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Abstract
The Strong Stackelberg Equilibrium (SSE) has
drawn extensive attention recently in several secu-
rity domains. However, the SSE concept neglects
the advantage of defender’s strategic revelation
of her private information, and overestimates
the observation ability of the adversaries. In
this paper, we overcome these restrictions and
analyze the tradeoff between strategic secrecy and
commitment in security games. We propose a
Disguised-resource Security Game (DSG) where
the defender strategically disguises some of her
resources. We compare strategic information reve-
lation with public commitment and formally show
that they have different advantages depending the
payoff structure. To compute the Perfect Bayesian
Equilibrium (PBE), several novel approaches are
provided, including a novel algorithm based on
support set enumeration, and an approximation
algorithm for ε-PBE. Extensive experimental
evaluation shows that both strategic secrecy and
Stackelberg commitment are critical measures in
security domain, and our approaches can efficiently
solve PBEs for realistic-sized problems.

1 Introduction
Strong Stackelberg Equilibrium (SSE) has for some time
been used to allocate limited security resources to protec-
t targets in many security scenarios including public in-
frastructures [Kiekintveld et al., 2009; Shieh et al., 2012;
Yin et al., 2014; Gan et al., 2015; Zhao et al., 2016] and
wildlife [Fang et al., 2016]. In the SSE solution concept, the
defender discloses the (possibly randomized) commitment to
protect the targets. This commitment is then observed by the
attacker who adopts the best response. While in theory it is al-
ways favorable for the defender to disclose the commitment,
in practice this concept overestimates the surveillance of the
attacker [An et al., 2013; Pita et al., 2010] and neglects the
fact that certain part of information could have been hidden to
the attacker due to imperfect observation [Catchnews, 2016;
Gul, 2011]. One example is that the attacker may have been
uncertain about the number of the resources of the defender,
since the defender can actually use unmarked resources (e.g.,

plainclothes police) to protect the targets. As a consequence,
it is no longer clear that disclosing the full commitment is
always beneficial for the defender compared to strategically
revealing only part of information (termed strategic secrecy
from now on) – in fact we present an example later in the
paper where it is worse for the defender to disclose full com-
mitment compared to strategic secrecy.

We address this discrepancy between the theory and prac-
tice and propose a novel class of security games that extends
the existing security models in two main aspects: (1) the at-
tacker has an uncertain information about the number of re-
sources of the defender, (2) the defender is allowed to strate-
gically disclose the number of resources.

We model these aspects as Disguised-resource Security
Game (DSG) and analyze the strategic secrecy where the de-
fender strategically deceives the attacker by disguising some
of her resources. The number of the revealed resources is
modeled as a signal which can only be sent by the defend-
er with enough resources. We compare the expected utility
of strategic secrecy with the value of public commitment and
formally show that they have different advantages depend-
ing on the payoff structure. To be able to evaluate the dif-
ference between strategic secrecy and commitment in prac-
tice we introduce a collection of novel algorithms to solve for
the solution concept based on Perfect Bayesian Equilibrium
(PBE) [Spence, 1973; Zhuang and Bier, 2011]: (1) we in-
troduce a basic Mixed-Integer Linear Programming (MILP)
with an exponential number of variables and constraints, (2)
an MILP of directly applying compact representation, and (3)
a novel approach based on support set enumeration, and (4)
an approximation algorithm based on support set enumera-
tion to produce an ε-PBE. Finally, we conduct extensive ex-
perimental evaluation to show that our algorithms can scale to
realistic problems and to examine the fundamental trade-offs
between secrecy and public commitment for realistic prob-
lems. We conclude that the boundary of such trade-offs is
close to zero-sum games which confirms the practical use of
plainclothes police due to the approximate zero-sum nature
of many security scenarios (e.g., [Banks and Anderson, 2006;
Durkota et al., 2015; Haskell et al., 2014; Major, 2002]).

2 Related Work
Previous work on secrecy and deception in security games
has failed to address the key dilemma of strategic secrecy
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Figure 1: Example (left: strategic secrecy, right: commitment).

and commitment for various reasons. Brown et al. [2005]
study secrecy in the context of ballistic missile deployment,
but assume that the attacker is not aware that the defender can
hide resources, so there is no rational possibility for belief up-
date. Other researchers explore signaling games to model a
“feint” in homeland security [Hendricks and McAfee, 2006;
Oliveros, 2005]. In these games the defender’s resource allo-
cation causes a noisy signal following an uncontrolled signal-
ing technology, in contrast with our model where the defend-
er controls the signals sent. One key feature of the strategic
secrecy in our model is that the revealed security resources
(signal) are valid information for the attacker, which differ-
s from the cheap talk game [Farrell and Rabin, 1996] where
messages are costless and unverifiable.

Recently, there are some literatures studying the informa-
tion disclosure to persuade the attacker to take the desired
action [Rabinovich et al., 2015; Xu et al., 2015] with a strong
assumption that the attacker can fully access the defender’s
correlated random allocation and signaling scheme by un-
limited surveillance, which is unrealistic in the strategic se-
crecy scenarios. The most closely related model was pro-
posed by Zhuang and Bier [2011], where deception is regard-
ed as a signal to mislead the attacker’s belief about the de-
fender type, while the true defense is treated as a hidden ac-
tion. Their model assumes that the defender deterministically
sends the signal, while we allow the randomized signaling
strategy, which is possible and more general in resource al-
location domain. Furthermore, they only provide general re-
sults for high-level special cases without providing efficient
algorithms for realistic problems.

3 Motivating Example
Suppose a small police station (the defender) has three dis-
tricts to protect, A, B and C. The police station has either
one or two patrol units, depending on the day. We call these
cases the weak and strong types, and assume that they are e-
qually likely for the example. An attacker will choose one
of the three districts to target, represented by a mixed attack-
ing strategy a = 〈aA, aB , aC〉 where at denotes the prob-
ability of attacking district t ∈ {A,B,C}. The police s-
trategy can be compactly represented by a coverage vector
c = 〈cA, cB , cC〉 such that ct is the probability that district t
is covered by a patrol unit. There are four payoffs associated
with each district, 〈Rdt , P at , P dt , Rat 〉: if a resource is allocat-
ed to attacked district t, then defender receives a reward Rdt
and the attacker receives a penalty P at ; otherwise the payoffs
are P dt and Rat respectively. The game is shown in Figure 1,
whereA andB are homogeneous districts with the same pay-

offs and RaA = −P dA = 12, and RaC = −P dC = 2, while
Rdt = P at = 0 for t ∈ {A,B,C}. Consider that the strong
type (with 2 resources) can disguise one resource, or choose
to commit herself by revealing both resources.

If the defender chooses to reveal the type, the scenario
can be captured by the strong Stackelberg equilibrium (SSE),
widely adopted in the security game literature, where the
attacker can observe the defender strategy with extensive
surveillance. We will present the formal equilibrium concept
in the next section. For now, it is easy to see that in the e-
quilibrium (shown in the game tree on the right in Figure 1),
the weak type will play the coverage vector 〈0.5, 0.5, 0〉 e-
qualizing the attacker’s expected payoff between A and B,
resulting in an expected utility of -6. The strong type will
play 〈 78 , 7

8 ,
1
4 〉 and receive −1.5.

It is worthwhile to note that the assumption of the attack-
er knowing the defender strategy is critical to the advantage
of commitment. However, as we discussed in Section 1, the
extensive surveillance assumption is actually unrealistic and
thus cannot capture the problem here. Even though, the de-
fender can still do better with strategic secrecy, taking into
account the limited observation of the attacker. If the defend-
er is allowed to strategically disguise a resource, we have a
different game, shown in the game tree on the left in Fig-
ure 1. Suppose that the strong type hides one resource with
100% probability. When the attacker observes only 1 patrol
unit, he cannot know the type he is facing. Thus, the attack-
er will update his belief on the defender type and it turns out
that he is playing against both types with equal probability
according to Bayes’ rule. Now the weak type still plays cov-
erage 〈0.5, 0.5, 0〉, while the strong type plays 〈1, 1, 0〉 and
attacker receives an expected payoff of 3 for attacking A or
B and plays a mixed strategy 〈0.5, 0.5, 0〉. We can verify
that the equilibrium is formed where no player has incentive
to deviate. As we will formally present in the next section,
such equilibrium is the Perfect Bayesian equilibrium (PBE)
in extensive-form games. In the equilibrium, the weak type
still receives -6, while the strong type gets 0, better than−1.5
with commitment. One thing to notice here is that the attack-
er does not know the probability of the strong type disguising
one resource, and the reason of updating the posterior belief
according to Bayes’ rule is that as long as both players agree
on the equilibrium, the attacker can infer such probability and
update the belief, which is the key spirit of Nash equilibrium.

4 Disguised-Resource Security Games (DSG)
A DSG extends the structure of a Stackelberg security
game [Kiekintveld et al., 2009], but adds a way to model the
defender holding private information about the number of
resources. The game is played by a defender and an attacker.
The defender protects a set of targets T and the attacker
chooses a target t ∈ T to attack. There are multiple defender
types and each one has a different number of available
resources to protect the targets. We note that this abuses the
terminology “type” a bit, since we will assume that all types
have the same utility function, but effectively have a different
strategy spaces. We use θ ∈ Θ to represent the number of
resources available to each defender type (e.g., police teams,
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patrol boats). The prior probability distribution over types
p : Θ→ [0, 1] is known to both players.

In DSG, the defender is allowed to publicly reveal only a
subset of her available resources and the number of revealed
resources is denoted as a signal.1 W.l.o.g., we assume that the
signal is in the set Θ. The remaining resources are disguised,
as in the case of a plainclothes police officer or unmarked
vehicle. Importantly, in our model the defender cannot send
invalid signals that claim a greater number of resources than
are actually available, so a defender of type θ can only send
a signal s ≤ θ. The payoffs follow the same definition in
Section 3. Consistently with existing work on security games
Rdt > P dt andRat > P at . The DSG is an extensive-form game
which proceeds as illustrated by the motivating example: Na-
ture randomly chooses one type for the defender and let it be
the strong type θ = 2. The strong type draws a signal ac-
cording to the mixed signaling strategy which turns out to be
s = 1. The attacker cannot distinguish the two decision nodes
corresponding to both types sending the same signal s = 1,
and the set of these decision nodes is called an information
set denoted by I(s).
Strategies: Let c = 〈ct〉 and a = 〈at〉 denote the defend-
er’s coverage strategy and attacker’s mixed attacking strate-
gy as defined in Section 3. Let o = 〈os〉 denote the mixed
signaling strategy such that os represents the probability of
sending signal s. Let ∆θ

c = {c ∈ [0, 1]|T | : ‖c‖1 = θ}
denote the set of coverage strategies available for defender
type θ and ∆c =

⋃
θ∈Θ ∆θ

c be the set of all coverage s-
trategies. Similarly, we denote by ∆θ

o = {o ∈ [0, 1]|Θ| :
‖o‖1 = 1, os = 0 ∀s > θ} the set of mixed signaling s-
trategies available for defender type θ and ∆o =

⋃
θ∈Θ ∆θ

o.
Let ∆a = {a ∈ [0, 1]|T | : ‖a‖1 = 1} represent the set of all
mixed attacking strategies. Let πd = 〈πc, πo〉 denote the de-
fender policy where πc : Θ×Θ→ ∆c is the coverage policy
such that πc(θ, s) ∈ ∆θ

c denotes the coverage strategy adopt-
ed by defender type θ conditioned on sending signal s and
πc(t|θ, s) is the corresponding marginal coverage on target t,
and πo : Θ → ∆o is the signaling policy with πo(θ) ∈ ∆θ

o
representing the mixed signaling strategy for defender type θ
and πo(s|θ) being the corresponding probability of sending
signal s. In particular, we use πc(θ) = 〈πc(θ, s)〉 to denote
the coverage policy for defender type θ. Let πa : Θ → ∆a

denote the attacker policy such that πa(s) ∈ ∆a is the mixed
attacking strategy adopted by the attacker observing signal s,
where the corresponding probability of attacking target t is
denoted by πa(t|s).
Posterior Belief: Let ∆Θ = {〈δθ〉 : ‖δ‖1 = 1} be the set
of all possible probability distributions over Θ. We denote by
µ : Θ → ∆Θ the attacker’s posterior belief on the defender
type conditioned on the received signal. In particular, µ(θ|s)
denotes the posterior probability of defender type being θ at
information set I(s). Apparently, µ(θ|s) = 0 for θ < s. If
I(s) is on the equilibrium path, i.e., s is sent with positive
probability (

∑
θ:θ≥s pθπo(s|θ) > 0), the belief is determined

1The intuition of such definition is that the attacker is more like-
ly to observe the number of revealed resources due to the limited
observation.

by the Bayes’ rule, such that:

µ(θ|s) = pθπo(s|θ)/
∑

θ′:θ′≥s
pθ′πo(s|θ′).

Otherwise, if I(s) is off the equilibrium path, such as I(s =
2) in the motivating example where no type sends such signal,
we adopt the optimistic conjecture [Rubinstein, 1985]. That
is to say, when the defender acts off the equilibrium strate-
gy, the attacker believes the defender of her weakest type, a-
gainst which the attacker would gain the most. Intuitively the
attacker always prefers to play against a defender type with
fewer resources, which is confirmed by Theorem 1. Thus, at
information set I(s) which is off equilibrium path, we have:
µ(s|s) = 1 and µ(θ|s) = 0 for all θ > s. Throughout the
paper, we assume that posterior belief µ follows Bayes’ rule
and the optimistic conjecture for information sets on and off
equilibrium path respectively.
Utilities: Given the defender coverage strategy c ∈ ∆c and
the mixed attacking strategy a ∈ ∆a, the expected payoffs of
both players are defined as follows:

Pd(c,a) =
∑

t∈T
atct(R

d
t − P dt ) + atP

d
t

Pa(c,a) =
∑

t∈T
atct(P

a
t −Rat ) + atR

a
t .

(1)

Given the defender’s policy πd = 〈πc, πo〉 and attacker’s pol-
icy πa, the expected utility of the attacker conditioned on re-
ceiving signal s, and the expected utility of the defender type
θ are defined as follows:

Ud(πc(θ), πo(θ), πa) =
∑

s:s≤θ
πo(s|θ)Pd(πc(θ, s), πa(s))

Ua(πc, πo, πa(s)) =
∑

θ:θ≥s
µ(θ|s)Pa(πc(θ, s), πa(s)).

Theorem 1. For two defender types θ and θ′ such that θ >
θ′, suppose 〈c,a〉 is a Nash equilibrium between the attacker
and defender type θ, then there always exists an NE profile
〈c′,a′〉 between the attacker and defender type θ′ such that
Pa(c′,a′) ≥ Pa(c,a).

Proof. W.l.o.g, assume ct < 1 for each t ∈ T . According
to the defender’s best response criteria, ct > 0 only for t
in the support set of a. We iteratively construct a coverage
vector c′ and a set of targets T ′ as follows: i) initially, c′ =
c, and T ′ = {t ∈ T : at > 0}; ii) for each target t ∈
T ′, we decrease c′t a bit by a small amount value δt which is
proportional to 1/(Rat − P at ) such that (Rat−P at )δt = (Rat′−
P at′)δt′ for any t, t′ ∈ T ′; and iii) if for some target t ∈ T ′,
c′t ≤ 0, we remove t from T ′ and set c′t to 0; iv) the procedure
terminates as long as

∑
t∈T c

′
t = θ′. At this point, we obtain

a coverage strategy c′ for the defender type θ′ covering T ′
such that targets in T ′ are all best response targets for the
attacker. Let a′ be the mixed attacking strategy such that a′t =
λ/(Rdt − P dt ) for t ∈ T ′ and a′t = 0 otherwise, where λ =
1/
∑
t∈T ′

1
Rdt−Pdt

. It can be easily verified that strategy profile
〈c′,a′〉 forms an NE, and Pa(c′,a′) > Pa(c,a).

Equilibrium Concepts: Analogous to the equilibrium
of extensive-form game with first-mover hidden action-
s [Zhuang and Bier, 2011], the solution concept adopted for
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DSG is based on PBE, which is the profile 〈π∗d, π∗a〉 where:
〈π∗c (θ), π∗o(θ)〉 = arg max

πc(θ),πo(θ)
Ud(πc(θ), πo(θ), π

∗
a), ∀θ

π∗a(s) = arg maxπa(s) Ua(π∗c , π
∗
o , πa(s)), ∀s.

Due to the strict requirement in PBE that both players will
not play a suboptimal response strategy, the computation
of PBE is extremely challenging. Thus, we also consid-
er the ε-PBE, an approximation of PBE that allows player-
s to have a small incentive to play strategies other than the
one played in the equilibrium. Formally, an ε-PBE is a s-
trategy profile 〈π∗d, π∗a〉 where: i) Ud(π∗c (θ), π∗o(θ), π∗a) ≥
Ud(πc(θ), πo(θ), π

∗
a) − ε, ∀θ ∈ Θ, 〈πc(θ), πo(θ)〉 and ii)

Ua(π∗c , π
∗
o , π
∗
a(s)) ≥ Ua(π∗c , π

∗
o , πa(s))− ε, ∀s ∈ Θ, πa(s).

The SSE [Leitmann, 1978] between the defender and at-
tacker is a pair of strategies 〈c, f(c)〉where: i) Pd(c, f(c)) ≥
Pd(c

′, f(c′)), ∀c′, ii) Pa(c, f(c)) ≥ Pa(c,a), ∀a; and iii)
the attacker breaks ties in favor of defender: Pd(c, f(c)) ≥
Pd(c,a) for all optimal attacking strategies a.

Given these formal definitions, we can verify that the game
trees in Figure 1 correspond with PBE and SSE respectively,
and the defender utility is higher in PBE. However, disguising
resources is not always beneficial. Consider the same game in
the motivating example. Suppose the payoffs are changed by
settingRdC = 8 and the game is no longer zero-sum. The PBE
remains unchanged, as well as the SSE for the weak type. In
SSE for the strong type, coverage 〈 78 , 7

8 ,
1
4 〉 is still played.

However, the attacker will attack C which brings the strong
type an expected utility of 0.5, higher than 0 in PBE. We can
see that the benefit of PBE is sensitive to the correlation be-
tween defender and attacker payoffs and the strategic secrecy
is preferred when the game is “close” to zero-sum. Our next
section affirms such conjecture with theoretical analysis.

5 PBE versus SSE
For zero-sum DSGs where the players’ payoffs are perfectly
correlated, we prove that any PBE gives the defender utility
at least as high as SSE (Theorem 2). The intuition for Theo-
rem 2 is that for zero-sum DSGs, the defender cannot benefit
from public commitment and SSE reduces to NE, while in
PBE the attacker cannot distinguish the defender type, so he
may not play the best response to each individual type, and
the defender can take the advantage.
Theorem 2. For a zero-sum DSG, given any PBE 〈π∗d, π∗a〉
and SSE 〈cθ,aθ〉 formed by defender type θ and the attacker,
we have: Ud(π∗c (θ), π∗o(θ), π∗a) ≥ Pd(cθ,aθ), ∀θ.

Proof. SSE is equivalent with NE in zero-sum games. Given
that aθ is the best response against cθ and vice versa, and
π∗c (θ, s) is the best response against π∗a(s), we have:

Pd(c
θ,aθ) = −Pa(cθ,aθ) ≤ −Pa(cθ, π∗a(s))

= Pd(c
θ, π∗a(s)) ≤ Pd(π∗c (θ, s), π∗a(s)).

Thus:
Ud(π

∗
o(θ), π∗c (θ), π∗a) =

∑
s≤θ

π∗o(s|θ)Pd(π∗c (θ, s), π∗a(s))

≥ Pd(cθ,aθ)

On the other hand, we analyze a PBE in the special case
where all types have a similar number of resources, and show
that this PBE has defender utility less than or equal to SSE
(Theorem 3). The idea is that when all types have a similar
number of resources, it is likely that there exists a set of tar-
gets T ′ = {t1, .., tk}, such that for each type θ, the NE cov-
erage strategy has support set T ′. In this case, we can show
the existence of a PBE where each defender type is playing
that NE coverage strategy regardless of signals, and the corre-
sponding defender’s expected utility is equal to her expected
utility in NE, which is no higher than that in SSE. Since The-
orem 3 has no restriction on the correlation between defender
and attacker payoffs, with less correlation the defender ben-
efits more from commitment and the defender utility in SSE
can be much higher than that in the PBE in Theorem 3.

Theorem 3. Let the targets be listed by Rat with de-
scending order: T = {t1, .., t|T |}. If there exists k such

that:
∑k
l=1

Ratl
−Ratk

Ratl
−Patl

≤ θ ≤ ∑k
l=1

Ratl
−Ratk+1

Ratl
−Patl

holds for

any type θ, then there exists a PBE 〈π∗d, π∗a〉 such that
Ud(π

∗
c (θ), π∗o(θ), π∗a) ≤ Pd(c

θ,aθ) for any type, where
〈cθ,aθ〉 is an SSE between type θ and the attacker.

Proof. Suppose such a k exists. For any type θ, define uθ as
follows:

uθ =

∑k
l=1

Ratl
Ratl
−Patl

− θ∑k
l=1

1
Ratl
−Patl

and we have:

Ratk+1
≤ uθ ≤ Ratk ∀θ ∈ Θ

according to the inequality in the theorem. Consider the strat-
egy profile 〈π∗d, π∗a〉 where:

π∗c (t|θ, s) =

{
Rat−uθ
Rat−Pat , t ∈ {t1, .., tk};
0, otherwise.

π∗a(t|s) =

{
λ

Rdt−Pdt
, t ∈ {t1, .., tk};

0, otherwise.

λ = 1/
∑k

l=1

1

Rdtl − P dtl
.

We have: Pa(π∗c (θ, s), t) = uθ for t ∈ {t1, .., tk}. In other
words, π∗a(s) is best response against each individual cover-
age vector π∗c (θ, s) for all θ, s ∈ Θ : θ ≥ s. According to the
definition of SSE, we have:

Pd(c
θ,aθ) ≥ Pd(π∗c (θ, s), π∗a(s)) ∀θ, s ∈ Θ : θ ≥ s

Pd(c
θ,aθ) ≥ Ud(π∗c (θ), π∗a) ∀θ ∈ Θ.

6 Computing PBE Solutions
We now introduce computation methods for computing PBE.
We first try an MILP based on mixed defender strategy rep-
resentation which is a variant of the sequence-form MILP for
extensive-form games. This approach is not scalable due to
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the exponential number of pure strategies, even with imple-
mentation of constraint-generation approach. To reduce the
strategy space we directly apply the compact representation
(coverage), and propose another MILP with a polynomial
number of variables and constraints. However, the defender’s
best response criteria turn out to be nontrivial. Although they
can be linearly represented based on the complementary s-
lackness conditions [Bertsimas and Tsitsiklis, 1997], the aux-
iliary binary variables and logistic constraints make the MILP
not scalable. We omit the formulations and experiments of
these (failed) approaches for the ease of reading.

To produce a scalable solution, we further investigate the
special structure of PBE. We start with PBEs where the at-
tacker policy is unbiased (Definition 1 given later), which
makes the defender’s best response criteria much easier to
represent. We then propose a concise and scalable formula-
tion to compute such PBEs based on support set enumera-
tion. In case no such PBE exists, the formulation is modified
to compute the ε-PBE instead. The experimental evaluation
shows that in almost all cases, our approach can compute a
PBE, and a high-quality approximate ε-PBE in the remain-
ing cases. We now give a definition of an unbiased attacker
strategy, followed by the support set enumeration approach.
Definition 1. A mixed attacking strategy a with support set
T ′ is called unbiased if at = λT ′/(Rdt − P dt ) for all t ∈ T ′
and at = 0 otherwise, where λT ′ = 1/

∑
t∈T ′

1
Rdt−Pdt

. The
attacker’s policy πa is unbiased if the mixed attack strategy
πa(s) is unbiased for each s ∈ Θ.

There exists one and only one mixed attacking strategy
with support set T ′, which is unbiased, for any T ′ ⊆ T .
Therefore, we denote such strategy with support set T ′ as
aT

′
. The unbiased attacking strategy is not trivial. In fact,

it follows the spirit of NE to make the defender strategy the
best response. In particular, the defender’s expected payoff
against aT

′
is:

Pd(c,a
T ′

) = λT ′

∑
t∈T ′

ct + λT ′

∑
t∈T ′

P dt /(R
d
t − P dt ).

For defender of type θ, c is the best response against aT
′

if
and only if:

∑
t∈T ′ ct = min{θ, |T ′|}, and the corresponding

defender’s optimal expected payoff is denoted as:

P dθT ′ = λT ′ min{θ, |T ′|}+
∑

t∈T ′
λT ′P dt (Rdt − P dt ),

Support Set Enumeration: Let T denote the set of all sub-
sets of T . The intuition of support set enumeration is as fol-
lows. Suppose there exists a PBE profile where the attacker
strategy is unbiased. To compute such a PBE, a naı̈ve way
is to consider all possible unbiased attacker policies, which
is of size |T ||Θ| as there are |Θ| information sets. For each
unbiased attacker’s policy πa, let T ′s ∈ T be the support set
of πa(s). We can easily verify whether there exists a PBE
where the attacker’s policy is πa with linear constraints, since
the defender’s best response can be easily ensured by:∑

t∈T ′
s

πc(t|θ, s) = min{θ, |T ′s|} ∀θ, s ∈ Θ : θ ≥ s, (2)

However, the size of T is exponential (2|T |), which makes
it impossible to generate all possible unbiased attacker poli-
cies. Fortunately, we do not necessarily need to generate all

of them due to a nice property of the PBE 〈πd, πa〉 such that
there are only limited subsets of T able to serve as the support
set of πa(s) no matter if πa(s) is unbiased or not (Lemma 1 &
Theorem 4). Thus, we only consider a small subset T ′ ⊂ T ,
and the property of PBE ensures that T ′ is enough to search
for a PBE with unbiased attacker strategy. (We will discuss
how to generate T ′ later.) As such, instead of brute force
search, an MILP with no objective function is provided:∑

s∈Θ:s≤θ
Sθs = 1 ∀θ (3a)∑

t∈T
C̃θst = θSθs ∀θ > s (3b)

0 ≤ C̃θst ≤ Sθs ∀θ > s, t (3c)∑
t∈T

C̃sst = θ(Sss + 1− χs) ∀s (3d)

0 ≤ C̃sst ≤ Sss + 1− χs ∀s, t (3e)
χs ∈ {0, 1}

δχs ≤
∑

θ∈Θ:θ≥s
pθSθs ≤ χs ∀s (3f)

φsT ′ ∈ {0, 1} ∀s, T ′ (3g)∑
T ′∈T ′

φsT ′ = 1 ∀s (3h)

xst +
∑

θ∈Θ:s≤θ
pθC̃θstP

a
t +∑

θ∈Θ:s≤θ
pθ(Sθs − C̃θst)Rat +

ps(1− χs)Rat = υas ∀s, t (3i)

0 ≤ xst ≤ (1−
∑

T ′∈T ′:t∈T ′

φsT ′)M ∀s, t (3j)

C̃θst ≤ 1−
∑

T ′:t/∈T ′,|T ′|≥θ
φsT ′ ∀θ, s, t (3k)

ϕθs ∈ {0, 1}
0 ≤ Sθs ≤ ϕθs

yθs +
∑

T ′∈T ′
P dθT ′φsT ′ = υdθ ∀θ, s (3l)

0 ≤ yθs ≤ (1− ϕθs)M ∀θ, s. (3m)

In (3), S is the decision variable corresponding with πo such
that Sθs = πo(s|θ); C̃ is the decision variable defined as
follows: C̃θst = πo(s|θ)πc(t|θ, s) if I(s) is on the equilib-
rium path, otherwise C̃sst = πc(t|s, s) and C̃θst = 0 for
any θ > s; Binary variable χs = 1 if and only if I(s) is
on the equilibrium path; δ in (3f) is a small enough con-
stant as the threshold of probability of sending s, while M
is a large enough constant; xst is the slack variable which
takes zero when target t is in the support set of πa(s); Vari-
able vdθ denotes Ud(πo(θ), πc(θ), πa); yθs is the slack vari-
able which takes zero when s is in the support set of πo(θ);
Binary variable φsT ′ = 1 iff T ′ is the support set of πa(s).
(3i) and (3j) correspond to the attacker’s best response crite-
ria, including the optimistic conjecture, such that at informa-
tion set I(s), the expected utility of attacking a target in the
support set of πa(s) is the highest among all targets. (3k)
ensures that πc(θ, s) is the best response coverage against
πa(s) as required by (2). In particular, given the support set
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of πa(s) being T ′, we have πc(t|θ, s) = 0 for t /∈ T ′.2 Fi-
nally, (3l)–(3m) ensure that the defender is playing the best
response signaling strategy such that πo(s|θ) > 0 only if
Pd(πc(θ, s), πa(s)) ≥ Pd(πc(θ, s′), πa(s′)) for any s′ ≤ θ.

The MILP (3) returns a PBE if and only if there exists
one with unbiased attacker’s policy πa whose support set-
s are in T ′. If no such PBE exists, we slightly modify
MILP (3) to compute the ε-PBE instead, with the MILP (4),
which is the same as MILP (3) except: i) the expected util-
ity of attacking target t in support set of πa(s) is no lower
than the best response minus ε; and ii) πo(s|θ) > 0 only
if Pd(πc(θ, s), πa(s)) ≥ Pd(πc(θ, s

′), πa(s′)) − ε for any
s′ ≤ θ. The feasible solution of MILP (4) is ensured to be
an ε-PBE. Notice that ε in MILP (4) is a constant number in-
stead of a variable since otherwise the formulation becomes
non-convex. Thus, to get the best approximation, the binary
search on ε is conducted.

(3a)− (3i), (3k)− (3l)

0 ≤ xst ≤ (1−
∑

T ′∈T :t∈T ′
φsT ′)M+

ε
∑

θ:θ≥s
pθSθs + εps(1− χs) ∀s, t

0 ≤ yθs ≤ (1− ϕθs)M + ε ∀θ, s.

(4)

Generating Support Sets: List the targets by Rat in de-
scending order: T = {t1, .., t|T |}. Our next Lemma shows
that the support set T ′ of πa(s) in PBE must contain the first
|T ′| targets in T .2 The intuition is that the defender will al-
ways cover the targets in T ′ with the highest priority, other-
wise the attacker’s best response is violated.
Lemma 1. In PBE, the support set of the mixed attack strat-
egy πa(s) at any I(s) has the form: T ′ = {t1, .., t|T ′|}.
Proof. It is sufficient to prove that if t ∈ T ′, then any target
with higher reward is also in the support set. We prove by
contradiction. Suppose there exists a target t′ with Rat′ > Rat
which is not in the support set T ′. One reasonable assumption
adopted here (and throughout the paper) is that in PBE, there
exists no defender type which fully covers every target in the
support set of the mixed attacking strategy. Thus, we have:

πc(t|θ, s) ≥ πc(t′|θ, s) = 0 ∀θ, s ∈ Θ : θ ≥ s (5)

since otherwise the defender type θ can always decrease cov-
erage πc(t′|θ, s) and increase coverage πc(t|θ, s) to improve
the expected utility, which contradicts to the best response
criteria. Let Ua(πd, s, t) denote the attacker’s expected utility
of attacking target t at information set I(s):

Ua(πd, s, t) =
∑

θ∈Θ:θ≥s
µ(θ|s)[Rat − (Rat − P at )πc(t|θ, s)].

(6)
According to Eqs.(5) & (6), we have:

Ua(πd, s, t) ≤ Rat < Rat′ = Ua(πd, s, t
′).

Contradict to that t is attacker’s best response target.

2We assume that in PBE, there exists no defender type which ful-
ly covers every target in the support set of mixed attacking strategy
which is reasonable for realistic payoffs.

Although Lemma 1 already restricts the number of support
sets to |T |, we can further eliminate some of them with The-
orem 4. The intuition of Theorem 4 is that a defender with
more resources can cover more targets while keeping them all
the best response targets for the attacker, and k and K are the
minimal and maximal numbers of such targets respectively.
Therefore, the size of support set of πa(s) against defender
of unknown type is within interval [k,K]. Notice that when
θmin ≈ θmax, we have: |T ′| = |K − k + 1| � |T |.
Theorem 4. Let k and K be the smallest and the largest val-
ues respectively of i such that there exists a type θ satisfying∑i
t=1

Rat−Rati
Rat−Pat ≤ θ ≤ ∑i

t=1

Rat−Rati+1

Rat−Pat . In PBE, the support
set T ′ of πa(s) at any I(s) satisfies: k ≤ |T ′| ≤ K.

Proof. Obviously, k corresponds to the smallest i such that:∑i

t=1

Rat −Rati
Rat − P at

≤ θmin ≤
∑i

t=1

Rat −Rati+1

Rat − P at
while K corresponds to the largest i such that:

i∑
t=1

Rat −Rati
Rat − P at

≤ θmax ≤
i∑
t=1

Rat −Rati+1

Rat − P at

Similar to the proof of Theorem 3, there exists a coverage
vector c for type θmin which only covers {t1, .., tk} and
makes all of {t1, .., tk} the best response targets for the at-
tacker; Also, there exists a coverage vector c′ for type θmax
which only covers {t1, .., tK} and makes all of {t1, .., tK}
the best response targets for the attacker.

We prove by contradiction with the above consequences.
Suppose there exists a support set T ′ of πa(s) such that |T ′| <
k, according to Lemma 1, we have: T ′ = {t1, .., t|T ′|}. Let tl
be an arbitrary target in T ′. Since {t1, .., tl, .., tk} are all best
response targets for the attacker against c of θmin:

Ratk − (Ratk − P atk)ctk = Ratl − (Ratl − P atl)ctl ≤ Ratk (7)

In PBE, since πc(θ, s) is the best response against πa(s) with
support T ′, where tk /∈ T ′, we have:

πc(tk|θ, s) = 0, ∀θ, s ∈ Θ : θ ≥ s

given the assumption that in PBE, there exists no defender
type which fully covers the targets in the support set of the
mixed attacking strategy.

According to Eq.(6), in PBE, the attacker’s expected utili-
ties of attacking tl and tk are:

Ua(πd, s, tl) =
∑

θ∈Θ:θ≥s
µ(θ|s)[Ratl − (Ratl − P atl)πc(tl|θ, s)]

Ua(πd, s, tk) = Ratk .

Since tl ∈ T ′ and tk /∈ T ′, Ua(πd, s, tl) ≥ Ua(πd, s, tk).
According to Eq.(7) and

∑
θ∈Θ:θ≥s µ(θ|s) = 1, we have:∑

θ∈Θ:θ≥s
µ(θ|s)(ctl − πc(tl|θ, s)) ≥ 0
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Sum it up over l ∈ {1, .., |T ′|}, we get:

∑
θ∈Θ:θ≥s

µ(θ|s)(
|T ′|∑
l=1

ctl −
|T ′|∑
l=1

πc(tl|θ, s))

=
∑

θ∈Θ:θ≥s
µ(θ|s)(

|T ′|∑
l=1

ctl − θ) ≥ 0

which contradicts to the following fact:

∑
θ∈Θ:θ≥s

µ(θ|s)(
|T ′|∑
l=1

ctl − θ)

≤
∑

θ∈Θ:θ≥s
µ(θ|s)(θmin − θ) < 0.

Thus, |T ′| ≥ k.
Now assume |T ′| > K. Notice that {t1, .., tK} are the set

of best response targets against coverage c′ of type θmax. Let
l be an arbitrary index in {1, ..,K}. We have:

Ratl − (Ratl − P atl)c′tl ≥ Rat|T ′|
(8)

since c′t|T ′|
= 0. In PBE, both targets tl and t|T ′| are in the

support set of πa(s). According to Eq.(8), we have:∑
θ∈Θ:θ≥s

µ(θ|s)[Ratl − (Ratl − P atl)πc(tl|θ, s)]

=
∑

θ∈Θ:θ≥s
µ(θ|s)[Rat|T ′|

− (Rat|T ′|
− P at|T ′|

)πc(t|T ′||θ, s)]

≤ Rat|T ′|
≤ Ratl − (Ratl − P atl)c′tl .

Since
∑
θ∈Θ:θ≥s µ(θ|s) = 1, we get:∑
θ∈Θ:θ≥s

µ(θ|s)(c′tl − πc(tl|θ, s)) ≤ 0.

Sum up over all 1 ∈ {1, ..,K}, we have:

∑
θ∈Θ:θ≥s

µ(θ|s)(
K∑
l=1

c′tl −
K∑
l=1

πc(tl|θ, s))

=
∑

θ∈Θ:θ≥s
µ(θ|s)(θmax −

K∑
l=1

πc(tl|θ, s)) ≤ 0.

However, it contradicts the following fact when s = θmin:

∑
θ∈Θ:θ≥s

µ(θ|s)(θmax −
K∑
l=1

πc(tl|θ, s))

≥
∑

θ∈Θ:θ≥s
µ(θ|s)(θmax − θ) > 0.

Thus, |T ′| ≤ K.

7 Experimental Evaluation
We performed experiments to evaluate our algorithms, and
to gather empirical data on how PBE compares generally to
SSE. We use CPLEX for all optimizations on a 64-bit PC with
16 GB RAM and a quad-core 3.4 GHz processor. All values
are averaged over 1000 instances expect for the runtime aver-
aged over 100 instances. The game instances are generated as
follows unless otherwise specified: each type θ is randomly
drawn from {b0.1|T |c, b0.1|T |c+ 1, .., b0.4|T |c}. The prob-
ability distribution over Θ is randomly generated. The attack-
er’s payoffsRat and P at are randomly drawn from the interval-
s [1, 10] and [−10,−1] respectively. The defender’s payoffs
are generated as follows: Rdt = ω(−P at ) + (1 − ω)R̃d and
P dt = ω(−Rat ) + (1− ω)P̃ d, where R̃d and P̃ d are random-
ly drawn from same intervals as Rat and P at respectively. The
parameter ω controls correlation between the defender and at-
tacker payoffs, such that when ω = 1, the game is zero-sum,
and there is no correlation when ω = 0. The 95% confidence
intervals are drawn in all figures which show that all the re-
sults are statistically significant.
Scalability & Solution Quality: We test the runtime of our
approach on DSG instances with varying numbers of type-
s |Θ| ∈ {2, 4, 6, 8} and ω ∈ {0, 1}. The results are shown
in Figs 2(a)–2(b), which shows that our approach can scale
to realistic-sized instances with over 100 targets within min-
utes for for all categories of games. We also test the solution
quality of our approach on randomly generated games with
|T | ∈ {40, 60, 80, 100} and |Θ| ∈ {4, 6}. Pr(PBE) denotes
the proportion of instances where a PBE is computed. εmax
is the maximum value of ε among returned ε-PBEs. |T ′| rep-
resents the average number of generated support sets per in-
stance. The results for ω = 0 and 1 are given in Tables 2(c)
and 2(d) respectively, from which we can see that the PBE
is computed for over 99% of all tested instances. Even when
the PBE is not returned, εmax is significantly small compared
with payoffs, showing that our approach can compute solu-
tions with very good quality. We also note that |T ′| is much
smaller than the number of targets, which empirically sup-
ports Theorem 4 to reduce the candidate support sets.
PBE vs. SSE & NE: We now compare the defender utility
of PBE with SSE and NE. We test on random game instances
with 20 targets, 8 types Θ = {θ1 = 1, .., θ8 = 8}, and vary-
ing value of ω ∈ {0.8, 0.85, 0.9, 0.95, 1.0}. In reality, dif-
ferent types may be of different importance for the defender.
For example, a conservative defender may care more about
the utility in the worst case with minimal resources. As such,
we list the differences between defender utilities of each in-
dividual type in PBE and SSE in Figure 2(e). We also depict
the expected defender utilities of PBE, SSE and NE in Fig-
ure 2(f). We observe that: i) with increasing ω, the defend-
er benefits more in PBE compared to SSE, and the benefit
of strategic secrecy is not limited to zero-sum games, which
supports our formal analysis; ii) for the expected utility, the
boundary of tradeoffs between strategic secrecy and commit-
ment is within [0.9, 0.95], close to zero-sum games; iii) PBE
significantly outperforms NE regardless of the value of ω,
supporting the motivation of strategic information revelation;
and iv) the benefit of PBE shows a quadratic relationship with

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3697



0

50

100

150

200

20 40 60 80 100 120 140 160 180 200

R
un

tim
e(

se
co

nd
s)

 

Number of Targets 

|Θ|=2 
|Θ|=4 
|Θ|=6 
|Θ|=8 

(a) Runtime (ω = 0)

0

50

100

150

200

250

20 40 60 80 100 120 140 160 180 200

R
un

tim
e(

se
co

nd
s)

 

Number of Targets 

|Θ|=2 
|Θ|=4 
|Θ|=6 
|Θ|=8 

(b) Runtime (ω = 1)

|T | |Θ| Pr(PBE) εmax |T ′|
40 4 0.996 0.019531 12.453
60 4 0.99 0.015625 17.878
80 4 0.992 0.023438 22.286
100 4 0.999 9.77E-04 25.588
40 6 0.986 0.024414 14.697
60 6 0.992 0.030273 19.613
80 6 0.994 0.004883 27.538
100 6 0.98 0.055664 31.989

1

(c) Solution quality (ω = 0)

|T | |Θ| Pr(PBE) εmax |T ′|
40 4 1 NA 11.298
60 4 1 NA 16.122
80 4 1 NA 20.178
100 4 0.998 0.102539 25.672
40 6 1 NA 14.263
60 6 0.998 0.009765 20.456
80 6 1 NA 25.097
100 6 0.996 0.006835 31.898

1

(d) Solution quality (ω = 1)
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Figure 2: Experimental Evaluation.

the defender types. An intuitive explanation would be that the
attacker is playing the best response against the defender of
unknown type which can be treated as an “average” type θ̄.
Therefore, the type θ closer to θ̄ benefits less from secrecy.
Zero-sum games capture the nature of security issues where
the attacker’s success indicates the failure of the defender,
and the zero-sum approximation is widely adopted in game
theoretic analysis in various security domains [Chen, 2007;
Durkota et al., 2015; Haskell et al., 2014; Jain et al., 2011;
Major, 2002; Nguyen et al., 2009a; 2009b; Wang et al., 2016;
Yin and An, 2016; Guo et al., 2016; Yin et al., 2016]. On the
other hand, it is also emphasized that the zero-sum model is
at best an approximation [Banks and Anderson, 2006]. One
interpretation is that although both players are likely to agree
on the importance of targets, the costs of conducting an attack
or defending a target may be ignored by the opponent. Our
results show that the boundary of PBE outperforming SSE is
close to zero-sum (w ≈ 0.93) which, to an extent, explain the
coexistence of strategic secrecy and commitment in practice.

Robustness: We analyse the robustness of PBE solution a-
gainst two major uncertainties on random zero-sum game in-
stances with 30 targets and 6 types. First, the defender and
the attacker may have different valuations of targets. Let R̃∗t
and P̃ ∗t (∗ represents a or d) denote the payoffs estimated by
the attacker. We denote by δ the degree of uncertainty such
that R̃∗t ∼ R∗t · [1−δ, 1+δ], P̃ at = −R̃dt and P̃ dt = −R̃at . Let
π̃a and πd be policies for attacker and defender correspond-
ingly computed with their own estimations. We compare
Ud(πd, π̃a) with Ud(π

∗
d, π̃a) where π∗d is the best response

against π̃a w.r.t. defender’s estimation of payoffs. Second,
we consider the attacker’s bounded rationality, such that with
a small probability δ, the attacker randomly chooses one tar-
get to attack. The metric for robustness analysis remains the
same. The results are depicted in Figures 2(g) & 2(h), which
show that the PBE solution is robust enough even with a high
degree of uncertainty (20%), which makes it a practical alter-
native for the defender and also shows that our analysis and
explanation of strategic secrecy based on PBE is reasonable.

8 Conclusions
We study a longstanding dilemma in security games: given
the theoretical advantages of commitment, why is it that real-
world security forces often use secrecy? By introducing the
possibility that the defender has valuable private information,
we show that there is a fundamental tradeoff between secre-
cy and commitment. We provide a generalization of security
games to capture this, a novel scalable algorithm for com-
puting PBE solutions for these games, and empirical results
that demonstrate the effectiveness of our algorithms as well
as providing a deeper understanding of the competing advan-
tages of secrecy and commitment. Our theoretical and empir-
ical results show that the boundary of such tradeoffs between
secrecy and commitment is close to zero-sum, which is the
case for most security domains. We conclude that both secre-
cy and commitment have a vital role in security policy.
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