
 1

 
 
 
 
 
 
 
 
 
 
 
 

Comparing protein abundance and mRNA expression levels on a genomic scale 
 
 
 
Dov Greenbaum1, Christopher Colangelo2,4, Kenneth Williams, 2.4, ‡ & Mark Gerstein2,3,‡ 
 

 
‡Co-corresponding authors  

 
 

1Department of Genetics, 
2Department of Molecular Biophysics & Biochemistry 

3Department of Computer Science 
4HHMI Biopolymer Laboratory and W. M. Keck Foundation  

Biotechnology Resource Laboratory 
Yale University 

P.O. Box 208114 
New Haven, CT 06520-8114, USA. 



 2

 
Abstract 
We survey methods used in determining protein abundance levels (divided into 2D-
electrophoresis and mass-spectrometry based methods) and recent attempts to 
correlate protein abundance and mRNA expression.  We discuss the results of these 
comparisons, focusing on yeast.  In the process we merge together much of the 
available yeast protein abundance data, and use this larger data set to find correlations 
between protein and mRNA expression data both globally, and in terms of smaller 
categories of proteins.   
(Supplemental information is available on http://bioinfo.mbb.yale.edu/expression/mrna-
v-protein/) 
 
 
Text 

 
Although some of the underlying technology for protein abundance quantification was 
introduced almost thirty years ago [1,2], there has recently been a significant increase in 
the development of new tools for determining protein abundance.  Concurrently, mRNA 
expression analysis tools are becoming more mainstream. The quantification of both of 
these populations is not an exercise in redundancy; measurements taken from mRNA 
and protein levels are complementary and are both necessary for a complete 
understanding of how the cell works [3].  Additionally, since mRNA is eventually 
translated into protein, one might assume that there should be some sort of correlation 
between the level of mRNA expression and that of protein abundance. Or there may not 
be any correlation. 
  
There are two commonly used high throughput methods for measuring mRNA 
expression, microarrays and Affymetrix chips, both have been extensively reviewed 
elsewhere[4-6]. There are also two basic methods for determining protein abundance: 
(i) those based on two dimensional electrophoresis (2DE), and (ii) mass spectrometric 
methods. We provide a succinct review of these technologies, and recent efforts to 
determine correlations between quantified protein abundances and mRNA expression. 
 
METHODS FOR DETERMINING PROTEIN LEVELS 
 
Two Dimensional Electrophoresis (2DE)  
 Determining relative protein expression by conventional 2DE requires isoelectric 
focusing, SDS-polyacrylamide gel electrophoresis, staining, fixing, densitometry, and 
careful matching of the same spots on two or more gels. Differentially expressed spots 
are then excised, enzymatically digested, and the resulting peptides identified using 
mass spectrometry.  An attractiveness of this approach is the low capital equipment 
cost, but a high level of expertise is needed to obtain reproducible gels and 2DE is 
generally limited to proteins that are neither too acidic, basic, or hydrophobic, and that 
are between 10-200 kDa. Additionally, this approach only detects proteins expressed at 
relatively high levels and that have long half-lives [7,8].  Using a 40µg yeast lysate, the 
average protein abundance detected was 51,200 copies/cell with no proteins detected 
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with abundances <1,000 copies/cell [8].  Since 1,500 spots were resolved on a 1.0 pH 
unit gel[8], several gels covering different pH ranges would be needed to resolve a 
whole cell lysate.  Given these limitations this technology has limited potential for large 
scale proteome analysis[8]. 
 2D Fluorescence difference gel electrophoresis (DIGE) utilizes mass- and 
charge-matched, spectrally resolvable fluorescent dyes (e.g., Cy3 and Cy5) to label two 
different protein samples in vitro prior to 2DE. Its main advantage over conventional 
2DE is that both the control and experimental sample are run in the same 
polyacrylamide gel. These samples are then imaged separately but can be perfectly 
overlaid without "warping". This substantially raises the confidence with which protein 
changes between samples can be detected and quantified.  Changes in relative level of 
protein expression may be detected that are as little as 1.2-fold for large volume 
spots[9].  Because detection is based on fluorescence, DIGE has a large dynamic range 
of about 10,000, which permits differential expression analysis of relatively low copy 
number proteins [9].  The limit of detection of DIGE for quantifying protein expression 
ratios is between 0.25 - 0.95 ng protein, which is similar to that for silver staining [9,10].   
In a recent study [11], the relative level of expression of ~1,050 protein spots was 
compared in 250,000 laser dissected normal versus esophageal carcinoma cells. This 
analysis identified 58 spots that were up-regulated by >3-fold and 107 that were down-
regulated by >3-fold in cancer cells. 
 
Mass Spectrometric Approaches to Protein Profiling  
 Peptide/protein Disease Biomarker Discovery. Current approaches involve batch 
chromatography, matrix assisted laser desorption ionization mass spectrometry 
(MALDI-MS) and statistical analysis of large numbers of disease versus normal serum 
or other biological samples. Most recent studies have relied on surface enhanced laser 
desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS)[12,13]. The 
SELDI approach[13]  involves using a gold coated chip with eight or sixteen 2 mm spots 
that are modified with chromatographic surfaces (e.g., anionic, cationic, hydrophobic, 
etc).  After spotting a few microliters of serum, contaminants and salt are removed by 
washing with water, and the target dried by adding a MALDI matrix solution like α-
cyano-4-hydroxy-cinnamic acid. In a study by Petricoin et al [14] SELDI-MS analysis of 
serum from 50 control and 50 case samples from patients with ovarian cancer resulted 
in identifying 5 peptide biomarkers that ranged in size from 534 to 2,465 Da. The pattern 
formed by these markers was then used to correctly classify all 50 ovarian cancer 
samples in a masked set of serum samples from 116 patients who included 50 patients 
with ovarian cancer and 66 unaffected women.  Similar promising results have been 
reported in studies of serum samples from breast and prostrate cancer patients. ( Li et 
al [15] and Adam et al[12])  While powerful, it does not, however, provide accurate 
relative amounts of the control versus experimental biomarker - only the relative 
intensity difference 
  
 Isotope coded affinity tag (ICAT)-based protein profiling. While both MALDI-MS 
based disease biomarker discovery and DIGE comparatively profile the naturally 
occurring forms of peptides and proteins, ICAT analysis profiles the relative amounts of 
cysteine-containing peptides derived from tryptic digests of protein extracts.  Since only 



 4

a single tryptic peptide is needed to quantify the expression of the corresponding parent 
protein, the ICAT reagent utilizes a thiol protein reactive group that attaches both a 
biotin tag and either nine C12 (light) or nine C13 (heavy) atoms to each cysteine 
residue. Following derivatization of the control protein extract with [12C]-ICAT reagent 
and the experimental extract with the [13C]-ICAT reagent, the pooled samples are 
subjected to trypsin digestion followed by cation exchange chromatography. LC/MS/MS 
analysis is then used to identify ICAT peptide pairs and to quantify the relative 
[12C]/[13C] ratios. It is important to note that the ICAT approach provides the relative 
expression ratios of individual proteins. It does not provide absolute protein 
concentrations nor does it provide the ratio of the concentrations of one protein to 
another.  A nice feature of this approach is that the in vitro incorporation of a stable 
isotope into one of the two samples being compared obviates the need to analyze by 
MS the control and experimental samples separately.  While a tryptic digest of a whole 
cell human protein extract might produce >500,000 peptides, less than 100,000 of these 
might be expected to contain cysteine.  Based on a search of the Swiss Database, <5% 
of human proteins lack cysteine and would be missed.  
  
The resulting ICAT data is analogous to that obtained by the use of two different 
fluorescent dyes in DNA microarray analysis of mRNA or DIGE analysis of protein 
expression.  The largest number of proteins profiled by this approach from a single 
sample are the 491 proteins contained in microsomal fractions of naïve and in vitro 
differentiated human myeloid leukemia cells[16].  
 
Multidimensional protein identification technology (MudPit) is similar to ICAT in that it 
utilizes cation exchange prefractionation followed by reverse phase (RP) HPLC 
separation and MS/MS analysis[17].  In contrast to the ICAT approach,  MudPit 
technology analyzes the entire mixture of tryptically digested proteins and utilizes 
tandemly coupled (cation exchange followed by reverse phase) columns. A specific 
sub-set of peptides is eluted from the cation exchange column using a step gradient of 
increasing salt concentration onto the front of the RP column.  Peptides are then eluted 
from the RP column and enter the mass spectrometer for analysis.  After the RP 
gradient is complete, the next step of the salt gradient releases another sub-set of 
peptides from the cation exchange column onto the RP column and the process repeats 
itself.  Using this approach on the yeast proteome, Wolters et al[11,18] identified 5,540 
unique peptides from 1,484 proteins and demonstrated a dynamic range of detection of 
10,000. This method has been extended to comparative protein profiling by using in vivo 
N14/N15 metabolic labeling[18,19]  In Washburn et. al[18], S. cerevisiae was grown in 
both 14N and 15N minimal media and then 2,264 peptides and 872 proteins were 
uniquely identified. Also, accurate 14N/15N quantitation was determined for each peptide 
with an average standard deviation of 30%.  
 
COMPARISON OF MRNA AND PROTEIN LEVELS 
 
Even with these significant developments in the technologies used to quantify protein 
abundance over the past couple years, protein identification and quantification still lags 
behind the high throughput experimental techniques used to determine mRNA 
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expression values.  Yet, while mRNA expression values have shown their usefulness in 
a broad range of applications, including diagnosis  and classification of cancers  [20,21], 
these results are almost certainly only correlative, rather than causative; in the end it is, 
most probably, the concentration of proteins and their interactions that are the true 
causative forces in the cell, and it’s the corresponding protein quantities that we ought 
to be looking at. 
 
Primarily due to the limited ability to measure protein abundances, researchers have 
tried to find correlations between mRNA and protein expression in the hope that they 
could determine protein abundance levels from the more copious mRNA experiments. 
Alternatively, if there is definitively no correlation between mRNA and protein data, both 
quantities can be used as independent sources of information in machine learning 
algorithms.   
 
To date, there have been only a handful of efforts to find correlations between mRNA 
and protein expression levels, most notably in human cancers and yeast cells; for the 
most part, they have reported only minimal and limited correlations.  
 
One of the earliest analyses on correlation looked at 19 proteins in the human liver. 
Anderson et al[22] found a somewhat positive correlation of 0.48.  Another limited 
analysis of three genes MMp-2, MNP-9 and TIMP-1 in human prostate cancers showed 
no significant relationship [23].  An additional cancer study [24] showed a significant 
correlation in only a small subset of the proteins studied .  Conversely, Orntoft et al [25] 
found highly significant correlations in human carcinomas when looking at changes in 
mRNA and protein expression levels 
 
Protein and mRNA correlations in Yeast 
Many of the present efforts in correlating mRNA and protein expression have been 
conducted in yeast using two dimensional electrophoresis techniques, in particular:  
2DE-1: Gygi et al [7] found that even similar mRNA expression levels could have a wide 
range (up to 20 fold difference) of protein abundance levels and vice versa.  
2DE-2: These results contrast with Futcher et al's [26] relatively high levels of 
correlations (r = 0.76) after transforming the data to normal distributions.    
Merged data set-1: In a previous analysis, we merged the data from both of these 2DE 
datasets, comparing this new larger protein abundance set with a comprehensive 
mRNA expression data set. This mRNA expression reference set was constructed 
through iteratively combining, in a non-trivial fashion, three Affymetrix sets and a SAGE 
dataset [27].  Using these new reference data sets, we were able to do an all-against-all 
comparison of mRNA and protein expression levels in addition to a number of analyses 
comparing protein and mRNA expression using smaller, but broad categories [27,28]. 
 
Given the difficult, laborious, and limiting nature of 2DE analysis, much of the newer 
protein abundance determinations have been done using the MudPit and derivative 
technologies.  One caveat: Mudpit data on its own, is semi-quantitative in that the 
number of peptides determined is relative to the actual protein abundance within the 
cell[29]. 
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MudPit-1:  Washburn et al[29] used MUDPIT to analyze and detect 1484 arbitrary 
proteins- i.e. they were able to detect a somewhat random sampling of proteins 
independent of their abundance, localization, size or hydrophobicity.  In a further 
experiment the authors, comparing expression ratios for both proteins and mRNA 
levels, found that although they could not find correlations for individual loci, they could 
find overall correlations when looking at pathways and complexes of proteins that 
functioned together [19]. 
MudPit-2: Peng et al [30]  analyzed 1504 yeast proteins with a false positive rate -
misidentification of a protein- of less than 1%.  In their analysis they contrasted their 
methodology with that of Washburn et al with which there was significant overlap. 
 
New Merged Dataset: Merged data set-2 
 
Expanding upon our previous merged data set, we constructed a new merged data set 
using the two 2DE and two Mudpit data sets presented above.  Succinctly (more 
information is available on our web site: http://bioinfo.mbb.yale.edu/expression/mrna-v-
protein/), we transformed each of the protein abundance data sets into more 
quantitative data via fitting them individually onto the reference mRNA expression data 
set.  The Mudpit-1 dataset was also fit onto the more finely-grained Mudpit-2 dataset. 
Each of the new, fitted datasets was then inversely transformed back into protein space.  
These datasets were then combined into a larger reference data set; when we had 
more than one abundance value for an ORF, we chose the value from the dataset 
according to a proscribed quality-ranking (see figure 1 caption). The resulting set 
contained protein abundance for ~2000 ORFs.  (Although some may argue that the less 
quantitative nature of some of the MudPit data should not be used to compare with the 
mRNA data, we feel that the merging process creates a more quantitative and 
representative data set.) Using this data we could compare, globally, mRNA expression 
and protein abundance (Figure 1a) as well as looking at smaller, broad, categories -i.e. 
functional categories or localization (See Figure 1b,c).  In particular, we show that some 
localization categories, e.g. the nucleolus, have significantly higher correlations than the 
global correlation.  Other localizations may present less of a correlation between mRNA 
and protein data, e.g. the mitochondria, possibly reflecting the heterogeneous nature 
and function of the organelle.  In terms of MIPS functional categories, we show that 
while some categories, such as cell rescue, show a lower correlation than the whole 
merged set, other functional categories, such as cell cycle, show a significant increase 
in correlation.  Logically, this increased correlation reflects the co-regulated nature of 
the proteins in this functional category. 
 
 
Reasons for the absence of correlation 
 
There are presumably at least three reasons, for the poor correlations generally 
reported in the literature for the level of mRNA versus protein expression – they may not 
be mutually exclusive: (i) there are many complicated and varied post translational 
mechanisms that are involved in turning mRNA into protein that are not yet sufficiently 
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well defined to be able to compute protein concentrations from mRNA; (ii) proteins may 
differ substantially in their in vivo half lives; and/or (iii) there is a significant amount of 
error and noise in both protein and mRNA experiments that limit our ability to get a clear 
picture [31,32]. 
 
Examining the first option that there are a number of complex steps between 
transcription and translation, we looked at correlations between mRNA and protein 
abundance for those ORFs that had varied or steady levels of mRNA expression over 
the course of the cell cycle [33].  To normalize for the varied degrees of expression for 
different ORFs, we took the standard deviation divided by the average expression level  
as representative of the variation of each ORF over the course of the yeast cell cycle. 
(Figure 2) 
 
Broadly, the cell can control the levels of protein at the transcriptional level and/or at the 
translational level.  Logically, we would assume that those ORFs that show a large 
degree of variation in their expression are controlled at the transcriptional level – the 
variability of the mRNA expression is indicative of the cell controlling mRNA expression 
at different points of the cell cycle to achieve the resulting and desired protein levels.  
Thus we would expect, and we found (r= 0.89), a high degree of correlation between the 
mRNA and protein levels for these particular ORFs; the cell has already put significant 
energy into dictating the final level of protein through tightly controlling the mRNA 
expression, we assume that there would then be minimal control at the protein level.  In 
contrast, those genes that show minimal variation in their mRNA expression throughout 
the cell cycle are more likely to have little if no correlation with the final protein level; the 
cell would be controlling these ORFs at the translational and/or post-translational level, 
with the mRNA levels being somewhat independent of the final protein concentration. 
We found only minimal correlation between protein and mRNA expression for these 
ORFs (r = 0.2)   
 
Further, we found that those ORFs that have higher than average levels of occupancy, 
that is that a large percentage of their cellular mRNA concentration is associated with 
ribosomes (i.e. being translated), have well correlated mRNA and protein expression 
levels. (Figure 2) These cases probably represent a situation wherein the cell, having 
significantly controlled the mRNA expression to produce a specific level of protein, will 
probably not employ mechanisms to control the translation. Alternatively, those proteins 
that have very low occupancy rates have uncorrelated mRNA and protein expression; 
thus, given that the cell has not controlled the mRNA expression, it will dictate the 
resulting protein levels through rigorous controls on the translation (i.e. through tight 
limits on occupancy) of these genes[34]. 
 
A second option responsible for a general lack of correlation between mRNA and 
protein abundance may be the result of varied protein synthesis and degradation. 
Protein turnover can vary significantly depending on a number of different 
conditions[35]; the cell can control the protein level in the cell through the rates of 
degradation or synthesis for a given protein.  There is significant heterogeneity even 
within similar functioning proteins[36].     
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Recent efforts have been made to computationally measure these rates[37].  
Simplistically it can be presumed that the change in a protein’s concentration over time 
will be equal to the rate of translation minus the rate of degradation. Similar to concepts 
in chemical kinetics, we can approximate this equation: dP(i,t)/dt = SE(i,t) - DP(i,t), 
where P is protein abundance i at time t, E is the mRNA expression level of protein P, S 
is a general rate of protein synthesis per mRNA, and D is a general rate of protein 
degradation per protein[37].   Additionally there are some experimental methods that 
can also be used to measure turnover and translational control of protein levels[36-39]. 
 
Due to degenerate nature of the genetic code, there are many synonymous codons, i.e. 
they translate into the same amino acid.  Given that the cell is biased in its usage of 
synonymous codons (i.e. the usage of a subset of codons results in a higher level of 
mRNA expression possibly due to cellular tRNA levels[40]),  the Codon Adaptation 
Index (CAI), a measurement of codon usage, can be used to predict the expression of a 
gene[41] (new parameters for this model were recently calculated with some 
improvement in predictive strength [42]).   It is thought that the CAI will correlate 
differently with mRNA levels than with protein abundance levels due, partially, to protein 
turnover rates [43]. Ranking the ORFs in terms of their CAI, we found that those ORFs 
in that ranked the highest in terms of CAI, while not showing a very strong correlation 
between mRNA and protein levels, still showed a significantly higher correlation than 
the ORFs that were ranked as having the lower  CAI values (r = 0.48 v 0.02).  The low 
correlations reflect the fact that CAI will correlate differently for protein and mRNA 
values because of the additional cellular controls on protein translation, i.e. the affect of 
protein turnover rates.  Still, the sizable difference in correlations between the two 
groups of high and low ranking CAI values (Figure 2) shows that there is some 
relationship between mRNA and protein values, possibly indicating that highly 
expressed genes tend to result in a more correlated level of protein abundance than 
more lowly expressed ones. 
 
Correlations have been found between the mRNA expression of different protein 
subunits within protein complexes[44].  This implies that there should be, in practice, a 
correlation between mRNA and protein abundance, as these subunits also have to be 
available in stoichiometric amounts of proteins for the complexes to function.  Thus, we 
believe that a major limitation to finding correlations is the degree of natural and 
manufactured systematic noise in mRNA and protein expression experiments. There is 
a continued effort to both describe and reduce this noise [45].  Meanwhile, in an attempt 
to get around the noise one could look at broad categories of proteins (e.g. groups 
defined by function, structure, or localization) such that the background noise is 
cancelled out to some degree, to discover correlations[27]. 
 
While proteomics is still in its infancy - given the pace of technological advancement in 
protein quantification, mRNA expression analysis and noise reduction- more 
comprehensive correlation studies will soon be feasible.  This will allow for more robust 
analyses of the relationship between mRNA expression and protein abundance values. 
Finally, to be fully able to understand the relationship between mRNA and protein 
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abundances, the dynamic processes of synthesis and degradation of transcripts has to 
be better understood; is the protein level changing because of a change in transcript 
syntheses, degradation, or protein turnover?  These questions need to be looked into 
further before we can appreciate the relationship between mRNA and protein. 
 
Figure 1a shows an XY plot comparing our mRNA reference expression set[27]  with a  
newly compiled protein abundance data set.  This data set is the result of iteratively 
fitting 2 MudPit data sets,  (MudPit 1[30] and MudPit 2[29]) and two 2 Dimensional 
Electrophoresis data sets (2DE1[7] and 2DE2[26]).  Given the semi quantitative nature 
of the Mudpit data[29], we transformed the data into a more quantitative set via fitting 
each set individually onto our reference mRNA expression data set.  In addition, we fit 
the Mudpit-1 dataset onto the more finely-grained MudPit-2 data set.  Each of the 
datasets was then moved back into ‘protein space’ using an inverse transformation.  
This inverse transformation was derived from the 2DE-1 set, as this set has the most 
precise values.  These data sets were then combined into the new reference 
abundance data set.  In cases where there were overlapping values for a given ORF we 
used the data set in accord with the following ordering: 2DE-1, 2DE-2, Mudpit-2, Mudpit-
1.  The resulting reference protein abundance  set  (N = 2044) had a correlation of 0.66 
with the mRNA reference data set.   
 
 
Figure 1B,C Additionally, we show that when looking at specific subsets, (i.e. 
subcellular localization[46] or functional groups[47]) we can find both higher and lower 
correlations amongst these groups.   The lower correlations are generally reflective of a 
more heterogeneous category.  This analysis indicates that while correlations may be 
weak when looking at the global data, we tend to find higher correlations when looking 
at smaller well-defined subsets of ORFs. 
 
Figure 2 shows the differences in correlation between mRNA and protein expression 
values using novel categories.  In particular, we see significant differences when looking 
at the highest and lowest ranking of groups of ORFs in the following categories: 
Occupancy, CAI and Variability.  Occupancy refers to the percentage of transcripts 
associated with ribosomes; we compared the correlation between the top 100 ORFs in 
terms of occupancy and the bottom 100. (0.78 vs. 0.30)  For the CAI, the codon 
adaptation index, we compared the correlation between mRNA and protein for those 
ORFs with the highest CAI and those with the lowest (0.48 vs. 0.02).  Variability refers 
to the normalized standard deviation (i.e. standard deviation divided by average 
expression level) for all the ORFs as measured by the Cho et al cell cycle expression 
data set [33]. Here we compared the correlations between protein abundance and 
mRNA expression for the most variable compared with the least variable proteins (0.89 
vs. 0.20).  We found significant differences between the correlations of mRNA and 
protein levels for the top and bottom ranking populations for each of the comparisons. 
 
Acknowledgments. This project has been funded in part with Federal funds from the 
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No. N01-HV-28186.
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Table 1: Overview of Selected Protein Profiling Technologies 
 

Technology Type of 
Labeling 

Required?  

Ability to Detect 
Many Post-
translational 
Modifications 

Biomolecules that 
are Optimally 

Quantified 

Approximate 
Dynamic Range 

Number of 
Proteins/Spots 

Quantified 

2D Gel 
Electrophoresis silver staining Yes 10[9] 1,500[8] 

Differential 2D 
Fluorescence Gel 
Electrophoresis 

(DIGE) 

in vitro with Cy-
2,3 or 5 

fluorophores at 
primary amines 

yes 

naturally occurring 
forms of >10 kD 

proteins 10,000[9] 1,100[48] 

SELDI or MALDI-
MS Disease 
Biomarker 
Discovery 

None yes 
naturally occurring 
forms of <10 kD 

proteins 
25 not applicable 

Isotope Coded 
Affinity Tag (ICAT) 

- LC/MS 

in vitro with 
H1/D or C12/C13 
ICAT reagent at 

cysteine  

no 

cysteine-containing 
tryptic peptides from 

digests of protein 
extracts 

10,000a 496[16] 

N14/N15 - LC/MS 
in vivo at  

nitrogens in   
amino acids 

yes 
tryptic peptides from 

digests of protein 
extracts 

10,000[17] 872[18] 

a Assumed to be similar to that for multidimensional protein identification.
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