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Abstract

The gene regulatory network (GRN) reveals the regulatory relationships among genes and can provide a systematic
understanding of molecular mechanisms underlying biological processes. The importance of computer simulations in
understanding cellular processes is now widely accepted; a variety of algorithms have been developed to study these
biological networks. The goal of this study is to provide a comprehensive evaluation and a practical guide to aid in choosing
statistical methods for constructing large scale GRNs. Using both simulation studies and a real application in E. coli data, we
compare different methods in terms of sensitivity and specificity in identifying the true connections and the hub genes, the
ease of use, and computational speed. Our results show that these algorithms performed reasonably well, and each method
has its own advantages: (1) GeneNet, WGCNA (Weighted Correlation Network Analysis), and ARACNE (Algorithm for the
Reconstruction of Accurate Cellular Networks) performed well in constructing the global network structure; (2) GeneNet and
SPACE (Sparse PArtial Correlation Estimation) performed well in identifying a few connections with high specificity.
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Introduction

Gene regulatory networks describe interactions among genes

and how they work together to form modules to carry out cell

functions. GRNs provide a systematic understanding of molecular

mechanisms underlying biological processes [1–6]; the visualiza-

tion of direct dependencies facilitates systematic interpretation and

comprehension of the relationships among genes. In the GRN,

genes that interact with many other genes are called hub genes.

The hub genes are likely to be drivers of the disease status due to

their key positions in the GRNs. Recently, analysis of hub genes

has shown to be a promising approach in identifying key

tumorigenic genes [7–10].

Gene expression microarrays monitor the transcription activities

of thousands of genes simultaneously, which provides great

opportunities to explore large scale regulatory networks. Genetic

dependency graphs can and have been constructed through a

variety of approaches. Four categories of statistical methods have

been proposed to construct the GRN from gene expression

microarray data: (1) Probabilistic networks-based approaches,

mainly Bayesian networks (BN), (2) correlation-based methods, (3)

partial-correlation-based methods, and (4) Information-theory-

based methods. We give the detailed description of each type in

the Methods section.

In this paper, we compared several statistical methods for

constructing GRNs. Our goal is to provide a comprehensive

evaluation and a practical guide to help investigators choose

between different methods for constructing large scale GRNs. The

main contributions of this paper include: (1) The performance on

constructing large scale GRNs is compared with a wide range of

sample sizes and numbers of genes in the network; (2) The

performance of identifying correct hub genes, which are likely to

be the disease driver genes, is compared among different methods;

(3) In addition to previously reviewed methods (Bayesian Networks

[11] and GeneNet [12]), three recently developed programs

(Sparse PArtial Correlation Estimation (SPACE) [13], Weighted

Correlation Network Analysis (WGCNA) [14], and ARACNE

(Algorithm for the Reconstruction of Accurate Cellular Networks)

[15,16]) are included in the comparison.

In this study, we are interested not only in comparing the

performances of various network construction methods, but also in

how the number of microarray experiments affects the accuracy of

the constructed network. In the simulation study, we simulated

different numbers of microarray experiments for each simulation

setting to study the effect of sample size on the performance of

various methods.

Methods

Statistical Methods
Here we give a brief summary of four categories of GRN

construction approaches; the detailed methodology for each

approach has been described in other papers [11–13,17–19].

For fair comparisons, the default parameters were used for each

algorithm without additional tuning. We have provided Sweave

documents to accompany this study as shown in Sweave S1;
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Sweave is a literate programming framework which combines the

source code (in R) and documentation (in LaTeX) in one file, to

facilitate the reproduction of our results.

Correlation-based methods [14,17,20] are the most straightfor-

ward way to explore the gene co-expression network. They usually

define a gene co-expression similarity matrix S~½si,j �, where si,j is
the pair-wise transcription correlation coefficients between genes i

and j, and S is the correlation matrix. Then either a hard [21] or

soft threshold [14,17] is applied to si,j to determine the biological

meaningfulness of the connections. These co-expression-based

methods have been used in several studies and have shown their

usefulness in interpreting biological results and identifying

important gene modules [6,20,22–24]. WGCNA is a relatively

new statistical approach based on correlations and has been used

to identify several novel disease-related genes. Therefore, we will

use WGCNA as a representative method for the correlation-based

approach. The WGCNA R package implements both weighted

and unweighted correlation networks and identifies modules/sub-

networks using hierarchical clustering approaches. Aside from the

functions for network construction and module/sub-network

identification, the R package also provides functions for calculat-

ing topological properties and network visualization [14].

Furthermore, the WGCNA R package includes interfaces with

several commonly used bioinformatics tools for network visuali-

zation (e.g. VisANT [25] and Cytoscape [26]) and enrichment

analysis (e.g. DAVID [27]). The WGCNA method has been

successfully applied in several studies [28–31].

Partial-correlation-based methods are based on Gaussian graphic

model [32] theory. They infer the conditional dependency by the

non-zero entries in the concentration matrix, C~½ci,j �~S{1, also

called the precision matrix, which is the inverse of covariance matrix.

The zero entries ci,j~0 in the concentrationmatrix imply conditional

independency between the expression levels of gene i and j given the

expression of all other genes; in other words, two genes do not interact

directly with each other. Two recently published methods: SPACE

[13] and GeneNet [12] will be used to represent partial-correlation-

based methods. GeneNet uses Moore-Penrose pseudoinverse [33]

and bootstrap methods to obtain a shrunk estimate of the

concentration matrix. The SPACE algorithm converts the concen-

tration matrix estimation problem to a regression problem and

optimizes the results with a symmetric constraint and an L1

penalization. Therefore, SPACE tends to get more globally optimized

results when compared to GeneNet. In this study, the partial

correlation referred to first order partial correlation.

Information-theory-based methods, such as ARACNE, use

mutual information (MI) to determine the dependency among the

genes and then remove indirect interactions using data processing

inequality (DPI). ARACNE has been successfully applied to

construct gene regulatory networks in the context of specific

cellular types, and demonstrated good performance. Since the

calculation of mutual information does not assume a monotonic

relationship, an advantage of information-theory-based methods is

the ability to identify the non-linear or irregular dependencies,

which will be missed by Pearson correlation. Therefore, the

information-theory-based methods could out-perform correlation-

based methods if the gene network contains many non-monotonic

dependencies.

Probabilistic networks take a wholly different approach by

attempting to search through the space of all the possible

topological network arrangements given certain constraints. BNs

are based on a probabilistic graphical model that represents a set

of variables and their probabilistic independencies and are

applicable to many areas in science and technology [34]. The

probabilistic nature of BNs allows them to handle noise inherent in

both biological processes and microarray experiments. The gene

expression profiles could provide a complete joint distribution of

gene expression levels, while a BN expands the joint probability in

terms of simpler conditional probabilities. In our study, we have

applied BNArray [35], B-course [36], BNT [37], and Werhli’s

implementation of BN [11]. BNArray does not run appropriately

in our computation settings. Werhli’s implementation of BN

uniformly outperformed others, which is probably due to the fact

that Werhli’s method is specifically developed for constructing

GRNs, while BNT and B-course are designed for general use. So,

in this study, Werhli’s BN implementation was used to represent

the best performance of BN methods. The statistical methods used

in this study, as well as their inference categories and implemen-

tation platforms are summarized in Table 1.

Performance Metrics
Some types of networks require that connections be acyclic.

Other types of networks may differ on whether or not the

connections are directed (causal). BN methods are acyclic and

impose a direction on each edge; for the purposes of this study,

these directions are ignored. The GRNs without directions are also

called gene association networks.

We used the receiver operating characteristic (ROC) curves to

study the sensitivity and specificity of each algorithm to minimize the

influence of any default thresholds or cutoff values, and the area

under the curve (AUC) was used to quantify the performance of each

method. Clearly, the larger the area under the curve, the better the

algorithm performed. ROC curves were determined by changing the

threshold for connection strength (for example, connection strength

for the SPACE algorithm refers to the absolute values of the estimated

partial correlations). Two genes with a connection strength higher

than the threshold were deemed to be connected.

The AUC measures the performance of the algorithm across all

sensitivity and specificity ranges. In practice, biological researchers

are more interested in a small subset of that performance curve –

specifically, the part of the curve with high specificity. In order to

calculate a metric more relevant to this application, we can use a

partial AUC. This metric calculates the AUC for the ROC curve

only where specificity is greater than some threshold. In this study

we use the region in which specificity is greater than 99.5% (i.e.

the false positive rate is less than 0.005) to calculate the pAUC. We

also examined the pAUC with false positive rate less than 0.05 and

obtained very similar results. The global AUC is more intuitive in

measuring the overall predictive performance, while the pAUC

provides a useful metric in measuring predictive performance at

high specificity, which is usually the focus for biological

Table 1. Method Comparison.

Statistical method Category Implementation

BNArray [35] BN R

B-Course [36] BN C

BNT [37] BN Matlab

Werhli’s BN Implementation [11] BN Matlab

SPACE [13] Partial Correlation C,R

GeneNet [12] Partial Correlation R

WGCNA [14] Correlation C, R

Aracne [15,16] Information Theory C++, Java

Statistical methods for constructing GRN compared in this study.
doi:10.1371/journal.pone.0029348.t001

Comparing Methods for Constructing Gene Networks
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researchers. In this study, we will use both AUC and pAUC

to comprehensively evaluate the performance of network

construction.

Another aspect of performance evaluated in this study was the

detection of ‘‘hub genes’’. A hub gene is a highly connected gene

in a network; such genes are often of biological interest because of

their critical involvement in regulatory pathways or sub-networks

and these genes often incur a substantial effect on the pathways as

a whole. Thus, we also evaluate each method’s ability to identify

hub genes in each network using gene ‘‘connectivity.’’ Gene

connectivity (or the degree of a gene) is a way of stating how

connected a gene is within a network. Some methods produced

adjacency matrices with entirely non-zero entries. Such networks

are ‘‘complete’’ and all nodes in each graph have the same

‘‘degree,’’ in that each gene is connected to each other gene. Due

to this we define each gene’s connectivity score in a given network

by computing the sum of the weights of all connections associated

with that gene. This score can then be compared to the actual

connectivity score of a gene in the true network. Second, we also

calculate the sensitivity and specificity of each method’s connec-

tivity predictions. To do this, we first classify each gene as a hub

gene or not based on the true network using some cutoff. We then

utilize an ROC curve which discloses the threshold-independent

performance of a method on a given network and quantify this

curve using the AUC.

Hardware
Computational equipment used in this study included a Dell

T300 server with 16 GB 667 MHz, DDR2 RAM, Dual Core Intel

Xeon E 3113 (3.0 GHz) CPU and the Windows Server 2008

Operating System; and a RedHat Enterprise Linux server with

48 GB of RAM and two Intel Xeon X5650 (2.66 GHz) CPUs.

Results

Simulation Studies
In the simulation studies, the network structures were simulated

based on the real protein-protein interaction networks [38,39],

Figure 1. Diagram depicting the network structures of each of the six network sizes used in this study.
doi:10.1371/journal.pone.0029348.g001

Comparing Methods for Constructing Gene Networks
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with an approximately scale free topology. The strengths of

dependencies were randomly simulated from a normal distribution

N(0.5,0.2) with the sign (positive or negative regulation) simulated

from a binomial distribution with probability 0.5. Specifically, Xi,

the expression of gene i, was simulated from conditional normal

distributions Xi*N
P

j[wi
bjiXj ,s

2

� �

, where phii refers to a set of

genes that regulate gene i based on the simulated network

structure, bji is the strength of dependency of gene i on gene j, and

Xj , is the expression level of gene j which is true for most

microarray studies [40].

In each study, the datasets were simulated across two

independent variables: (1) network size, and (2) numbers of

samples. The number of genes represented in the networks varied

over a wide range. Simulated networks had one of six sizes: 17

genes with 20 connections, 44 genes with 57 connections, 83 genes

with 114 connections, 231 genes with 311 connections, 612 genes

with 911 connections, or 1344 genes with 1511 connections as

shown in Figure 1. We base these networks off of real protein-

protein interaction networks and, to construct networks of

different sizes, vary the number of references required to support

each connection. The other variable in the simulated data was the

number of samples (microarrays) in a dataset. Datasets had 20, 50,

100, 200, 500, or 1,000 simulated microarray samples. Obviously,

Figure 2. The AUCs and pAUCs for 1344-gene network in simulation 1. Left: The area under the curve using various network construction
methods across various sample sizes on a network with 1344 genes; Right: The partial area under the curve for FPRv0.005 for various methods.
doi:10.1371/journal.pone.0029348.g002

Figure 3. Comparison of the AUC performance on detecting
hub genes. Measuring the performance of each method at detecting
hub genes as measured by the Area Under the ROC Curve (AUC). Hub
genes were classified as having 4 or more connections in the true
network.
doi:10.1371/journal.pone.0029348.g003

Figure 4. The AUCs for 1344-gene network in simulation 2 with
non-normal distribution. The area under the curve using various
network construction methods across various sample sizes on a
network with 1344 genes.
doi:10.1371/journal.pone.0029348.g004

Comparing Methods for Constructing Gene Networks
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the intuition is that, as the number of samples increases, the

algorithms would be able to perform better [41]. Datasets were

generated for all combinations of these variables, producing 36

total data sets for each simulation study.

Network Construction Performance
We first calculated the ROC curves for each combination of

network size, sample size, and construction algorithm; the results

of the 17-gene network are shown in Supplementary Figure S1.

We use both AUC and pAUC to evaluate the network

construction performance of different methods. Figure 2 shows

the performance on the 1344-gene network, and the detailed

performance on all other simulation settings can be seen in

Supplementary Figures S2 and S3. From all simulation settings,

we can see that as the sample size increased, the performance of all

methods tended to improve; this is expected and consistent with

previous research [41].

For the performance in constructing the global network

structure (1344-gene network) measured by AUC, WGCNA and

GeneNet performed best, followed by ARACNE, and SPACE

performed the worst (Figure 2A). The differences decreased as the

number of samples increased. When the sample size reached 1000,

all the method performed very well (with AUC close to 1). In the

five other sizes of networks (Figure S2), the performance of various

methods were similar for smaller networks. The Bayesian method

could only compute the smaller networks and failed for all the

datasets involving 1,000 samples on our computing equipment. It

performed comparably to the other methods on the smallest

network (17 genes) as can be seen in Figure S2.

For identifying a few connection with high specificity, SPACE

outperformed the other methods across all simulation settings

followed by GeneNet and then WGCNA (Figure 2B). In the five

other sizes of networks (Figure S3), SPACE and GeneNet were

both the best-performing methods; SPACE slightly outperformed

GeneNet for smaller numbers of samples (v100).

The performance of the Bayesian networks is inconsistent with

the general belief that Bayesian networks produce the most

accurate networks. That is probably because BN methods perform

Figure 5. The transcriptional regulatory network for E. coli derived from the RegulonDB database. Each red dot is a gene, and a blue
line between genes indicates a connection.
doi:10.1371/journal.pone.0029348.g005
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better for smaller gene network construction and it could also be

impacted by the simulation setups. In order to verify this, we

studied the performance of constructing GRNs using the same 11-

gene network as was used by Werhli et al [11]. We found that on

this 11-gene network, the Bayesian method outperformed the

other methods, which is consistent with the conclusion of Werhli’s

study (Figure S4). This may also be due to the underlying

assumptions of each of these methods: Bayesian inference

algorithms (typically) rely on categorical variables while partial-

correlation and correlation-based algorithms assume a normal

distribution for their variables. The data were simulated from a

normal distribution to more accurately represent true gene

expression experiments [40], thus we would expect degraded

performance for Bayesian inference algorithms. A more specific

comparison of performance is available in the supplementary

material.

Hub Gene Detection
Another important metric of interest in this study was the ability

of a method to detect highly connected (or ‘‘hub’’) genes within a

network. These genes are often of particular biological interest as

the activity of such hub genes may affect many genes in the

biological network and hence drive disease status.

Performance in this area was measured by first calculating each

gene’s predicted connectivity (as described earlier) and comparing

this against the binary classification of whether or not a gene was

truly a hub gene in the true network. We computed ROC curves

by changing the connectivity thresholds and used the AUC to

measure the performance of detecting hub genes. We experiment-

ed with various cutoffs for the determination of hub genes, using

either 4, 5, or 6 connections as the threshold. We obtained similar

results on all three except for the smallest network (17 genes). This

is because this network had only one gene which was classified as a

hub gene when the threshold was set at either 5 or 6; on this

network most methods performed perfectly or almost perfectly

when using these thresholds. Three genes were classified as hub

genes using a threshold of 4, which made for more meaningful

performance measurements on this network, so we opted to use

this threshold throughout the duration of the study.

When examining the AUC for hub genes (Figure 3 and

Supplementary Figure S5), SPACE was consistently the top

performer for nearly all numbers of samples on all network sizes.

The Bayesian method performed well on the smallest network, but

was not competitive on the other network sizes. WGCNA

performed well with very small numbers of samples, but was

quickly outperformed by SPACE in every network.

GeneNet exhibited somewhat strange performance when

dealing with hub genes. It was fairly competitive on the smaller

networks, but produced severely degraded performance on the

larger networks with AUCs well below 0.5 (which is the value of a

random guess). This is likely due to the connectivity values

produced by GeneNet. Most methods produced networks for

which most connections were zeros or near-zero which produces

near-zero connectivity values for most genes. When viewed as a

histogram, the connectivity of all other algorithms was skewed to

the right, while GeneNet had many more genes with high

connectivity scores as shown in Supplementary Figure S6.

Simulation Studies Under Non-Normal Distribution
To evaluate the performance of different methods when the

underlying distribution is non-normal, we also simulated data

under a non-normal distribution. In this simulation study, the

expression data were simulated from a bimodal mixture of 2

normal distributions, which models the possible ‘‘on’’ and ‘‘off’’

status of a gene’s expression. The mixture probability for each

status is 0.5. The AUC curve for 1344-gene network with various

methods and different numbers of samples were shown in Figure 4.

The AUC and pAUC on all other simulation settings can be seen

in Supplementary Figures S7 and S8. For the performance in

constructing the global network structure, WGCNA and GeneNet

still performed best, followed by ARACNE, and SPACE still

performed the worst. The results were consistent with simulation

Figure 6. The performance in constructing gene regulatory network in E. coli. Left: The entire ROC curves using various network
construction methods; Right: The corner of ROC with high specificity.
doi:10.1371/journal.pone.0029348.g006
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study 1. If we use the performance of GeneNet and WGCNA as

references, we notice that the performance of ARACNE improves

while that of SPACE get worse. This could due to the fact that

ARACNE does not rely on the normal assumption, while SPACE

highly does, so under a non-normal distribution the performance

of ARACNE improves while that of SPACE decreases relative to

GeneNet and WGCNA.

Computational Complexity and Program Usability
Aside from accuracy, one of the important attributes of each

algorithm is computational complexity. In environments lacking a

strong computational infrastructure, certain algorithms may be

unfeasible (especially when processing a large dataset). The

Bayesian algorithm was the only algorithm that caused concerns.

Most other methods would finish computing within minutes on

standard desktop hardware for any of the datasets we examined.

The Bayesian algorithm, on the other hand, typically took hours or

even days to compute and required advanced hardware.

Program usability is also a consideration, especially among

groups with no special expertise in computer programming.

Among the selected implementations, no specific one stands out as

more or less usable than the others. Each provides a command-

line interface; usability would largely be determined by a user’s

familiarity with a particular platform (R and/or C, or Matlab or

JAVA). The only notable user-friendly feature offered in these

packages was that the WCGNA package and ARACNE software

provide many useful network analysis and visualization functions

which are very convenient.

Also important is the ability to process and store the resultant

networks in either adjacency list or matrix format. SPACE, which

is designed to operate on sparse matrices, produced networks in

which only approximately 10% of the network was non-zero,

making it much easier to store in a compressed format than the

networks produced by the other methods (which typically had

w99% non-zero matrices).

Empirical Study In E. coli
The predictive performance of our approach was tested using

the Escherichia coli (E.coli) gene expression database entitled

M3D (Many Microbe Microarrays Database [42]). The dataset

contains 524 arrays measured under 264 experimental conditions.

The data were measured using Affymetrix GeneChip E.coli

Genome arrays with 4292 gene probes. The arrays measured

under the same experimental conditions were averaged. From the

gene expression data matrix, we used SPACE, GeneNet, WGCNA

and ARACNE methods to derive the gene network in E. coli. To

evaluate the performance, we used the transcriptional regulatory

network from the RegulonDB [43], which provides the regulation

targets of the transcriptional factors in E coli. An overview of the

network is shown in Figure 5. The ROC curves of various methods

were shows in Figure 6. For this real data example, the thresholds

for a false positive rate of 0.005 are 0.05, 2.4E-7, 0.12, 0.37 for

GeneNet, SPACE, WGCNA and Aracne, respectively. For

constructing the global network structure, WGCNA and ARA-

CNE performed the best, followed by GeneNet, with SPACE

performing the worst. On the other hand, for identifying a few

connections with high specificity, GeneNet and SPACE performed

better than the others. Overall, the results were relatively

consistent with the simulation studies.

Discussion

We have measured the performance of various gene regulatory

network construction methodologies against various sizes of

simulated data with different numbers of samples. From this, a

few conclusions can be drawn.

First, WGCNA and ARACNE performed well in constructing

the global network, while SPACE did well in identifying a few

connections with high specificity. GeneNet performed well in both

aspects, but it is not suitable for identifying the hub genes, which

can often be of biological interest. In the simulation study, SPACE

performed well in identifying the hub genes as shown in Figure 3.

Since there is no a single method that outperforms other methods

in all aspects, the user should choose an appropriate method based

on the purpose of the study.

In applying these methods to the real E. coli data, WGCNA and

ARACNE performed best, which may indicate that these two

methods are relatively more robust. Overall, the performance in

real data seemed to be worse than that in the simulation study, and

there are several possible reasons: (1) the real biological network is

much more complex than the simulation study; (2) many true

connections in this network are still unknown; (3) some of the

connections in RegulonDB may not be supported by gene

expression data [44]. Surprisingly, SPACE performed poorly in

constructing the global network, which is because the SPACE

algorithm uses an L1 penalty to shrink most of partial correlation

to zero. If we manually decrease the penalty term, the

performance improved as fewer partial correlations were shrunk

to zero, but it also became much more computationally intensive.

In this study, we used default parameters or recommended settings

for each method whenever possible for a fair comparison. So, here

we still present the results based the default setting of SPACE

algorithm.

Another conclusion which can be drawn is that as sample sizes

increase, the accuracy also increases. For the number of samples

tested (20–1,000), the most significant performance improvements

were obtained at the beginning; they began to saturate as the

number of samples approached 1,000. This demonstrates that

having thousands of samples may not offer significant performance

improvements.

Also, this study demonstrates that it is feasible to use current

techniques to generate accurate, informative networks even with

dozens or hundreds of genes. Several algorithms scaled to such

environments well without requiring sophisticated computational

resources.

One disadvantage of probabilistic-network-based methods is the

discretization of data. It is generally preferred to discretize into a

small number of ‘‘buckets’’ which directly represent an underlying

biological observation when using probability networks. To this

end, data is typically discretized into binary buckets (implying that

a gene is either ‘‘on’’ or ‘‘off’’) or ternary buckets (signifying

‘‘under-expressed,’’ ‘‘normally expressed,’’ and ‘‘over expressed’’).

Unfortunately, fitting the data into any reasonable number of

buckets will result in substantial data loss.

Finally, we found that the Bayesian methods did not scale to

larger networks well. Because of the computational complexity as

well as the memory requirements, these methods – as currently

implemented – are not the ideal choice for such large networks.

WGCNA, GeneNet, ARACNE and SPACE, on the other hand,

were designed to construct the gene network at very large scales.

Also, it worth mentioning that the WGCNA package provides

several useful tools to facilitate the analysis and visualization of

resulting networks, including tools to identify subnetworks and an

interface to Cytoscape. The WGCNA package can be used for not

only constructing gene networks but also for detecting modules/

sub-networks, identifying hub genes, and selecting candidate genes

as biomarkers.

Comparing Methods for Constructing Gene Networks
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Supporting Information

Figure S1 ROC Curves for the 17 Gene Network. The

Receiver Operating Characteristic (ROC) curves for the 17 gene

network which will quantified using the Area Under the Curve

(AUC).

(TIF)

Figure S2 AUCs for All Network Sizes. The relationship

between sample size and the area under the ROC curve (AUC)

values for each network size and network construction method.

(TIF)

Figure S3 pAUCs for All Network Sizes. The relationship

between sample size and the partial area under the ROC curve

(AUC) values for FPRv0.005 for each network size and network

construction method.

(TIF)

Figure S4 AUCs on 11-gene network. The AUCs for each

method on Werhli’s 11 gene network. As Werhli had demonstrat-

ed, the Bayesian method performs quite well compared to other

network construction methods.

(TIF)

Figure S5 Hub Gene Performance. For all network sizes, the
figure shows the relationship between the sample size and the area

under the ROC curve (AUC) regarding each method’s classifica-

tion of hub genes by classifying a hub gene as a gene with 4 or

more connections.

(TIF)

Figure S6 Histograms of Connectivity Scores for Vari-
ous Methods. Depicts the differences in the distributions of the

gene’s connectivity values (weighted degree) across the different

methods on the 44 gene network with 200 samples. Scores were

normalized to [0,1] by dividing all predicted connectivity scores by

the maximum connectivity score in that setup. Note that GeneNet

is skewed such that most genes are highly-connected when

compared to the other methods. This causes problems later on

when evaluating the AUC scores for the classification of hub genes

for this method.

(TIF)

Figure S7 AUCs for All Network Sizes in Simulation

Study 2. The relationship between sample size and the area

under the ROC curve (AUC) values for each network size and

network construction method in simulation study 2 which uses

non-normal distribution assumptions for expression values.

(TIF)

Figure S8 pAUCs for All Network Sizes in simulation

study 2. The relationship between sample size and the area under

the ROC curve (AUC) values for FPRv0.005 for each network

size and network construction method in simulation study 2 which

uses non-normal distribution assumptions for expression values.

(TIF)

Sweave S1 Sweave Documentation for all Analysis.

Documents the creation and analysis of the reverse-engineered

methods for all network types and network construction methods.

(PDF)

Author Contributions

Conceived and designed the experiments: JDA YX GX. Performed the

experiments: JDA YX GX. Analyzed the data: YX MC LG GX. Wrote the

paper: JDA YX MC LG GX.

References

1. Friedman N (2004) Inferring cellular networks using probabilistic graphical

models. Science 303: 799–805.

2. Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, et al. (2002) Revealing

modular organization in the yeast transcriptional network. Nat Genet 31: 370–7.

3. Lee I, Date SV, Adai AT, Marcotte EM (2004) A probabilistic functional

network of yeast genes. Science 306: 1555–8.

4. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-

signaling networks derived from multiparameter single-cell data. Science 308:

523–9.

5. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, et al. (2003) Module

networks: identifying regulatory modules and their condition-specific regulators

from gene expression data. Nat Genet 34: 166–76.

6. Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for

global discovery of conserved genetic modules. Science 302: 249–55.

7. Kendall SD, Linardic CM, Adam SJ, Counter CM (2005) A network of genetic

events sufficient to convert normal human cells to a tumorigenic state. Cancer

Res 65: 9824–8.

8. Mani KM, Lefebvre C, Wang K, Lim WK, Basso K, et al. (2008) A systems

biology approach to prediction of oncogenes and molecular perturbation targets

in b-cell lymphomas. Mol Syst Biol 4: 169.

9. Nibbe RK, Koyuturk M, Chance MR (2010) An integrative -omics approach to

identify functional sub-networks in human colorectal cancer. PLoS Comput Biol

6: e1000639.

10. Slavov N, Dawson KA (2009) Correlation signature of the macroscopic states of

the gene regulatory network in cancer. Proc Natl Acad Sci U S A 106: 4079–84.

11. Werhli AV, Grzegorczyk M, Husmeier D (2006) Comparative evaluation of

reverse engineering gene regulatory networks with relevance networks, graphical

gaussian models and bayesian networks. Bioinformatics 22: 2523–31.

12. Schafer J, Strimmer K (2005) An empirical bayes approach to inferring large-

scale gene association networks. Bioinformatics 21: 754–64.

13. Peng J, Wang P, Zhou N, Zhu J (2009) Partial correlation estimation by joint

sparse regression models. Journal of the American Statistical Association 104:

735–746.

14. Langfelder P, Horvath S (2008) Wgcna: an r package for weighted correlation

network analysis. BMC Bioinformatics 9: 559.

15. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, et al. (2005)

Reverse engineering of regulatory networks in human B cells. Nat Genet 37:

382–390.

16. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. (2006)

ARACNE: an algorithm for the reconstruction of gene regulatory networks in a

mammalian cellular context. BMC Bioinformatics 7 Suppl 1: S7.

17. Zhang B, Horvath S (2005) A general framework for weighted gene co-

expression network analysis. Stat Appl Genet Mol Biol 4: Article17.

18. Ellis B, Wong WH (2008) Learning causal bayesian network structures from

experimental data. Journal of the American Statistical Association 103: 778–789.

19. Liang F, Zhang J (2009) Learning bayesian networks for discrete data. Comput

Stat Data Anal 53: 865–876.

20. Li H, Sun Y, Zhan M (2009) Exploring pathways from gene co-expression to

network dynamics. Methods Mol Biol 541: 249–67.

21. Carter SL, Brechbuhler CM, Griffin M, Bond AT (2004) Gene co-expression

network topology provides a framework for molecular characterization of

cellular state. Bioinformatics 20: 2242–50.

22. Mao L, Van Hemert JL, Dash S, Dickerson JA (2009) Arabidopsis gene co-

expression network and its functional modules. BMC Bioinformatics 10: 346.

23. Mason MJ, Fan G, Plath K, Zhou Q, Horvath S (2009) Signed weighted gene

co-expression network analysis of transcriptional regulation in murine

embryonic stem cells. BMC Genomics 10: 327.

24. Ruan J, Dean AK, Zhang W (2010) A general co-expression network-based

approach to gene expression analysis: comparison and applications. BMC Syst

Biol 4: 8.

25. Hu Z, Snitkin E, DeLisi C (2008) Visant: an integrative framework for networks

in systems biology. Brief Bioinform 9: 317–325.

26. Shannon P, Markiel A, Ozier O, Baliga N, Wang J, et al. (2003) Cytoscape: A

software environment for integrated models of biomolecular interaction

networks. Genome Research 13: 2498–2504.

27. Dennis G, Sherman B, Hosack D, Yang J, Gao W, et al. (2003) David: Database

for annotation, visualization, and integrated discovery. Genome Biol 4: P3.

28. Oldham M, Horvath S, Geschwind D (2006) Conservation and evolution of

gene co-expression networks in human and chimpanzee brains. Proc Natl Acad

Sci USA 103: 17973–17978.

29. Ghazalpour A, Doss S, Zhang B, Plaisier C, Wang S, et al. (2006) Integrating

genetics and network analysis to characterize genes related to mouse weight.

PloS Genetics 2: e130.

30. Carlson M, Zhang B, Fang Z, Horvath S, Mishel P, et al. (2006) Gene

connectivity, function, and sequence conservation: Predictions from modular

yeast co-expression networks. BMC Genomics 7.

Comparing Methods for Constructing Gene Networks

PLoS ONE | www.plosone.org 8 January 2012 | Volume 7 | Issue 1 | e29348



31. Horvath S, Zhang B, Carlson M, Lu K, Zhu S, et al. (2006) Analysis of
oncogenic signaling networks in glioblastoma identifies aspm as a novel
molecular target. Proc Natl Acad Sci USA 103: 17402–17407.

32. Cox DR, Wermuth N (1996) Multivariate Dependencies: Models, Analysis and
Interpretation. London: Chapman and Hall.

33. Penrose R (1955) A generalized inverse for matrices. Proc Cambridge Phil Soc
51: 406–413.

34. Cooper GF, Hersokovits E (1992) A bayesian method for the induction of
probabilistic networks from data. Machine Learning 9: 309–347.

35. Chen X, Chen M, Ning K (2006) Bnarray: an r package for constructing gene
regulatory networks from microarray data by using bayesian network.
Bioinformatics 22: 2952.

36. Myllymaki P, Silander T, Tirri H, Uronen P (2002) B-course: A web-based tool
for bayesian and causal data analysis. International Journal on Artificial
Intelligence Tools 11: 369–388.

37. Murphy K (2001) The bayes net toolbox for matlab. Computing science and
statistics 33: 1024–1034.

38. Peri S, Navarro JD, Kristiansen TZ, Amanchy R, Surendranath V, et al. (2004)
Human protein reference database as a discovery resource for proteomics.
Nucleic Acids Res 32: D497–501.

39. Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, et al. (2006)

Human protein reference database–2006 update. Nucleic Acids Res 34:

D411–414.

40. Pan W, Lin J, Le CT (2002) Model-based cluster analysis of microarray gene-

expression data. Genome Biol 3: RESEARCH0009.

41. Husmeier D (2003) Sensitivity and specificity of inferring genetic regulatory

interactions from microarray experiments with dynamic bayesian networks.

Bioinformatics 19: 2271.

42. Faith JJ, Driscoll ME, Fusaro VA, Cosgrove EJ, Hayete B, et al. (2008) Many

Microbe Microarrays Database: uniformly normalized Affymetrix compendia

with structured experimental metadata. Nucleic Acids Res 36: D866–870.

43. Salgado H, Gama-Castro S, Peralta-Gil M, Diaz-Peredo E, Sanchez-Solano F,

et al. (2006) RegulonDB (version 5.0): Escherichia coli K-12 transcriptional

regulatory network, operon organization, and growth conditions. Nucleic Acids

Res 34: D394–397.

44. Alvarez A, Woolf P (2011) Partially observed bipartite network analysis to

identify predictive connections in transcriptional regulatory networks. BMC

Systems Biology 5: 86.

Comparing Methods for Constructing Gene Networks

PLoS ONE | www.plosone.org 9 January 2012 | Volume 7 | Issue 1 | e29348


