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Non-coding variants at human chromosome 9p21 near CDKN2A and CDKN2B are associated with

type 2 diabetes (T2D)1-4, myocardial infarction (MI)5-7, aneurysm8, vertical cup disc ratio9, and at

least five cancers10-16. We compared approaches to more comprehensively assess genetic

variation in the region. We performed targeted sequencing at high coverage in 47 individuals and

compared the results to pilot data from the 1000 Genomes Project. We imputed variants into T2D

and MI cohorts directly from targeted sequencing, from a genotyped reference panel derived from

sequencing, and from 1000 Genomes low-coverage data. Common polymorphisms were captured

similarly by all strategies. Imputation of intermediate frequency polymorphisms required a higher

density of tag SNPs in disease samples than available on first generation Genome Wide

Association Study (GWAS) arrays. Association analyses identified more comprehensive sets of

variants demonstrating equivalent statistical association to T2D or MI, but did not identify

stronger associations the original GWAS signals.

Following the identification of a disease-associated region by GWAS, comprehensive study

of sequence variation in the region is required to identify the full set of variants that might

explain the association signal. Since GWAS arrays incompletely capture DNA variation in

each region, it has been hypothesized that causal variants partially captured by linkage

disequilibrium (LD) – due to location near recombination hotspots or lower minor allele

frequency – might, if directly tested, display stronger association to phenotype than the tag

SNPs used in GWAS. In particular, because HapMap and GWAS arrays contain primarily

variants with minor allele frequency (MAF) >5%, first generation GWAS studies failed to

test polymorphisms of somewhat lower frequency that might have larger effects on disease

risk. Finally, even in regions where the true association signal is well captured by LD to

array SNPs, enumeration of all associated variants is a necessary prerequisite to functional

experiments that will identify causal mutation(s). Thus, an important next step following

GWAS is to assemble a more complete catalog of variation present in an associated region,

and to test it for association to the phenotype of interest.

With the advent of next generation sequencing and the emergence of data from the 1000

Genomes (1000G) Project, investigators must choose between (or combine) multiple

strategies for creating and testing a reference panel of polymorphic sites. We re-sequenced

~240kb on chromosome 9p21 (chr9:21936711-22176221, hg18) spanning the T2D and MI

associations in 47 unrelated individuals of European ancestry from the HapMap CEU

population17 as part of a sequencing project spanning six T2D-associated regions

(Supplementary Table 1). Sequencing was performed at the Broad Institute on Illumina

Genome Analyzers (Supplementary Note, all data available in the NCBI Short Read

Archive). An analytical framework (Supplementary Note, Supplementary Table 2,

Supplementary Figs. 1-5), since extended and incorporated in the Genome Analysis Tool

Kit18,19, was developed and includes methods to empirically recalibrate Illumina base

quality scores, a Bayesian framework to call SNPs, local re-alignment to identify insertions/

deletions (and remove clusters of false positive SNPs), and filters to remove false positive

SNP calls based on discrepancy between forward and reverse strands.

This targeted sequencing identified 635 high-confidence SNPs on chromosome 9p21 (4,463

across the six regions) (Supplementary Table 3, Supplementary Fig. 6, SNPs available in

Shea et al. Page 2

Nat Genet. Author manuscript; available in PMC 2014 July 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



dbSNP). We evaluated sensitivity against HapMap II17 and the high coverage Pilot 2 data

from the 1000 Genomes Project20 (Supplementary Note): at sites in overlapping samples

with 10x or greater read coverage (70% of the region), sensitivity was 99% for HapMap

variants and 97% for variants found in 1000G Pilot 2 (Supplementary Fig. 7a-c). To

evaluate specificity, we genotyped 257 sites found on chromosome 9p21 but not previously

genotyped in HapMap (Supplementary Fig. 7d, e). Overall, 96% of variants seen more than

once in sequencing validated in the genotyping data (Supplementary Table 4).

We compared these variants to those discovered in the low-coverage Pilot 1 of the 1000

Genomes Project 20, limiting comparison to 32 CEU individuals studied in both projects.

Across the six regions, both projects identified similar numbers of variants: 3,897 SNPs in

the high coverage targeted sequencing as compared to 4,043 in 1000G Pilot 1. However, the

variants found were in fact only partially overlapping. Of variants seen in the high coverage

targeted sequencing, 22% were missed by 1000G Pilot 1 (Fig. 1), nearly all of which were

rare: 72% of these sites were singletons and 12% were seen twice (Fig. 1, Table 1). (Pilot 1

successfully identified 97% of SNPs seen more than 5 times in high coverage sequencing

(Table 1)). Of variants identified in Pilot 1 but not in targeted sequencing (n=998), nearly all

were sites at which target capture failed to achieve high coverage: 65% of these sites had

zero coverage. Thus, targeted capture and low-pass whole genome had distinct and non-

overlapping failure modes.

We evaluated methods for testing these variants for association to disease via linkage

disequilibrium and haplotype-based imputation. First, we genotyped SNPs found in targeted

re-sequencing on chromosome 9p21 in 168 individuals (56 parent offspring trios) from the

HapMap extended CEU population21 (Supplementary Note). We used MACH22,23 to impute

variants from this reference panel into 1,000 T2D patients and 1,048 controls from the

Diabetes Genetics Initiative (DGI) cohort1 and 1,274 MI cases and 1,407 controls from the

Myocardial Infarction Genetics (MIGen) Consortium cohort6, each previously genotyped on

Affymetrix GWAS arrays (Supplementary Note).

We compared the results of imputation with this augmented reference panel (n=464 variants,

Supplementary Table 5) to those obtained when imputing from HapMap II alone (n=238

variants). The addition of genotype data for a more complete collection of common variants

provided imputation data for a much larger number of SNPs than was possible with HapMap

II, which contains only 50-60% of common variants (Fig. 2a, b and Supplementary Fig. 8a,

b). However, even with the augmented reference panel, the tag SNP density characteristic of

the first generation GWAS arrays on which our disease samples were typed allowed only

80% of common (MAF > 5%) variants to be captured (either directly typed or imputed with

a MACH-estimated r2 ≥ 0.8). Moreover, only a small fraction of intermediate frequency

variation (MAF 2-5%) was imputed with an estimated r2 above this stringent threshold (Fig.

2c, d and Supplementary Fig. 8c, d).

To evaluate the impact of tag SNP density on imputation performance, we increased the

number of tags across the region to approximately 1 SNP per 1.5kb (the previous density

was ~1SNP/5kb in T2D samples and ~1SNP/3kb in MI samples) in the T2D and MI cohorts

(Supplementary Note). With this increased density of tag SNPs, nearly all common variants
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(~98%) were captured with r2 ≥ 0.8 in disease samples. Moreover, performance for

intermediate frequency variants was dramatically improved, rising from 2% to 75% with r2

≥ 0.8 (Fig. 2e, f and Supplementary Fig. 8e, f). This result was not specific to the Affymetrix

GWAS arrays, as we observed a similar improvement in imputation ability upon addition of

tag SNPs using multiple other GWAS arrays (Supplementary Fig. 9).

We next compared different reference panels, imputing in each case into disease samples

with the higher tag SNP density. The reference panels were: (a) the genotyped reference

panel of 168 individuals above (112 unrelated individuals), (b) the targeted sequencing data

(47 individuals, without genotyping and expansion into a larger sample set), and (c) 1000

Genomes Pilot 1 (55 individuals). We considered both the fraction of variants in each

reference panel successfully imputed (which is related to the quality and completeness of

SNP genotypes and to the size of the reference panel) and the fraction of all variation

captured (which, in addition, depends on the proportion of all known SNPs represented in

the reference panel).

The union of the three reference panels contained 582 variants (Fig. 3a). Each panel was

partially incomplete, due to genotyping assay failure in the genotyped panel (14% of SNPs

missing), sample size and low coverage in 1000 genomes (16% of SNPs missing), and

sample size and gaps in coverage in the targeted sequencing (19% of SNPs missing). For

common variants, there is little difference in bulk performance between the reference panels.

Considering only SNPs contained in each reference panel (Fig. 3b) the genotyped panel has

the highest proportion of variants imputed well. However, when all variation is considered

(Fig. 3c), a lower proportion of common variation is captured by imputing from the

genotyped reference panel, owing to the fact that some SNPs were missing in this panel

because they failed assay design or quality control. Notably, the 1000G (freely available)

and sequencing (costly) strategies performed equivalently for these common variants.

For intermediate frequency variants, there are more pronounced differences between the

panels (Fig. 3b, c). These variants were best imputed from the genotyped reference panel

(Fig. 3b), which was the largest and also contained trio information. This was true even

when all variation was considered (Fig. 3c), suggesting that the improved imputation quality

from genotype data and increased sample size offset the loss of variants in this panel due to

genotyping failure. Comparing the high coverage re-sequencing and 1000G reference

panels, lower frequency variants were better imputed from the high coverage re-sequencing

data both when considering only the SNPs within each reference panel (Fig. 3b) and when

considering the overall proportion of low frequency variants captured by imputation from

each reference panel (Fig. 3c). This is consistent with the low coverage 1000G pilot 1 data

being less complete and accurate for lower frequency variants20.

We tested variants for association to T2D and MI using imputation from all three reference

panels to maximize the number of variants captured (Supplementary Note). Overall, we

have captured 461 of the 582 polymorphic variants observed across all three reference

panels in our T2D and MI samples with a MACH-estimated r2 of at least 0.8: this represents

~ 92% of all known common variants and ~52% of intermediate frequency variants (at a

MACH-estimated r2 of 0.5, these figures are 98% of common variants and 83% of
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intermediate frequency variants). In comparison, only 176 of the 582 variants were

previously captured by imputation from HapMap. Despite testing many additional SNPs in

partial LD with the index GWAS hits and at allele frequencies not well captured by first

generation GWAS arrays and HapMap, we found no example of a SNP with stronger

association to T2D or MI than the initial GWAS signals.

However, we did identify multiple additional variants in strong LD with the GWAS hits that

might underlie each association. We observed the three-tiered haplotypic association to T2D

first reported by the Wellcome Trust Case Control Consortium with protective, risk, and

neutral haplotypes (Table 2). The protective alleles of the GWAS SNP (rs10811661) and

nine other SNPs in strong LD with this variant tag the protective haplotype (Fig. 4a,

Supplementary Table 6). Interestingly, no single SNP yet identified marks the risk

haplotype. Association analyses for MI identified 7 SNPs in LD with each other and with

equivalent evidence for association (P < 10−4) as well as 54 additional SNPs with only

slightly less evidence for association (P < 10−3) (Fig. 4b, Supplementary Table 6). Knockout

of the MI-associated region in mouse alters regulation of CDKN2A and CDKN2B24, and two

of the associated SNPs have recently been shown to disrupt a STAT1 binding site25.

Interestingly, in addition to the SNPs disrupting the STAT1 site, there are other variants

with equivalent MI association and with putative functional annotations, including variants

overlapping exons of the non-coding transcript CDKN2BAS, highly conserved regions, and

predicted, conserved transcription factor binding sites (Supplementary Table 6).

This study is limited by the investigation of a single region (albeit one with at least eight

different disease associations), by the early nature of the sequencing data analyzed, by the

small number of samples sequenced in SNP discovery, and by the sample size of our disease

cohorts. Nonetheless, the observations on the strengths and weaknesses of different methods

for fine mapping GWAS signals are likely general: targeted high coverage sequencing

provides high sensitivity for lower frequency variants, but has gaps in coverage; the 1000G

Pilot 1 resource offers more even coverage at lower depth, currently sufficient for capture of

most common variation; creating a genotyped reference panel improves accuracy and

sample size, but is limited by assay conversion failures; tag SNP density characteristic of

first generation GWAS is inadequate to maximally extract information with current

imputation algorithms. To some extent, these limitations are transient: the growing 1000

Genomes Project resource is sequencing over 2,000 diverse samples with both low-pass

whole genome and high coverage targeted exon approaches, increasing the accuracy and

completeness of the public reference panel. However, our results suggest that fully

exploiting this resource for imputation may require increasing tag density in GWAS disease

samples and / or improved algorithms for imputation.

Finally, our study did not find evidence for stronger association at 9p21 to SNPs in moderate

LD with the initial tags. While the maximum achievable association signal for lower

frequency variants was limited by our sample size, we did not observe lower frequency

variants with effect sizes that could individually explain the common variant associations.

We do, however, identify additional common variants in LD with the GWAS hits that might

underlie each association. Enumeration of all variants on 9p21 that might explain each

association signal will be needed as a foundation for systematic functional studies that aim
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to understand how different non-coding variants in this single genomic interval can lead to

such varied and clinically significant phenotypic associations.

Methods

Targeted Re-Sequencing

Six regions associated with T2D were selected for targeted re-sequencing (Supplementary

Table 1). Because the goal of this study to was to identify additional SNPs that might

explain the initial GWAS signal, region boundaries were selected to encompass all SNPs

showing detectable linkage disequilibrium (r2 ≥ 0.2) to the T2D associated SNP with the

most significant p-value. DNA was captured for sequencing by long-range PCR with 2-5kb

amplicons or by hybrid selection (HS) using 170bp baits tiled across the region on an

Agilent microarray26. All sequencing was performed at the Broad Institute in 2008 using

Illumina Genome Analyzers. Runs from PCR-based capture generated 36bp reads and runs

from HS-based capture generated 46-50bp reads. Methods for alignment, quality score

adaptation and recalibration, and variant calling are described in detail in the Supplementary

Note.

SNP Genotyping and Quality Control

Genotyping was performed on the Sequenom MassARRAY iPLEX platform. Quality

control filters included 1) > 95% genotyping rate, 2) Hardy Weinberg equilibrium (with P >

0.001) and 3) Mendel error rate < 5%.

Phasing and Imputation

We compared several strategies and publicly available tools for phasing and imputation

directly from Illumina sequencing data (Supplementary Fig. 10-11). Phased haplotypes for

all reference panels were created using the PHASE software package (Version 2.1)27,28. For

the genotyped reference panel, trio information was used in phasing (-P1 option). For

sequencing reference panels, known phase was specified at HapMap sites (-k option). All

other PHASE parameters were default values. Imputation from reference haplotypes was

performed using MACH22,23 (Version 1.0.16). 100 rounds were used; all other MACH

parameters were default values.

Association Analyses

Variants were tested for association using logistic regression on imputed genotype dosages

and individual disease status. EIGENSTRAT29 (DGI) or PLINK30 (MIGen) was used to

estimate principal components which track with the ancestry of the study samples1,6; the

first ten components were used as covariates in logistic regression to account for population

structure. For T2D analyses, additional covariates used were: age, gender, and body mass

index. For MI analyses additional covariates used were age, gender, BMI, and smoking.

Tests for haplotypic association to T2D were performed using the PLINK30 (Version 1.05)

software package.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison of targeted sequencing to 1000G Pilot 1 Data
Variant calls were made in all six regions of T2D association in the 32 individuals who were

sequenced as part of both this targeted, high coverage sequencing effort (total 47 CEU

HapMap individuals) as well as 1000G Pilot 1 (total 60 CEU HapMap individuals).
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Figure 2. Fraction of variation on chromosome 9p21 captured in T2D disease cohort by different
imputation scenarios
MACH imputation quality estimates (a, c, e) and overall fraction of variation captured in

T2D samples (b, d, f) for different imputation scenarios. (a, c, e) The MACH-estimated r2

for each SNP is plotted as a function of genomic position. SNPs not observed in the

reference panel are assigned an r2 of zero. Recombination rate (estimated from HapMap) is

plotted to reflect local LD structure. Gene annotations were taken from the University of

California-Santa Cruz Genome Browser. (b, d, f) The fraction of variants captured in T2D

samples is shown as a function of MAF and MACH-estimated r2. Imputation scenarios are:

(a, b) Imputing from HapMap II (n=238 SNPs in 60 individuals) into the SNPs genotyped

on the Affymetrix 500K array; (c, d) Imputing from 112 individuals genotyped at HapMap

II sites and validated sequencing sites (total n=464 SNPs) into the SNPs genotyped on the

Affymetrix 500K array; (e, f) Imputing from the same reference panel as c, d into SNPs

genotyped on the Affymetrix 500K array plus additional tag SNPs genotyped in the T2D

cohort (genotyped marker density in T2D samples ~1 SNP/1.5kb).
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Figure 3. Comparison of imputation from a genotyped reference panel, directly from high
coverage re-sequencing data, and directly from 1000G Pilot 1 data
(a) Variants present in the three reference panels and their overlap. The 67 variants present

in the genotyped reference panel but not in the high coverage sequencing reference panel

(denoted by asterisk) were called in high coverage sequencing as singletons and so were

excluded from the sequencing reference panel. 40% of these variants are not singletons in

the larger genotyped reference panel. (b) The fraction of sites within each reference panel

captured with a MACH-estimated r2 of at least 0.8. (c) The overall fraction of known

variants captured with a MACH-estimated r2 of at least 0.8 by imputation from each

reference panel.
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Figure 4. Association results for T2D and MI on chromosome 9p21
Regional plots showing association signal for (a) T2D and (b) MI. The signal for each SNP

(represented as −log10 p-value) is plotted as a function of genomic position. The size of the

diamond for each SNP represents the LD (measured as r2) between that SNP and the original

GWAS SNP (rs10811661 for T2D and rs4977574 for MI). Recombination rate (estimated

from HapMap) is plotted to reflect the local LD structure in the region. Gene annotations

were taken from the University of California-Santa Cruz Genome Browser.
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Table 1
Sensitivity of 1000G Pilot 1 for variants detected in targeted, high coverage sequencing of
samples common to both projects

Pilot 1 of the 1000 Genomes Project contains 97% of variants seen more than 5 times in high coverage

sequencing, and 35% of variants seen once.

Number of times
non-reference allele

observed in this study

Number of
SNPs called,

this study

% Contained in
1000G Pilot 1

% in dbSNP,
build 129

% Validated on
chr9p21

1X 941 35% 13% 91%

2X 300 68% 42% 88%

3X 239 82% 55% 100%

4X 154 87% 66% 86%

5X 186 91% 67% 70%

>5X 2077 97% 92% 98%
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Table 2
Haplotypic association to T2D on chromosome 9p21

rs10757282 and the reported SNP from GWAS, rs10811661, define haplotypes with three levels of risk (risk,

protective, and neutral) for T2D.

Haplotypes defined by rs10757282, rs10811661

Haplotype Frequency OR P-value

Overall Evidence -- -- 4.40 × 10−5

CT 0.30 1.29 3.99 × 10−4

TT 0.54 0.96 5.24 × 10−1

CC 0.16 0.72 2.71 × 10−4
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