the DT cost function

J =

∞∑

k=1

(z ′kQ̂zk + u
′
k R̂uk ) (15)

with Q̂ ≻ 0 and R̂ ≻ 0, the DT state and control weighting matrices of the LQR2. Having large
Q̂ compared to R̂ puts emphasis on making the state small possibly at the cost of large actuation
signals but potentially leading to a short settling time. By increasing R̂, large actuation signals
are penalised, typically leading to a slower response. In order to, minimise the settling time and
maximise the QoC as per Equation (7) an LQR tuning is used to �nd the values of Q̂ and R̂. In
this work, the PSO algorithm of [Medina et al. 2017] has been used. This algorithm explores the
tuning of the Q̂ and R̂ matrices as a parallel problem. It de�nes a swarm population composed of
a �nite number of individuals (i.e., random values that set the contents of the Q̂ and R̂ matrices).
Each individual moves according to a velocity that is determined in every iteration by a random
component, a personal best position of each individual, and a global best position of the swarm.
Thus, in each iteration the feedback control gain K is designed and the QoC of the controller is
evaluated.
Feedforward control gain F : The feedforward gain F is computed, for the closed-loop dynamic

described in Equation (14), by following the design in [Hellerstein et al. 2004].

5.3 Design flow

Wepropose the design �ow shown in Figure 53, which is comprised of seven parts. (i) λC requirement
on QoC and T shape the resource utilisationU (λC ). (ii) The platform settings (Section 3) and the
resource allocation (Section 4.5) can be derived from the targeted resource utilisation. (iii) From
there, the SR sampling interval is computed (Section 5.1). (iv) The feedback control gain K is
computed by using the PSO (Section 5.2). (v) The static feedforward control gain F is computed.
(vi) The requirement on QoC is evaluated and if it is met, the design �ow ends. (vii) If the QoC
requirement is not met, the feasibility of varying the resource utilisationU (λC ) is veri�ed. If the
resource utilisation can be modi�ed, one can either reallocate more slots to the application (i.e.,
increasing M as long it is M < (N − # of other applications running in the platform)) or change
platform settings (i.e.,ψ ,ω, N ), to derive new timings for the execution of λC (e.g., sampling interval
hSR). Otherwise, if the resource utilisation cannot be modi�ed, no feasible solution can be found
with this design �ow on this platform.

Example 5.1. Considering the con�guration ω = 40.96µs,ψ = 2.95904 ms, N = 10,M = 10, and

T = 0.99ms.U (λC ) = 33% with sampling interval hSR = 3 ms leading to a QoC = 66.67 [1/s].

6 MULTI-RATE LOCAL OPTIMAL DESIGN FLOW

In this section we present the platform-aware design �ow for feedback controllers whose execution
is based on a MR sampling scheme and their performance is optimised for their nominal sampling
interval.

6.1 MR sampling

A MR sampling (�nite and periodic sequence of non-equidistant sampling intervals) scheme for λC
is achieved by customising the platform such that it meets the constraints de�ned in Section 4.5.

Recall that for this type of sampling the control task runs ⌊ψ
T
⌋ times within ψ . For a given slot

2The inequality (ϑ ⪰ 0) ϑ ≻ 0 means that the matrix ϑ is symmetric and positive (semi-)de�nite.
3Note that there are manual and automated parts in all the design �ows of this paper. Manual parts that involve reallocation
and recon�guration comprise a new resource utilisation. Automated parts belong to one simulation program.
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Fig. 5. SR design flow. The control design is highlighted within the dashed box.

allocation within a TDM frame, λC executes according to a �nite and periodic sequence of sampling

intervals hMR
j where j ∈ {1, 2}. The sampling interval hMR

1 occurs ⌊ψ
T
⌋ − 1 times within each ψ ,

whereas hMR
2 occurs only once between two consecutive allocatedψ . The duration of both sampling

intervals is given by

hMR
1 ≥ T (16)

hMR
2 = hMR

1 +

(

ψ − ⌊
ψ

hMR
1

⌋hMR
1

)

+

(
N

M
− 1

)
ψ +

N

M
ω (17)

where the variation of T is very small (i.e., due to the interference-free characteristics of the
CompSOC platform) and T ≤ hMR

1 < ψ . hMR
2 is equal to the summation of the last hMR

1 sampling

interval withinψ , the remaining time withinψ that is given byψ − ⌊
ψ

hMR
1

⌋hMR
1 , and the time between

two consecutive allocated application slots that is given by
(
N
M

− 1
)
ψ + N

M
ω.

In Figure 6 we illustrate theMR sampling with an example where N = 4, M = 2, and A(λC ) =

{0, 2}. Within eachψ , the control task runs ⌊ψ
T
⌋ = 3 times. hMR

1 ≥ T and hMR
2 = hMR

1 +
(
ψ − 3hMR

1

)
+

ψ + 2ω. hMR
1 is the nominal sampling interval since it occurs more frequently, whereas is hMR

2 is the
longer and less frequently occurring sampling interval. At the k-th sample, the sampling interval is
given by Sk = h

MR, where hMR ∈ {hMR
1 ,h

MR
2 }.

6.2 Control design

The design of the MRLO controller exploits the frequent runs of the control task within ψ to
achieve a high performance. Essentially, we optimise the performance of an independent controller
designed for the nominal sampling interval hMR

1 using the SR design �ow detailed in Section 5. To
guarantee that the system is stable during runtime, when the system runs between the periodically
non-equidistant sampling intervals, we use a Lyapunov-based design that includes the controller
designed for hMR

1 in order to obtain the controller for the sampling interval hMR
2 .

Control law: The control law changes with the sampling intervals hMR
1 and hMR

2 , and it is given
by,

uj = Kjzk + Fjr when Sk = h
MR
j . (18)

Closed-loop system dynamics: The closed-loop dynamics depend on the sampling intervals
and the control law. It is obtained using the DT augmented higher-order system dynamics in
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Fig. 6. MR platform-aware sampling scheme for λC with A(λC ) = {0, 2}. The sampling intervals are hMR
1

and hMR
2 . For MRLO: The periodic sequence of non-equidistant sampling intervals along one TDM frame is

given by (hMR
1 ,h
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1 ,h
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2 ,h

MR
1 ,h

MR
1 ,h

MR
2 ). For MRGO Section 7.1: The periodic sequence of non-equidistant

sampling intervals is given by H = (hMR
1 ,h

MR
1 ,h

MR
2 ,h

MR
1 ,h

MR
1 ,h

MR
2 ).

Equation (5). With sampling interval hMR
j and the control law in Equation (18), the closed-loop

dynamics is given by,

zk+1 = (Âj + B̂jKj )zk + B̂jFjr (19)

where Âj and B̂j are the DT augmented system matrices for the sampling interval hMR
j .

Switching behaviour: The sampling intervals switch between hMR
1 and hMR

2 . Thus, the closed-

loop dynamics switch between the two systems (Â1 + B̂1K1)zk + B̂1F1r and (Â2 + B̂2K2)zk + B̂2F2r

according to the order of the periodic sequence of non-equidistant sampling intervals. Stability
of this switched system is governed by the feedback gains K1 and K2. Note that the feedforward
gains do not in�uence the stability of the overall system. Therefore, for the stability analysis, we
consider the system matrices, α1 = Â1 + B̂1K1 and α2 = Â2 + B̂2K2. For the example in Figure 6, the
switching sequence is given by α1 → α1 → α2 · · · .
Nominal sampling interval: The focus of this controller design �ow is to optimise the con-

troller QoC by locally optimising the performance of the control gain that is designed for the

nominal sampling interval. It is important to con�gureψ ≥ ⌊
ψ

T
⌋T , such that the control task runs

multiple times within ψ as depicted with the example in Figure 6, where ψ ≥ 3T leading to a

nominal sampling interval hMR
1 that is repeated ⌊

ψ

T
⌋ − 1 = 2 times withinψ .

Nominal feedback control gain K1: The nominal feedback control gain K1 is computed for
the nominal sampling interval hMR

1 , following the methodology described in Section 5.2.
Switching feedback control gain K2: To guarantee the stability of the overall system under

the switching behaviour explained above, we perform the DT Lyapunov stability test to �nd a
Common Quadratic Lyapunov Function (CQLF) P ∈ Rn×n , such that the LMIs P ≻ 0, α ′

1Pα1 −P ≺ 0,
and α ′

2Pα2 − P ≺ 0 are feasible. With these LMIs we evaluate the stability of the system as well as
compute the switching feedback control gain K2 using the following procedure. Firstly, by using
α1 and α2 on the LMIs, we solve for K2. However, this leads to non-linear matrix inequalities (i.e.,
leads to a term where K2 is multiplied by P ). To solve this, we rewrite the LMIs by using the Schur
complement [Crabtree and Haynsworth 1969] as follows,

[
−P (Â1 + B̂1K1)

′

(Â1 + B̂1K1) −P−1

]
≺ 0,

[
−P (Â2 + B̂2K2)

′

(Â2 + B̂2K2) −P−1

]
≺ 0. (20)
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To resolve the above non-linearity we use a variable substitution by de�ning Y = P−1, where
Y ∈ Rn×n , and we pre- and post-multiply by the linearisation operator diag(Y , I) to obtain4

[
−Y Y (Â1 + B̂1K1)

′

(Â1 + B̂1K1)Y −Y

]
≺ 0,

[
−Y YÂ′

2 + YK
′
2B̂

′
2

Â2Y + B̂2K2Y −Y

]
≺ 0. (21)

Finally, we de�ne

K2 =WY−1 (22)

whereW ∈ Rn . Thus, the LMIs are reformulated as
[

−Y Y (Â1 + B̂1K1)
′

(Â1 + B̂1K1)Y −Y

]
≺ 0,

[
−Y YÂ′

2 +W
′B̂′

2

Â2Y + B̂2W −Y

]
≺ 0, (23)

and if there exist matrices Y andW , the system is stable with the switching between the systems
α1, and α2, and K2 is given by Equation (22).

Feedforward control gains F1 and F2: The feedforward gains F1 and F2 are computed for the
closed-loop dynamics α1 and α2 following the design in [Hellerstein et al. 2004].

6.3 Design flow

We propose the design �ow shown in Figure 7, which is comprised of ten parts. (i) λC requirement
on QoC and T shape the resource utilisationU (λC ). (ii) The platform settings (Section 3) and the
resource allocation (Section 4.5) can be derived from the targeted resource utilisation. (iii) From
there, the MR sampling intervals are computed (Section 6.1). (iv) If it is feasible to design the
feedback control gain K1 the design �ow continues to part (v) or it goes to part (ii) otherwise (i.e., a
di�erent resource utilisation is selected to vary the nominal sampling interval). (v) The feedback
control gain K1 is computed by using the PSO (Section 5.2). (vi) Later, we evaluate the feasibility
of the LMIs to guarantee stability using K1 as per Equation (23). If the solution is infeasible, it
is necessary to modify the resource utilisation. That is, reallocate resources or change platform
settings to derive new timings for λC . (vii) If the solution is feasible, the feedback control gain K2 is
computed as per Equation (22). (viii) The static feedforward control gains F1 and F2, are computed.
(ix) The requirement on QoC is evaluated and if it is met, the design �ow ends. (x) If the QoC
requirement is not met, the feasibility of varying the resource utilisationU (λC ) is veri�ed. If the
resource utilisation can be modi�ed, one can either reallocate more slots to the application (i.e.,
increasing M as long it is M < (N − # of other applications running in the platform)) or change
platform settings (i.e.,ψ ,ω, N ), to derive new timings for the execution of λC (e.g., sampling interval
hMR
1 and hMR

2 ). Otherwise, if the resource utilisation cannot bet modi�ed, no solution can be found
with this design �ow on this platform.

Unlike the SR design �ow in Section 5.3, the control gains K1 and K2 cannot be freely designed.
Since K1 is optimised for performance, this might be an aggressive control gain that might lead to
an infeasible solution to compute K2.

Example 6.1. Condidering the same con�guration of Example 5.1: ω = 40.96µs,ψ = 2.95904 ms,

N = 10,M = 10, and T = 0.99ms.U (λC ) = 66% with sampling intervals hMR
1 = 1 ms and hMR

2 = 2 ms

leading to QoC = 142.86[1/s].

7 MULTI-RATE GLOBAL OPTIMAL DESIGN FLOW

In this section we present the platform-aware design �ow for feedback controllers whose execution
is based onMR sampling. Their design o�ers a stabilising solution that transforms the switching
MR system to a classic LQR control design problem, where heuristics are used to �nd the tuning
parameters of the LQR to achieve high QoC.

4diag(a,b,...) operator returns a diagonal matrix with the elements of the matrices a, b, ... are placed on the main diagonal.
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Fig. 7. MRLO design flow. The control design is highlighted within the dashed box.

7.1 MR sampling

A MR sampling (�nite and periodic sequence of non-equidistant sampling intervals) scheme for λC
is achieved by customising the platform such that it meets the constraints de�ned in Section 4.5.

Recall that for this type of sampling the control task runs ⌊
ψ

T
⌋ times within ψ , with �nite and

periodic sequence of sampling intervals hMR
j where j ∈ {1, 2}. This sequence is represented by the

tuple

H = (hMR
1 , · · · ,h

MR
1 ,h

MR
2 )

N

M , (24)

where the number of sampling intervals hMR
j in H is denoted by ρ = ⌊

ψ

T
⌋ N
M
. H (i) denotes the i-th

sampling interval in H , where 1 ≤ i ≤ ρ. In this tuple hMR
1 occurs ⌊ψ

T
⌋ − 1 times within each ψ ,

whereas hMR
2 occurs only once between two consecutive allocatedψ . The duration of both sampling

intervals can be calculated as per Equations (16) and (17) from Section 6.1.
In Figure 6 we illustrate the MR sampling with an example where N = 4,M = 2, A(λC ) = {0, 2},

and ρ = 6. Within each ψ , the control task executes ⌊ψ
T
⌋ = 3 times. Thus, hMR

1 > T and hMR
2 =

hMR
1 +

(
ψ − 3hMR

1

)
+ ψ + 2ω. The elements of the tuple are de�ned as H (1) = hMR

1 , H (2) = hMR
1 ,

H (3) = hMR
2 , H (4) = hMR

1 , H (5) = hMR
1 , and H (6) = hMR

2 . At the k-th sample, the sampling interval is
given by Sk = H (i).

7.2 Control design

The MRGO controller is designed to �nd a solution for the overall MR switched system to achieve
high performance. Our technique transforms the overallMR control design problem to the classical
LQR design by using a time-lifted reformulation.
Control law: The control law is given by,

ui = Kizk + Fir , (25)

where Ki and Fi are feedback and feedforward gains used when the sampling interval Sk = H (i).
Thus, there are ρ combinations of (Ki , Fi ). This is illustrated in Figure 6, where ρ = 6 combinations
of these control gains are used sequentially and according to the order of sampling intervals in the
tuple H .
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Closed-loop system dynamics: Closed-loop system considering the DT augmented higher-
order system dynamics in Equation (5) and control law in Equation (25) is given by,

zk+1 = (Âi + B̂iKi )zk + B̂iFir , (26)

where Âi = Â and B̂i = B̂ are the augmented state and input matrices for the sampling interval
Sk = H (i).

Switching behaviour: Since the sampling intervals periodically repeat according to the order
in H , the resulting DT system dynamics periodically switch between ρ closed-loop dynamics given
by Equation (26).

Control problem: Let us �rst de�ne the DT representation of the cost by

J =

∞∑

k=1

∫ tk+1

tk

[
x(s)

u(s)

] ′ [
Qc 0

0 Rc

] [
x(s)

u(s)

]
ds =

∞∑

k=1

z ′kQ̂izk + u
′
k R̂iuk , (27)

where Qc and Rc are the CT state and control weighting matrices, respectively. The DT state and
control weighting matrices are represented by Q̂i and R̂i , respectively [Valencia et al. 2016].
The control problem can now be formulated as follows: Given z1 = [x ′

1 u
′
0]

′

J⋆(z1) = min
{uk }

(J ) subject to system in Equation (5).

where this problem does not have a closed-form solution for arbitrary tk . However, on theCompSOC
platform, the sampling intervals occur in the periodic sequence H . Hence, the set of possible Âi

and B̂i can be pre-computed and result in a DT Linear Periodically Time-Varying (LPTV) system
for which the control problem can be solved using periodic Riccati equations.
Time-lifted Reformulation: For a DT-LPTV system with ρ sampling intervals, the dynamics

and cost have the periodicity property

X̂k+ρ = X̂k , X ∈ {Â, B̂, Q̂, R̂}.

With a TDM period index δ , the time-lifted reformulation [Bittanti and Colaneri 2008]

z(δ+1)ρ+1 = Ãzδ ρ+1 + B̃ūδ , δ ∈ N≥0, (28)

gives the dynamics over one TDM period, where5

Ã =

[
1∏

l=ρ

Âi

]
, B̃ =

[ [
2∏

l=ρ

Âi

]

B̂1

[
3∏

l=ρ

Âi

]

B̂2 · · · Âρ B̂ρ−1 B̂ρ

]

.

and the cost can be written as

J = lim
p→∞

p∑

δ=0

z̄ ′δ Q̄z̄δ + ū
′
δ R̄ūδ = lim

q→∞

q∑

δ=0

z ′δ ρ+1Q̃zδ ρ+1 + ū
′
δ R̃ūδ (29)

Q̃ = Ā′Q̄Ā, R̃ = R̄ + B̄′Q̄B̄

using the augmented variables

z̄δ =



zδ ρ+1
.
.
.

zδ ρ+ρ



, ūδ =



uδ ρ+1
.
.
.

uδ ρ+ρ



,

Q̄ = diag(Q̂i ),

R̄ = diag(R̂i ),

and using the dynamics within the TDM period

z̄δ = Āzδ ρ+1 + B̄ūδ , (30)

where

5
1∏

l=ρ
Ai denotes (for ρ ≥ 1) the multiplication AρAρ−1 · · ·A2A1.
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Ā =



I

Â1

Â2Â1

.

.

.

1∏
l=ρ−1

Âi



, B̄ =



0 · · · 0

B̂1 0 0

Â2B̂1 B̂2 0 0
.
.
.

. . .
. . .

.

.

.[
2∏

l=ρ−1

Âi

]

B̂1

[
3∏

l=ρ−1

Âi

]

B̂2 · · · B̂ρ−1 0



with l ∈ N[1,ρ].
Feedback control gains Ki : Note that the matrices (Ã, B̃, Q̃, R̃) in Equations Equation (28) and

Equation (29) do not depend on the TDM period index δ , i.e. they are time-invariant. The lifted
problem thus has the standard time-invariant DT LQR form which can be solved e�ciently. For
this lifted reformulation standard optimal control methods can �nd the optimal solution [Åström
1970; Bertsekas 2005]

J⋆(z1) = z ′1P̃z1, (31)

where P̃ is the unique positive de�nite solution to the Discrete-Time Algebraic Riccati Equation
(DARE)

P̃ = Ã′P̃Ã + Q̃ − (B̃′P̃Ã)′(R̃ + B̃′P̃ B̃)−1(B̃′P̃Ã).

Furthermore, V (z) = z ′P̃z is a Lyapunov function that ensures stability for the optimal control
actions

ūδ = K̃zδ ρ+1, (32)

K̃ = −(R̃ + B̃′P̃ B̃)−1(B̃′P̃Ã). (33)

This is the solution to the lifted problem over one TDM period, and can be transformed into a state
feedback for the original DT-Linear Time Variant (LTV) system described with Equation (25).
From Pρ+1 = P̃ , the solutions Pi can be found from the solution to the standard �nite horizon

Discrete-Time Dynamic Riccati Equation (DDRE)

Pi = Â′
iPi+1Âi + Q̂i − (B̂′

iPi+1Âi )
′(R̂i + B̂

′
iPi+1B̂i )

−1(B̂′
iPi+1Âi ),

which represents the Discrete-Time Periodic Riccati Equation (DPRE) when Pi+ρ = Pi [Varga 2008].
The feedback control gains Ki are computed by

Ki = −(R̂i + B̂
′
iPi+1B̂i )

−1(B̂′
iPi+1Âi ). (34)

Feedforward control gains Fi : The feedforward gains are computed for the closed-loop dy-
namic α(k,i) following the design in [Hellerstein et al. 2004].
Qc and Rc matrices initialisation: In this design �ow we have shown that the CT cost function

is translated into its DT equivalent. This cost function is further extended for the time-lifted
reformulation of the DT-LPTV representation of the system that switches between the sampling
intervals in H . This means that we need to initialise the CTQc and Rc matrices or the DT Q̂i and R̂i
matrices, and evaluate their impact on the QoC. To initialise the values of the Qc and Rc matrices,
we use a heuristic that consists of choosing the diagonal values of these matrices, such that the
control performance is optimised in DT. To improve the design �ow it would be necessary to
automate the optimisation of the Q̂i and R̂i matrices for higher QoC. However, this procedure it
not investigated in this work.
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7.3 Design flow

We propose the design �ow shown in Figure 8, which is comprised of seven parts. (i) λC requirement
on QoC and T shape the resource utilisationU (λC ). (ii) The platform settings (Section 3) and the
resource allocation (Section 4.5) can be derived from the targeted resource utilisation. (iii) From
there, the periodic sequence H of non-equidistant sampling intervals is computed (Section 7.1).
(iv) Thus, the feedback control gains Ki are computed as per Equation (34) following the design
in Section 6.2. (v) The static feedforward control gains Fi are computed. (vi) The requirement on
QoC is evaluated and if it is met, the design �ow ends. (vii) If the QoC requirement is not met,
the feasibility of varying the resource utilisationU (λC ) is veri�ed. If the resource utilisation can
be modi�ed, one can either reallocate more slots to the application (i.e., increasingM as long it is
M < (N − # of other applications running in the platform)) or change platform settings (i.e.,ψ , ω,
N ), to derive new timings for the execution of λC (e.g., sampling intervals hMR

1 and hMR
2 ). Otherwise,

if the resource utilisation cannot bet modi�ed, no solution can be found with this design �ow on
the platform.
Unlike the SR andMRLO design �ows in Sections 5.3 and 7.3, none of the control gains Ki can

be freely designed. In this particular design �ow, the design of the Ki gains are subjected to the
cost function in Equation (29).

Example 7.1. Condidering the same con�guration of Example 5.1: ω = 40.96µs,ψ = 2.95904 ms,

N = 10,M = 10, and T = 0.99ms.U (λC ) = 66% with sampling intervals hMR
1 = 1 ms and hMR

2 = 2 ms

leading to QoC = 250[1/s].

Given !" with # and requirements on QoC

Compute sequence of sampling intervals  $

Allocation: % !" Platform settings: &, ω, N

Requirements on QoC are met?

'(: feedforward control gains computation

NO

(i)
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)(: feedback control gains computation

Resource utilisation: * !"
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Is it feasible to increase * !" ?

(vii)

YES
QoC requirements are met

NO
No feasible solution found

Fig. 8. MRGO design flow. The control design is highlighted within the dashed box.

8 EXPERIMENTAL STUDY

In this section we present the experimental study we have carried out to evaluate the design �ows
presented in Sections 5 to 7. We will dive into details of the plant that we used, the MATLAB and
HIL experimets, the trade-o� analysis derived from two design considerations: QoC and U (λC ).
Moreover, we will evaluate the impact of the platform settings on QoC, and �nally we present
design guidelines.

8.1 Platform configuration

The allocation of slots to applications, N ,ψ , and ω, are de�ned at design time. ω is �xed at 40.96 µs,
whereas ψ is application dependent and we have set it up with values in the range of 3 − 30 ms
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for the experiments reported in this paper. The control task execution time is measured during
runtime and it is T = 0.99 ms.

The customisation of the platform settings has a strong in�uence on the control task execution
time. On the one hand, choosingψ = T only allows for the SR design �ow implementation because
the control task will execute once within ψ . This implies that if T is short, ψ will be also short.
Thus,ψ → ω, and therefore the resource utilisationU (λC ) goes down signi�cantly because more
resources will be used by the CoMik microkernel. On the other hand, choosingψ ≫ T allows for
both SR andMR design �ows implementation. If the SR design �ow is used in this scenario, the
resource utilsiation will decrease because the control task will run once withinψ and the remaining
available processing time within ψ will be unused. In essence, the SR design �ow has a lower
resource utilisation and this is where it falls short. To avoid this lower resource utilisation, we have
used MR design �ows. They use longerψ (i.e., to avoidψ → ω) andψ is used as much as possible

(i.e., ⌊ψ
T
⌋ times).

8.2 Setup: motion control system

We consider a motion control system that is composed of a mechanical setup, an electrical circuit for
actuation, and an embedded platform. The mechanical setup is composed of two masses connected
to each other by a �exible bar. The motor is connected directly to one of the masses, and two
encoders measure the rotation in each mass [Geelen et al. 2016]. The electrical circuit converts
the digital actuation signal to an analog input that is applied to the plant. An instance of the
CompSOC platform (depicted in Figure 1) where λC executes, is synthesised on a Xilinx ML605
Virtex6 FPGA-based development kit [Xilinx 2018].

The mechanical and electrical circuits are described with the CT LTI model from Equation (1),
where the state of the plant x(t) =

[
θ1 θ2 ω1 ω2

] ′
is composed of angular positions (θ1, θ2),

angular velocities (ω1, ω2), and the state and input matrices are de�ned by (adapted from the model
presented in [Geelen et al. 2016])

Ac =



0 0 1 0

0 0 0 1

−1.0886e+7 1.0886e+7 −1.9740e+3 1.4740e+3

1.0886e+7 −1.0886e+7 1.4740e+3 −1.9740e+3



, Bc =



0

0

997450

0



, Cc =



1

0

0

0



′

.

(35)

8.3 MATLAB and HIL experiments

8.3.1 MATLAB experiments. The MATLAB simulation is essential to verify the correct func-
tionality of the control gains that have been designed for the previously described design �ows.
This experiment consists of the following steps. (i) Control design of the feedback and feedforward
gains for the respective design �ow (i.e., SR,MRLO, orMRGO). (ii) Simulation of the DT system
by calculating the states at each sample k , where the states depend on the selected design �ow
(i.e., Equation (14) for SR, Equation (19) forMRLO, and Equation (26) forMRGO). (iii) Update the
sampling interval Sk at each sample k depending on the design �ow (i.e., Sk = h

SR for SR, Sk = h
MR

forMRLO, and Sk = H (i) for MRGO).

8.3.2 HIL experiments. The HIL experiment allows for the validation of the control design
�ows. These are validated by implementing the controller and emulating the plant dynamics on
independent processor tiles. Hence, there is an exchange of electrical signals between the controller
and the plant [Karpenko and Sepehri 2006; Ogan 2015; Palladino et al. 2009; Truong 2012]. We built
a HIL experiment using one instance of the CompSOC platform with the architecture shown in
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Figure 1. One processor tile runs the control application under a TDM-based execution scheme.
The other processor tile runs the DT plant dynamics at a high frequency (≫ T ) to emulate the CT
behaviour of the plant.

The HIL experiment can be divided in two parts. (i) Control application implementation, where
we simulate the sensing and actuating operations as read and write operations of the system states
and actuation signals to and from o�-chip memory locations. In between these operations the
computation of actuation signals (uk - Equation (13), u1,2 - Equation (18), and ui - Equation (25))
is done by using the control gains calculated o�-line by the design �ows described in Sections 5
to 7, respectively. (ii) The emulation of the CT plant dynamics is done by running the DT plant
dynamics of the plant at a very high frequency, with the DT dynamics (without time delay [Åström
and Wittenmark 1990]) of the plant represented by xk+1 = σxk +ηuk , where η = Γ1(τ ) and the state
of the plant is sampled at Sk = 100 µs.

8.3.3 MATLAB-HIL comparison. In Figure 9 we compare the MATLAB and HIL experiments,
with yMATLAB and yHIL the outputs, respectively. In these experiments the platform has been
con�gured with ψ = 5.95904 ms, N = 10 slots, and M = 1 slot. The design �ows compute the
following timing properties: hSR = 60 ms, and hMR

1 = 1 ms and hMR
2 = 56 ms. In Figure 9a the

comparisons of the simulation outputs is presented. In essence, the three design �ows have been
simulated and it can be seen the di�erence between SR (top plot) and MR (middle and bottom
plots) sampling (i.e., equidistant and non-equidistant samples). Note that both MATLAB and HIL

experiments show very similar results, which means that the implementation of such controller is
feasible for the studied motion system. In Figure 9b the absolute errors of the simulation outputs are
shown. The error for the SR design �ow (top plot) is very small due to the use of a single controller.
Finally, the error for theMR design �ows (middle and bottom plots) appears with the switching
between hMR

1 and hMR
2 but it does not exceed 4% with respect to the static reference signal that is

set to 0.05 radians (see Figure 9a). These results show that both type of experiments are closely
matching. In what follows, we focus on analysing the results and perform trade-o� analysis.
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Fig. 9. MATLAB and HIL experiments comparison for the DT system output yk .
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8.4 Trade-o� analysis: QoC andU (λC )

We run several experiments to evaluate the impact ofU (λC ) on the QoC for each design �ow. To
that end, we set the platform up with ω = 40.96 µs. We varied ψ = 2.95904, 4.95904, 5.95904 ms,
N = 1, 2, 6, 10 slots, andM = 1 slot orM = 10 slots with N = 10. In Figure 10, we compare the QoC
based on settling time (see Figure 10a) and ITAE (see Figure 10b) withU (λC ). As expected, it can be
seen that the trends depend on the selected metric. We explain further results using the QoC based
on the settling time (see Equation (7)). It can be seen, a common trend is the increase in QoC when
more resources are assigned to λC . One can also note that theMRLO andMRGO design �ows bring
high performance with at least ≈ 40% of the resources allocated to λC . Another interesting result is
that the QoC of the SR design �ow only reaches up to 25% of the resource utilisation. This is due to
the fact thatψ ≫ T . Thus, even when the TDM frame only has one application slot N = 1, a great
part ofψ is unused. This lower platform resource utilisation is one of the shortcomings of the SR
design �ow.
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Fig. 10. Comparison of the QoC with respect to the resource utilisationU (λC ) for each design flow.

8.5 Impact of platform se�ings

As presented in the design �ows, the platform settings can be recon�gured to meet design require-
ments. However, the CoMik slot duration ω can be considered to be limited by the implementation
(i.e., we run the hardware as fast as possible and minimise ω). Thus, we focus on the application
slot durationψ and the number of slots within the TDM frame N . We varied these settings for a
control task execution time T = 0.99 ms. In what follows, we only refer to Figure 11 for ease of
reading. Please refer to Table 2 to see the corresponding sampling intervals used in the presented
experiments in Figure 11.

• Application slot durationψ : In Figure 11a we present the results of the QoC in terms of
ψ values. The increase in ψ , leads to a QoC deterioration of the SR design �ow since the
sampling interval hSR increases. Similar results can be seen for the MRGO design �ow when
M = 1. The QoC in this case decreases with longerψ , due to the enlargement of the sampling
interval hMR

2 (29, 47 and 56ms for an increasingψ ) while hMR
1 does not change. WhenM = 10,

hMR
2 remains constant at 2 ms regardless ofψ . This leads to a fairly high and constant QoC,

since the sampling interval h2MR does not change signi�cantly. TheMRLO design �ow QoC
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shows a di�erent trend for which a longerψ improves the QoC. This is due to the fact that
the control task runs more often within ψ (2, 4, and 5 for an increasing ψ ). For the same
design �ow, the impact of increasingM to 10 slots is re�ected by an overall increase in the
QoC due to shorter sampling intervals hMR

1 = 1 ms and hMR
2 = 2 ms.

• TDM frame slots number N : In Figure 11b we present the results of the QoC in terms of
the frame slots nummber N , for a �xedM = 1, while varying N with 1, 2, 5, and 10 slots, and
varyingψ with 2.95904 and 5.95904 ms. For the SR design �ow, increasing N enlarges the
sampling interval hSR that leads to a QoC deterioration. For theMRLO design �ow we see
two scenarios for ψ = 2.95904 and 4.95904 ms. For the smaller ψ we notice that the QoC
decreases with larger values of N . This enlarges the TDM frame with more slots and make
the sampling interval hMR

2 longer (2, 5, 17, and 29 ms for an increasing N ) which negatively
in�uences the QoC. For the larger ψ , the controller manage to achieve the reference with
a high QoC regardless of N . This happens because the control task runs more frequently
withinψ , meaning that the controller can sample and control more frequently (with nominal
sampling interval and feedback control gain hMR

1 and K1, respectively). For MRGO design
�ow, the QoC presents two type of behaviours. The former one is given by a high QoC for
N = 1, 2 slots. This results from the short sampling intervals in those con�gurations. The
latter one is given by a decreasing QoC for N = 6, 10 slots, which is due to the increasing
sampling interval hMR

2 .
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Fig. 11. Impact ofψ and N to the system output for the SR,MRLO, andMRGO design flows. (a) Fixed N = 10

slots, variedψ with 2.95904, 4.95904 and 5.95904 ms, and variedM with 1 and 10 slots. (b) FixedM = 1 slot,

varied N with 1, 2, 6, and 10 slots, and variedψ with for 2.95904 and 5.95904 ms.

8.6 Design guidelines

One can notice that there is no optimal design �ow that guarantees fastest settling time and least
amount of resources. On the other hand, we see that each design �ow has its bene�ts and drawbacks
depending on the requirements and platform con�gurations. Therefore, we present the following
design guidelines that are illustrated in Figure 12 accompanied with Table 3.

• QoC and resource utilisationU (λC ): When resource utilisastion is low (below 25% which
further depends on the platform con�guration), SR andMRGO perform better thanMRLO.
When U (λC ) is in the range of 25% to 70%, both MRGO and MRLO can be used while MRGO

performs better. When U (λC ) is in the range of 70% to 80%, bothMRGO andMRLO can be
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Table 2. Sampling intervals for experiments presented in Figure 11. Top: Sampling intervals whenψ is varied

(Figure 11a). Bo�om: Sampling intervals when N is varied (Figure 11b).

ψ [ms] N [slots] M [slots] hSR [ms] hMR
1 [ms] hMR

2 [ms]

Sa
m
p
li
n
g
in

Fi
gu

re
11
a

295904 10 1 30 1 29
2.95904 10 10 3 1 2
4.95904 10 1 50 1 47
4.95904 10 10 5 1 2
5.95904 10 1 60 1 56
5.95904 10 10 6 1 2

Sa
m
p
li
n
g
in

Fi
gu

re
11
b

295904 1 1 3 1 2
2.95904 2 1 6 1 5
2.95904 6 1 18 1 17
2.95904 10 1 30 1 29
5.95904 1 1 6 1 2
5.95904 2 1 12 1 8
5.95904 6 1 36 1 32
5.95904 10 1 60 1 56

used while MRLO performs better. When U (λC ) > 80%, both MRGO and MRLO perform
equally good.

• Choice ofψ : For the SR design �ow, a smallerψ is always good. A largerψ is recommended
for MRLO for a high U (λC ). MRGO is less sensitive to the choice ψ while a smaller ψ is
recommended.

• Choice of N : A smaller N is good for all the three design �ows. However, a small N implies
less number of applications can be executed on the platform. Depending on the number of
other application that need to run on the platform, N should be chosen as small as possible.

MRLO

MRGO

SR

25% 70% > 80% U "#

$%&

Fig. 12. Design guidelines in terms of QoC andU (λC ).

9 CONCLUSIONS

We have presented three platform-aware control design �ows that have been validated, and com-
pared using MATLAB and Hardware-In-the-Loop (HIL) experiments. We have shown in our
experiments that each design �ow can be used depending on the requirements that are given on
the Quality of Control (QoC) and a targeted resource utilisation. Furthermore, we have shown
how the time precision o�ered by composable and predictable platforms can be exploited to design
Single-Rate (SR) and Multi-Rate (MR) control systems considering various design constraints. For
the future work, a multi-rate observer/estimator module will be designed to address the cases
where all states are not measurable. This is often the case in real-life physical systems.
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Table 3. Design guidelines in terms of the platform parameters.

Design �ow Choice ofψ Choice of N

SR Smallψ is always good
- Depends on application sharing
- Small is better

MRLO Largeψ is always good
- Depends on application sharing
- Small is better

MRGO
- Less sensitive toψ
- Small is recommended

- Depends on application sharing
- Small is better
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