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Abstract— The performance of demand-driven caching de-
pends on the locality of reference exhibited by the stream of
requests made to the cache. In particular, it is expected that
the stronger the locality of reference, the smaller the miss
rate of the cache. For the Independent Reference Model, this
amounts to a smaller miss rate when the popularity distribution
of requested objects in the stream is more skewed. In this
paper, we formalize this “folk theorem” through the companion
concepts of majorization and Schur-concavity. This folk theorem
is established for caches operating under a Random On-demand
Replacement Algorithm (RORA). However, the result fails to hold
in general under the (popular) LRU and CLIMB policies, but
can be established when the input has a Zipf-like popularity
pmf with large skewness parameter. In addition, we explore
how the majorization of popularity distributions translates into
comparisons of three well-known locality of reference metrics,
namely the inter-reference time, the working set size and the
stack distance.

Keywords: Locality of reference in request streams, Popu-
larity, Majorization/Schur-concavity.

I. INTRODUCTION

Web caching aims to reduce network traffic, server load
and user-perceived retrieval latency by replicating “popular”
content on (proxy) caches that are strategically placed within
the network. This approach is a natural outgrowth of caching
techniques which were originally developed for computer
memory and distributed file sharing systems, e.g., [1, 2, 3]
(and references therein).

The performance of any form of caching is determined by a
number of factors, chief amongst them the statistical properties
of the streams of requests made to the cache. One important
such property is the locality of reference present in a request
stream whereby bursts of references are made in the near
future to objects referenced in the recent past. The implications
for cache management should be clear – Increased locality of
reference should yield performance improvements for demand-
driven caching that exploits recency of reference. In particular,
under this form of cache management, we expect the following
“folk theorem” to hold: The stronger the locality of reference
in the stream of requests, the smaller the miss rate since the
cache ends up being populated by Web objects with a higher
likelihood of access in the near future.

The notion of locality and its importance for caching were
first recognized by Belady [4] in the context of computer

memory. Subsequently, a number of studies have shown that
request streams for Web objects exhibit strong locality of
reference1 [5, 6, 7]. Attempts at characterization were made
early on by Denning through the working set model [8, 9].
Yet, like the notion of burstiness used in traffic modeling,
locality of reference, while endowed with a clear intuitive
content, admits no simple definition. Not surprisingly, in spite
of numerous efforts, no consensus has been reached on how to
formalize the notion, let alone compare streams of requests on
the basis of their locality of reference.2 This has precluded a
formal exploration of the folk theorem mentioned above, and
it is one of the purposes of this paper to present a framework,
albeit restricted, where such a discussion can take place.

Although several competing definitions are currently avail-
able, it is by now widely accepted that the two main contrib-
utors to locality of reference are temporal correlations in the
streams of requests and the popularity distribution of requested
objects. To describe these two sources of locality, and to
frame the subsequent discussion, we assume the following
generic setup: We consider a universe of N cacheable items
or documents, labeled i = 1, . . . , N , and we write N =
{1, . . . , N}. The successive requests arriving at the cache are
modeled by a sequence {Rt, t = 0, 1, . . .} of N -valued rvs.

1. The popularity of the sequence of requests {Rt, t =
0, 1, . . .} is defined as the pmf p = (p(i), . . . , p(N)) on N
given by

p(i) := lim
t→∞

1
t

t−1∑
τ=0

1 [Rτ = i] a.s., i = 1, . . . , N, (1)

whenever these limits exist (and they do in most models treated
in the literature).

2. Temporal correlations are more delicate to define. Indeed,
it is somewhat meaningless to use the covariance function

γ(s, t) := Cov[Rs, Rt], s, t = 0, 1, . . . .

as a way to capture these temporal correlations as is tradition-
ally done in other contexts. This is because the rvs {Rt, t =
0, 1, . . .} take values in a discrete set. We took {1, . . . , N}

1At least in the short timescales
2An exception can be found in a recent paper by Fonseca et al. [10]; more

on that later!
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but we could have selected {1, 1
2 , . . . ,

1
N } instead; in fact any

set of N distinct points in an arbitrary space would do the
job. Thus, the actual values of the rvs {Rt, t = 0, 1, . . .}
are of no consequence, and the focus should instead be on
the recurrence patterns displayed by requests for particular
documents over time. The literature contains several metrics
to do this, e.g., the inter-reference time [3, 5, 10], the working
set size [8, 9] and the stack distance [11, 12, 13].

To see how popularity indeed contributes to locality of
reference, consider the situation where there is no temporal
correlations in the stream of requests as would be the case
under the standard Independence Reference Model (IRM).
More precisely, under the IRM with popularity pmf p, the
successive requests {Rt, t = 0, 1, . . .} form a sequence of
i.i.d. N -valued rvs distributed according to the pmf p.3 Here,
the skewness of p does act as an indicator of the strength of
locality of reference present in the stream, under the intuition
that the more “balanced” the pmf p, the weaker the locality of
reference. This is best appreciated by considering the limiting
cases: If p is extremely unbalanced with p = (1− δ, ε, . . . , ε)
(with δ = (N − 1)ε), a reference to document 1 is likely to
be followed by a burst of additional references to document
1 provided (N − 1)ε� 1− δ. The exact opposite conclusion
holds if the popularity pmf p were uniform, i.e., p(1) =
. . . = p(N) = 1

N , for then the successive requests {Rt, t =
0, 1, . . .} form a truly random sequence.

Thus, even in the absence of temporal correlations, locality
of reference is present, with its strength determined by the
skewness of the underlying popularity distribution. In this
paper, as we restrict ourselves to the class of IRMs,4 the
question naturally arises as to whether pmfs can be compared
on the basis of their skewness so that the folk theorem
discussed earlier can be established in some form. More
formally, consider two IRMs with popularity pmfs p and q
(on N ), and let M(p) and M(q) denote their miss rates under
some cache replacement policy. We seek a way to compare the
vectors p and q, with the interpretation that if p is less skewed
than q, then the comparison

M(q) ≤M(p) (2)

holds. The main contributions along these lines are now
summarized:

1. Majorization, Schur-concavity and entropy – In a
recent paper, Fonseca et al. [10] introduced such a notion
of comparison based on the entropy (6) of the popularity
pmfs, i.e., the pmf p is considered to be less skewed (or more
balanced) than the pmf q whenever the entropy of p is greater
than the entropy of q, i.e.,

H(q) ≤ H(p). (3)

3Thus, P [Rt = i] = p(i) (i = 1, . . . , N) for all t = 0, 1, . . . and (1)
holds with the given pmf p by the Strong Law of Large Numbers.

4This may not be too much of a limitation given that the IRM is the most
basic request model; it is often used for checking various properties [14].
Moreover, recent results suggest some form of insensitivity to the statistics of
streams of requests [15]. Of course, more work along these lines is needed.

Unfortunately, this notion is not strong enough to allow for
results of the form (2) to be established. Here, we turn instead
to the stronger concept of majorization [16] as a way to
characterize imbalance in the components of popularity pmfs.
This notion is stronger than the concept of entropy-based
comparison, and therefore holds the promise that comparison
results such as (2) might indeed be obtainable under it. This
will turn out to be the case as a result of the existence of a rich
and structured class of monotone functions associated with
majorization, the so-called Schur-convex/concave functions.

2. The folk theorem under RORA policies – The com-
parison (2) is shown to hold under the IRM for a number of
policies, namely the optimal policy A0, the random policy and
the FIFO policy. These positive results are then extended to a
very large class of replacement policies, the so-called Random
On-demand Replacement Algorithms (RORA). To the best of
the authors’ knowledge, these results provide the first formal
proof of folk theorems such as (2).

3. Counterexamples and asymptotics – However, the com-
parison (2) does not always hold under the LRU5 and CLIMB
replacement policies. We exhibit situations where under these
policies, the IRM stream with pmf of higher entropy may
have a smaller miss rate than the IRM stream with pmf of
lower entropy. Yet, when the popularity pmfs are Zipf-like,
simulations show that the comparison (2) does hold for the
LRU and CLIMB policies. In fact this is formally established
in the limiting regime where the skewness parameter of the
Zipf-like pmf is large.

4. Popularity and other locality of reference metrics –
In the spirit of the comparison (2), we investigate how the
comparison by majorization of popularity pmfs is compatible
with comparisons of three well-established locality of refer-
ence metrics, namely, the inter-reference time, the working
set size and the stack distance.

Recently majorization has also been used for comparing
the popularity pmf of the output of caches under the IRM for
various policies [17]. Additional information on the material
of this paper is available in [18].

The paper is organized as follows: Majorization and the
companion notion of Schur-convexity are introduced in Sec-
tion II. Zipf-like distributions are discussed in Section III.
Some useful technical facts are summarized in Section IV.
The basic model of cache management is given in Section V.
The policy A0 and the random policy are discussed in Sections
VI and VII, respectively. The results on RORA cache policies
can be found in Section VIII; Some preliminaries are briefly
discussed in Appendix I. Results for the LRU and CLIMB
policies are collected in Section IX with some proofs given in
Appendix II. The effects of popularity on the inter-reference
time, the working set size and the stack distance, are discussed
in Section X, XI and XII, respectively. The paper closes with
concluding remarks in Section XIII.

5Least-Recently-Used
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II. MAJORIZATION AND SCHUR-CONCAVITY

Skewness in popularity distributions can be crisply formal-
ized through the concept of majorization [16]. This notion
formalizes statements concerning the relative size of compo-
nents of two vectors, viz., the components (x1, . . . , xN ) of the
vector x are “more spread out” or “more balanced” than the
components (y1, . . . , yN ) of the vector y: For vectors x and
y in IRN , we say that x is majorized by y, and write x ≺ y,
whenever the conditions

n∑
i=1

x[i] ≤
n∑

i=1

y[i], n = 1, 2, . . . , N − 1 (4)

and
N∑

i=1

xi =
N∑

i=1

yi (5)

hold with x[1] ≥ x[2] ≥ . . . ≥ x[N ] and y[1] ≥ y[2] ≥
. . . ≥ y[N ] denoting the components of x and y arranged
in decreasing order, respectively.

As elegantly demonstrated in the monograph of Marshall
and Olkin [16], this notion has found widespread use in many
diverse branches of mathematics and their applications, viz. in
computer databases [19] and storage [20].

Key to the power of majorization is the companion notion
of monotonicity associated with it: An IR-valued function ϕ
defined on a set A of IRN is said to be Schur-convex (resp.
Schur-concave) on A if

ϕ(x) ≤ ϕ(y) (resp. ϕ(x) ≥ ϕ(y))

whenever x and y are elements in A satisfying x ≺ y. If
A = IRN , then ϕ is simply said to be Schur-convex (resp.
Schur-concave). In other words, Schur-convexity (resp. Schur-
concavity) corresponds to monotone increasingness (resp.
decreasingness) for majorization (viewed as a pre-order on
subsets of IRN ).

With any permutation σ of {1, . . . , N}, we associate the
operator σ : IRN → IRN through the relation

σ(x) := (xσ(1), . . . , xσ(N)), x ∈ IRN .

Let {σi, i = 1, . . . , N !} be a given enumeration of all the
N ! permutations of {1, . . . , N}; this enumeration will be held
fixed throughout the paper. A subset A of IRN is said to be
symmetric if for any x in A, the element σi(x) also belongs
to A for each i = 1, . . . , N !. Moreover, for any subset A
of IRN , a mapping ϕ : A → IR is said to be symmetric if
A is symmetric and for any x in A, we have ϕ(σi(x)) =
ϕ(x) for each i = 1, . . . , N !. If the mapping ϕ : A → IR is
Schur-convex (resp. Schur-concave) with symmetric A, then
ϕ is necessarily symmetric since σi(x) ≺ x ≺ σi(x) implies
ϕ(σi(x)) = ϕ(x) for each i = 1, . . . , N !.

Comparison results of the form (2) and (3) are essentially
statements concerning the Schur-concavity of certain function-
als. We provide an easy illustration of this idea to the entropy

comparison (3). Recall that the entropy H(p) of the pmf p on
N is defined by

H(p) := −
N∑

i=1

p(i) log2 p(i) (6)

with the convention t log2 t = 0 for t = 0. By a classical result
of Schur [16, C.1, p. 64] the mapping x → −∑N

i=1 xi log2 xi

is a Schur-concave function on IRN
+ . This leads readily to the

following well-known result [16, D.1, p. 71].
Proposition 1: For pmfs p and q on N , it holds that

H(q) ≤ H(p)

whenever p ≺ q.
Thus, majorization provides a stronger notion for comparing
the imbalance in the components of pmfs than the entropy-
based comparison (3) proposed by Fonseca et al. in [10].

III. ZIPF-LIKE PMFS

It has been observed in a number of studies that the popu-
larity distribution of objects in request streams at Web caches
is highly skewed. In [11] a good fit was provided by the Zipf
distribution according to which the popularity of the ith most
popular object is inversely proportional to its rank, namely 1/i.
In more recent studies [14, 21], “Zipf-like” distributions6 were
found more appropriate; see [14] (and references therein) for
an excellent summary. Such distributions form a one-parameter
family. In our set-up, the popularity distribution p of the N -
valued rvs {Rt, t = 0, 1, . . .} is said to be Zipf-like with
parameter α ≥ 0 if

p(i) =
i−α

Cα(N)
, i = 1, . . . , N (7)

with

Cα(N) :=
N∑

i=1

i−α. (8)

The pmf (7) will be denoted by pα. The case α = 1
corresponds to the standard Zipf distribution. The value of
α was found to be in the range 0.64 − 0.83 [14].

Zipf-like pmfs are skewed towards the most popular ob-
jects. As α → 0, the Zipf-like pmf approaches the uniform
distribution u while as α → ∞, it degenerates to the pmf
(1, 0, . . . , 0). Extrapolating between these extreme cases, we
expect the parameter α of Zipf-like pmfs (7)-(8) to measure
the strength of skewness, with the larger α, the more skewed
the pmf pα. The next result can already be found in [16, B.2.b,
p. 130] and shows that majorization indeed captures this fact.

Lemma 1: For 0 ≤ α < β, it holds that pα ≺ pβ .
In the spirit of the aforementioned folk theorem, we expect

the miss rate of the cache replacement policy to decrease
as α increases. This has been shown to be the case using
simulations [22]. Zipf-like pmfs will be used in the discussion
of the LRU and CLIMB policies given in Section IX.

6Such distributions are sometimes called generalized Zipf distributions.
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IV. SOME USEFUL TECHNICAL FACTS

We have collected in this section some useful technical
results concerning Schur-convexity. We begin with some nota-
tion that will be used repeatedly: Let Λ�(M ;N ) be the collec-
tion of all unordered subsets of size M of N = {1, . . . , N},
and let Λ(M ;N ) be the collection of all ordered sequences
of M distinct elements from N . We write {i1, . . . , iM}
(resp. (i1, . . . , iM )) to denote an element in Λ�(M ;N ) (resp.
Λ(M ;N )).

Next, as in [16, p. 78], for each r = 1, . . . , N , we define
the elementary symmetric function Er : IRN → IR by

Er(x) :=
∑

{i1,...,ir}∈Λ�(r;N )

xi1 · · ·xir
, x ∈ IRN . (9)

By convention we write E0(x) = 1 (x ∈ IRN ). It is well
known [16, Prop. F.1., p. 78] that the function Er is Schur-
concave on IRN

+ .
We recall that any mapping ϕ : A→ IR which is symmetric

and convex (resp. concave) on some convex symmetric subset
A of IRN is necessarily Schur-convex (resp. Schur-concave)
[16, Prop. C.2, p. 67].

The following result is due to Schur [16, F.3, p. 80] and is
key to a number of proofs.

Proposition 2: For each r = 1, . . . , N , the mapping Φr :
IRN

+ → IR given7 by

Φr(x) :=
Er(x)
Er−1(x)

, x ∈ IRN
+

is increasing,8 symmetric and concave, hence increasing and
Schur-concave.

The next result is an easy byproduct of the definitions.
Proposition 3: Let A be a convex symmetric subset of IRN .

Assume the mapping ϕ : A → IR to be concave and the
mapping h : IRN ! → IR to be increasing, symmetric and
concave. Then, the mapping ϕh : A→ IR given by

ϕh(x) = h(ϕ(σ1(x)), . . . , ϕ(σN !(x))), x ∈ A

is symmetric and concave, thus Schur-concave on A.
With vectors t and x in IRN , we associate the element t ·x

of IRN with components

t · x := (t1x1, . . . , tNxN ).

With this notation we can state an important consequence of
Proposition 3.

Proposition 4: Assume the mapping ψ : IRN
+ → IR to be

concave and the mapping h : IRN ! → IR to be increasing,
symmetric and concave. For any non-zero vector t in IRN , the
mapping ψt : IRN

+ → IR defined by

ψt(x) = h(ψ(t · σ1(x)), . . . , ψ(t · σN !(x)))

for all x in IRN
+ , is symmetric and concave, thus Schur-concave.

7For x in IRN
+ such that Er−1(x) = 0, we set Φr(x) = 0 by continuity.

8Here, increasing means increasing in each argument.

Proof. If the mapping ψ is concave, then the mapping ψ̃t :
IRN

+ → IR given by

ψ̃t(x) := ψ(t · x), x ∈ IRN
+

is also concave. We obtain the desired result by applying
Proposition 3 with A = IRN

+ and ϕ = ψ̃t.

V. DEMAND-DRIVEN CACHING

The system is composed of a server where a copy of each
of the N cacheable documents is available, and of a cache of
size M (1 ≤M < N ). Documents are first requested at the
cache: If the requested document has a copy already in cache
(i.e., a hit), this copy is downloaded from the cache by the
user. If the requested document is not in cache (i.e., a miss),
a copy is requested instead from the server to be put in the
cache. If the cache is already full, then a document already in
cache is evicted to make place for the copy of the document
just requested. A demand-driven cache replacement policy (to
be specified shortly) is assumed to be in use.

Consecutive user requests are modeled by a sequence of
N -valued rvs {Rt, t = 0, 1, . . .}. For simplicity we say that
request Rt occurs at time t = 0, 1, . . .. Let St denote the
collection of documents in cache just before time t so that
St is a subset of N , and let Ut denote the decision to be
performed according to the cache replacement policy in force.
Demand-driven caching is characterized by the dynamics

St+1 =




St if Rt ∈ St

St +Rt if Rt �∈ St, |St| < M
St − Ut +Rt if Rt �∈ St, |St| = M

(10)

where |St| denotes the cardinality of the set St, and St −
Ut + Rt denotes the subset of {1, . . . , N} obtained from St

by removing Ut and then adding Rt to it, in that order.
These dynamics reflect the following operational assump-

tions: (i) a requested document not in cache is always added to
the cache if the cache is not full; and (ii) eviction is mandatory
if the request Rt is not in cache St and the cache St is full.

As mentioned earlier, the stream of requests {Rt, t =
0, 1, . . .} is modeled according to the standard IRM with
popularity pmf p = (p(1), . . . , p(N)). To avoid uninteresting
situations, it is always the case that

p(i) > 0, i = 1, . . . , N. (11)

A pmf p on {1, . . . , N} satisfying (11) is said to be admissible.
Under this non-triviality condition (11), every document is
eventually requested as we note that (1) holds by the Strong
Law of Large Numbers.

As we have in mind to study long term characteristics
under demand-driven replacement policies, there is no loss
of generality in assuming (as we do from now on) that the
cache is full in that |St| = M for all t = 0, 1, . . ., and (10)
simplifies to

St+1 =
{
St if Rt ∈ St

St − Ut +Rt if Rt �∈ St
t = 0, 1, . . . . (12)
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The miss rate is then defined as the limiting constant

M(p) := lim
t→∞

1
t

t∑
τ=1

1 [Rτ �∈ Sτ ] a.s. (13)

and depends on the replacement policy in use. This limiting
constant exists under the demand-driven replacement policies
of interest.

VI. THE POLICY A0

The requests are assumed described by the IRM with
popularity pmf p. When at time t = 0, 1, . . ., the cache St

is full and the requested document Rt is not in the cache, the
policy A0 prescribes the eviction of Ut given by

Ut = arg min (p(j) : j ∈ St) . (14)

This policy is an instance of the so-called policy Aσ associated
with the permutation σ of {1, . . . , N}, whereby

Ut = arg min (σ(j) : j ∈ St) . (15)

The policy A0 is that policy (15) associated with the inverse
of the permutation σ� of {1, . . . , N} which orders the com-
ponents of the underlying pmf p in increasing order, namely
p(σ�(1)) ≤ p(σ�(2)) ≤ . . . ≤ p(σ�(N)).

Under the IRM with popularity pmf p, we can easily modify
classical arguments [2, Thm. 6.4, p. 269] in order to evaluate
the miss rate under policy Aσ as

Mσ(p) =
N∑

i=M

p(σ(i)) −
∑N

i=M p(σ(i))2∑N
i=M p(σ(i))

. (16)

That (2) indeed holds for the policy A0 is contained in
Theorem 1: For admissible pmfs p and q on N , it holds

that
MA0(q) ≤MA0(p) (17)

whenever p ≺ q.

Proof. The policy A0 is known [1, 2] to minimize the miss
rate amongst a large class of demand-driven policies, including
the policies (15). In particular, we have

MA0(p) = min
i=1,...,N !

Mσi
(p). (18)

Furthermore, for any permutation σ of {1, . . . , N}, we can
rewrite (16) as

Mσ(p) =

(∑N
i=M p(σ(i))

)2

−∑N
i=M p(σ(i))2∑N

i=M p(σ(i))

= 2

∑N
i=M

∑i−1
j=M p(σ(i))p(σ(j))∑N
i=M p(σ(i))

= 2
E2(t · σ(p))
E1(t · σ(p))

= 2Φ2(t · σ(p)) (19)

where the element t of IRN is specified by t1 = . . . = tM−1 =
0 and tM = . . . = tN = 1.

The mapping h : IRN ! → IR : y → min (y1, . . . , yN !)
is clearly increasing, symmetric and concave, while the
mapping Φ2 is concave on IRN

+ by Proposition 2. Combining
these facts with (18) and (19), we conclude by Proposition 4
that the miss rate functional under the policy A0 is indeed
Schur-concave in the pmf vector and the desired result
follows.

VII. THE RANDOM POLICY

According to the random policy, when the cache is full, the
document to be evicted from the cache is selected randomly
according to the uniform distribution. Under the IRM with
popularity pmf p, the corresponding miss rate is given by [1,
Thm. 11, p. 132]

MRand(p) (20)

=

∑
{i1,...,iM} p(i1) · · · p(iM )

(
1 −∑M

k=1 p(ik)
)

∑
{i1,...,iM} p(i1) · · · p(iM )

where
∑

{i1,...,iM} denotes the summation over the collection
Λ�(M ;N ). The analog of Theorem 1 for the random policy
is simply

Theorem 2: For admissible pmfs p and q on N , it holds
that

MRand(q) ≤MRand(p) (21)

whenever p ≺ q.

Proof. First, we note that∑
{i1,...,iM}∈Λ�(M ;N )

p(i1) · · · p(iM ) = EM (p). (22)

It is also a simple matter to see that

∑
{i1,...,iM}∈Λ�(M ;N )

p(i1) · · · p(iM )(1 −
M∑

k=1

p(ik))

=
∑

{i1,...,iM}∈Λ�(M ;N )

p(i1) · · · p(iM ) ·
∑

i/∈{i1,...,iM}
p(i)

= (M + 1)
∑

{i1,...,iM+1}∈Λ�(M+1;N )

p(i1) · · · p(iM+1)

= (M + 1)EM+1(p). (23)

Combining (22) and (23) through (20) we get

MRand(p) = (M + 1)
EM+1(p)
EM (p)

, (24)

and by Proposition 2 the miss rate MRand(p) is Schur-
concave in p.

Under the IRM, it is well known [1, p. 132] that the FIFO
policy yields the same miss rate as the random policy, so that
Theorem 2 holds for the FIFO policy as well.
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VIII. RANDOM ON-DEMAND REPLACEMENT

ALGORITHMS

The results for the policy A0 and for the random policy
can be generalized to a large class of replacement policies
called Random On-demand Replacement Algorithms (RORA):
A RORA policy follows the demand-driven caching rule (10)
(under the customary assumption that the cache is initially
full). We represent the cache state as an element (i1, . . . , iM )
in Λ(M ;N ).

The eviction rule of RORA is characterized by a pmf
r which we organize as the M × M matrix r = (rk�),
i.e., for each k, 	 = 1, . . . ,M , we have rk� ≥ 0 and∑M

k=1

∑M
�=1 rk� = 1. The RORA associated with the pmf

matrix r is denoted RORA(r). Suppose that the current cache
is in state St = (i1, . . . , iM ) (in Λ(M ;N )). If the requested
document Rt is not in cache, then with probability rk�, the
document ik (document at position k) is evicted and the
new document is inserted in the cache at position 	. If k <
	, the documents ik+1, . . . , i� are shifted down to position
k, k + 1 . . . , 	− 1 while if k > 	, the documents i�, . . . , ik−1

are shifted up to position 	+ 1, . . . , k. When k = 	, the new
document simply replaces the evicted document at position k.

RORAs constitute a large class of replacement algorithms
which contains many known policies: The random policy
corresponds to RORA(r) with r given by rkk = 1

M for each
k = 1, . . . ,M , while the FIFO algorithm is associated with
two possibilities for r, either r1M = 1 or rM1 = 1. Lastly,
the Partially Preloaded Random Replacement Algorithms pro-
posed by Gelenbe [23] also form a subclass of RORA.

RORAs fall into one of two classes. To define them, we
observe that the document initially at position i will never be
replaced if and only if

rk� = 0 for k ≤ i ≤ 	 and 	 ≤ i ≤ k. (25)

If we use row i and column i to partition the matrix r into four
blocks, then condition (25) expresses the fact that the entries
in the northwest and southeast corners all vanish (including
row i and column i). Let Σ denote the set of positions in the
cache with the property that any document initially put there
will never be evicted during the operation of the cache, i.e.,

Σ := {i = 1, . . . ,M : Eqn. (25) holds at i}. (26)

Case 1 – The set Σ empty, so that every document in cache
can be replaced. This will be the case for the random and
FIFO policies. In Appendix I, we show that the miss rate can
be written as

Mr(p) = (M + 1)
EM+1(p)
EM (p)

. (27)

Because this expression is identical with that for MRand in
(24), we readily obtain

Theorem 3: Under Case 1, for admissible pmfs p and q on
N , it holds that

Mr(q) ≤Mr(p) (28)

whenever p ≺ q.

Case 2 – The set Σ is not empty, and some documents,
once put in cache, is never replaced during the operation of the
cache. Consider for instance the matrix r of the form rkk = 1
for some k = 1, . . . ,M , in which case Σ contains M − 1
elements, namely {1, . . . , k−1, k+1, . . . ,M}. For any permu-
tation σ of {1, . . . , N}, if the documents σ(1), . . . , σ(M − 1)
are initially put in cache (i.e., preloaded) at the other positions
	 �= k, this RORA(r) policy will behave like the policy Aσ

in steady state. With initial cache state s0 in Λ(M ;N ), we
denote by Σ(s0) the set of initial documents with positions
in Σ. The documents in Σ(s0) is never replaced during the
operation of the cache.

If the set Σ is non-empty with |Σ| = m for some m =
1, . . . ,M − 1, then the miss rate is shown in Appendix I to
be given by

Mr(p; s0) = (M −m+ 1)
EM−m+1(t · p)
EM−m(t · p)

(29)

where the element t in IRN is specified by ti = 0 for i being
a document in Σ(s0) and ti = 1 otherwise. The documents
in Σ(s0) do not contribute to the miss rate since they never
generate a miss once loaded in cache. It is easy to see that
for any two initial cache states s0 and s′0 in Λ(M ;N ) with
Σ(s0) = Σ(s′0), we have Mr(p; s0) = Mr(p; s′0). Hence,
we shall find it appropriate to denote this common value by
Mr,Σ(s0)(p).

Let Σ�(p) denote the set of the m most popular documents
for the pmf p. Equipped with the expression (29), we are now
ready to establish

Theorem 4: Under Case 2 with |Σ| = m, for admissible
pmfs p and q on N , it holds that

Mr,Σ�(q)(q) ≤Mr,Σ�(p)(p) (30)

whenever p ≺ q.

Proof. Consider a RORA(r) policy with |Σ| = m for some
m = 1, . . . ,M − 1, We need to show that the miss rate
function Mr,Σ(s0)(p) in (29) is Schur-concave whenever s0
is selected so that Σ(s0) = Σ�(p). As we can always relabel
the documents, there is no loss of generality in assuming
p(1) ≥ p(2) ≥ . . . ≥ p(N), whence Σ�(p) = {1, . . . ,m} and
the element t in (29) can be specified as t1 = . . . = tm = 0
and tm+1 = . . . = tN = 1.

By Proposition 2, the mapping EM−m+1
EM−m

is increasing and

Schur-concave on IRN
+ , and by virtue of the defining property

of Σ�(p), we have

Mr,Σ�(p)(p) (31)

= min
i=1,...,N !

(M −m+ 1)
EM−m+1(t · σi(p))
EM−m(t · σi(p))

with the element t defined above. The expression (31) is
similar to (18) and (19) given in the proof of Theorem 1
with 2 replaced by M −m+ 1 and the desired result readily
follows by similar arguments.
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IX. THE LRU AND CLIMB POLICIES

The LRU policy evicts the document which was requested
the least recently at the time the replacement is required. The
CLIMB policy ranks documents in cache according to their
recency of access: If the requested document is not in the
cache, the document at the last position (position M ) is evicted
and replaced by the new document. If the requested document
is in the cache at position i, i = 2, . . . ,M , it exchanges
position with the document at position i−1. The cache remains
unchanged if the requested document is in position 1.

The miss rates of the LRU and CLIMB policies have been
evaluated under the IRM with popularity pmf p [1, Chap. 4].
We have the expressions

MLRU(p) (32)

=
∑

(i1,...,iM )∈Λ(M ;N )

∏M
�=1 p(i�)

(
1 −∑M

j=1 p(ij)
)

∏M−1
k=1 (1 −∑k

j=1 p(ij))

and

MCL(p) (33)

=

∑
(i1,...,iM )

∏M
�=1 p(i�)

M−�+1
(
1 −∑M

j=1 p(ij)
)

∑
(i1,...,iM )

∏M
�=1 p(i�)M−�+1

,

where the summation
∑

(i1,...,iM ) is taken over the set
Λ(M ;N ).

Contrary to what transpired with the policy A0 and the
random policy, the miss rate for either the LRU or CLIMB
policies is not Schur-concave in general, and consequently the
folk theorem (2) may fail to hold. This is demonstrated through
the following example developed for M = 3 and N = 4:

In this case, simple algebraic manipulations transform the
expressions (32) and (33) into the simpler expressions

MLRU(p) =
∑

(i1,i2)∈Λ(2;N )

2
∏4

i=1 p(i)∏2
k=1(1 −∑k

j=1 p(ij))
(34)

and

MCL(p) =
2
∏4

j=1 p(j)
(∑4

i=1 p(i)
2(1 − p(i))

)
∑

(i1,i2,i3)∈Λ(3;N ) p(i1)3p(i2)2p(i3)
, (35)

respectively.
We evaluate numerically the expressions (34) and (35) for

the family of pmfs

p(x, y) = (x, 1 − 2y − x, y, y), 0 < y <
1
4

(36)

with x in the interval [12 − y, 1− 3y]. Under these constraints,
the components of the pmf p(x, y) are listed in decreasing
order and for any given y it holds that p(x, y) ≺ p(x′, y)
whenever x < x′ in the interval [12 − y, 1 − 3y]. Therefore,
if the miss rates under LRU and CLIMB were indeed Schur-
concave functions in the popularity pmf, we would expect the
functions x → MLRU(p(x, y)) and x → MCL(p(x, y)) to be
monotone decreasing on the interval [12 − y, 1 − 3y].
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Fig. 1. LRU and CLIMB miss rates when M = 3, N = 4, y = p(3) =
p(4) = 0.05, p(1) = x and p(2) = 0.9 − p(1)
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Fig. 2. LRU and CLIMB miss rates when M = 3, N = 4, y = p(3) =
p(4) = 0.01, p(1) = x and p(2) = 0.98 − p(1)

Figures 1 and 2 display the numerical values of
MLRU(p(x, y)) and MCL(p(x, y)) as a function of x with
y = 0.05 and y = 0.01, respectively. In both cases, the
miss rates of the LRU and CLIMB policies are not monotone
decreasing in x on the entire range [12 − y, 1 − 3y], with the
trend becoming more pronounced with decreasing y.

While the miss rate is not always Schur-concave under the
LRU and CLIMB policies, in the case of Zipf-like popularity
distributions, the desired monotonicity (2) is nevertheless true
in the following asymptotic sense.

Theorem 5: Assume the input to have a Zipf-like popularity
pmf pα for some α ≥ 0. Then, there exists α� = α�(M,N)
such that for α > β > α�, we have MLRU(pα) < MLRU(pβ)
and MCL(pα) < MCL(pβ).

A proof of Theorem 5 is available in Appendix II. We
have also carried out simulations of a cache operating under
the LRU and CLIMB policies when the input has a Zipf-
like popularity pmf pα. The number of documents is set at
N = 1, 000 while the cache size is M = 100. The miss rates
of both policies are displayed in Figure 3 and 4 for α small
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Fig. 3. LRU and CLIMB miss rates when the input has a Zipf-like popularity
pmf pα for α small (0 ≤ α ≤ 1)
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Fig. 4. LRU and CLIMB miss rates when the input has a Zipf-like popularity
pmf pα for α large (α > 1)

(0 ≤ α ≤ 1) and α large (α > 1), respectively. It appears that
the miss rate is indeed decreasing as the skewness parameter
α increases across the entire range of α. This suggests that the
folk theorem should hold for the LRU and CLIMB policies
when the comparison is made within the class of Zipf-like
popularity pmfs. Work is in progress on this issue.

X. THE INTER-REFERENCE TIME

In the next three sections, we turn to the discussion of how
majorization of popularity pmfs translates into comparisons
of three well-established metrics for locality of reference,
namely, the inter-reference time, the working set size and the
stack distance, in that order. We begin in this section with
the notion of inter-reference time in the stream of requests, a
notion which has recently received some attention as a way
of characterizing temporal correlations [3, 5, 10].

First a definition. Given an IRM with popularity pmf p, we
define the inter-reference time T (p) as the rv given by

T (p) := inf{t = 1, 2, . . . : Rt = R0}. (37)

Our main comparison result for inter-reference times is
given in terms of the convex ordering9 [24]:

Theorem 6: For admissible pmfs p and q on N , it holds
that

T (p) ≤cx T (q) (38)

whenever p ≺ q.
Thus, the more skewed the popularity pmf, the stronger the
locality of reference in the IRM, and the more variable the
inter-reference time!

Proof. It is well known [24, Thm. 2.A.1, p. 57] that the
comparison (38) between the {1, 2, . . .}-valued rvs T (p) and
T (q) is equivalent to

∞∑
k=n

P [T (p) ≥ k] ≤
∞∑

k=n

P [T (q) ≥ k] (39)

for all n = 1, 2, . . ., with

E [T (p)] = E [T (q)] . (40)

Consider a given pmf p on N and fix i = 1, . . . , N . For
each t = 1, 2, . . ., we note that

P [T (p) = t|R0 = i] = (1 − p(i))t−1p(i),

i.e., conditional on R0 = i, the inter-reference time T (p) is
geometrically distributed with parameter p(i). Consequently,
for each n = 1, 2, . . ., we find

P [T (p) ≥ n|R0 = i] =
∞∑

t=n

P [T (p) = t|R0 = i]

= (1 − p(i))n−1,

whence

P [T (p) ≥ n] =
N∑

i=1

p(i)(1 − p(i))n−1.

Next, we obtain

ψn(p) :=
∞∑

k=n

P [T (p) ≥ k] =
N∑

i=1

(1 − p(i))n−1.

In particular, with n = 1, this last calculation yields

E [T (p)] =
∞∑

k=1

P [T (p) ≥ k] = N,

and this independently of p! In other words, (40) holds.
It is a simple matter to see that for each n = 1, 2, . . ., the

mapping t→ (1−t)n−1 is convex on IR+. By a classical result
of Schur [16, C.1, p. 64] the mapping x →∑N

i=1(1−xi)n−1

is a Schur-convex function on IRN
+ . To put it differently, the

mapping p → ψn(p) is Schur-convex, and (39) indeed holds
when p ≺ q.

9Recall that for IR-valued rvs X and Y , Y is greater than X in the convex
ordering, written X ≤cx Y if E [ϕ(X)] ≤ E [ϕ(Y )] for any convex mapping
ϕ : IR → IR for which the expectations are well defined.
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XI. THE WORKING SET SIZE

Consider an IRM request stream {Rt, t = 0, 1, . . .} with
popularity pmf p. Fix t = 0, 1, . . .. For each τ = 1, 2, . . ., we
define the working set W (t; τ) of length τ (starting at time t)
to be the set of distinct documents occurring amongst the next
τ consecutive requests {Rt, . . . , Rt+τ−1}. The size |W (t; τ)|
of the working set W (t; τ) is denoted by S(t; τ).10 Under the
enforced i.i.d. assumption on the request stream, the pmf of
the rv S(t; τ) does not depend on t. To recognize this fact,
we write S(τ ;p) to represent the number of distinct requested
documents in τ timeslots under the IRM with popularity pmf
p.

For positive integer n = 1, 2, . . . and pmf θ =
(θ(1), . . . , θ(N)) on {1, . . . , N}, it is customary to imag-
ine the following experimental setup: An experiment has N
distinct outcomes, outcome i occurring with probability θ(i)
(i = 1, . . . , N ). We carry out this experiment n times under
independent and statistically identical conditions. Let Xi(n,θ)
denote the number of times that outcome i occurs amongst
these n trials (i = 1, . . . , N ). These N rvs are organized into
an INN -valued rv X(n,θ) known as the multinomial rv with
parameters n and θ. Its distribution is given by

P [X(n,θ) = x] =
(

n
x1, . . . , xN

)
·

N∏
i=1

θ(i)xi

whenever the integer components (x1, . . . , xN ) of x satisfy
xi ≥ 0 (i = 1, . . . , N ) and

∑N
i=1 xi = n.

With X(n,θ), we can associate the rv K(n,θ) given by

K(n,θ) :=
N∑

i=1

1 [Xi(n,θ) > 0] ;

this rv records the number of distinct outcomes that occur
amongst the n trials. The following result was established by
Wong and Yue [25] and deals with the Schur-concavity of the
tails probabilities

π�(n,θ) := P [K(n,θ) > 	] , 	 = 0, 1, . . . ,min(N,n).

Theorem 7: For each n = 1, 2, . . . and each 	 =
1, 2, . . . ,min(N,n), the mapping θ → π�(n,θ) is Schur-
concave.

The working set size S(τ ;p) of the IRM request stream with
popularity pmf p is simply the number of distinct outcomes
K(τ,p) for the multinomial rv with parameters τ and p. Thus,
as a direct implication of Theorem 7, we obtain the following
corollary using [24, p. 3].11

10A slightly different definition of the working set is usually adopted in
the literature [8, 9], namely with τ ≤ t, the working set W (t; τ) of length
τ (ending at time t) is defined as the set of distinct documents occurring
amongst the last τ requests {Rt−τ+1, . . . , Rt} up to time t. Under the IRM
assumption, this “backward in time” definition is stochastically equivalent to
the “forward in time” definition given here since the pmf of the rv S(t; τ)
does not depend on t whenever t ≥ τ .

11For IR-valued rvs X and Y , Y is greater than X in the usual stochastic
ordering, written X ≤st Y , if E [ϕ(X)] ≤ E [ϕ(Y )] for any monotone
non-decreasing mapping ϕ : IR → IR for which the expectations are well
defined.

Corollary 1: For admissible pmfs p and q on N , it holds
that

S(τ ; q) ≤st S(τ ;p), τ = 1, 2, . . . ,

whenever p ≺ q.
In words, the more skewed the popularity pmf, the stronger
the locality of reference in the IRM, and the smaller (in the
strong stochastic sense) the working set size, in line with one’s
intuition!

XII. THE STACK DISTANCE

The notion of stack distance has been widely used as
a metric for temporal correlations [11, 12, 13]: The stack
distance of the IRM request stream with popularity pmf p
is the rv D(p) defined by

D(p) = |{R0, , . . . , RT (p)}| (41)

where T (p) is the inter-reference time (37); this rv records
the number of distinct documents requested from time t = 0
until that time when the initial request R0 is made again for
the first time.12

It is not difficult to see that the stochastic equivalence

D(p) =st S(τ ;p)τ=T (p)

holds. Hence, in view of the results obtained in Corollary 1,
one might expect the comparison

D(q) ≤st D(p) (42)

to hold whenever the pmfs p and q on N satisfy p ≺ q.
However, the comparison (42) can not be established as we
explain below: Indeed, it is known [26, 27] that the stack dis-
tance is related to the miss rate of the LRU replacement policy.
Specifically, given an IRM request stream with popularity pmf
p, the miss rate MLRU(p) of LRU with cache size M can be
expressed in terms of the tail distribution of D(p) through

MLRU(p) = P [D(p) > M ] .

But, in Section IX, we have seen that it is possible to find pmfs
p and q on N such that p ≺ q and yet MLRU(p) < MLRU(q),
or equivalently, P [D(p) > M ] < P [D(q) > M ]. In short,
the comparison (42) does not hold in general [24, p. 3].

Although somewhat annoying from the point of view of
intuition, this state of affairs is perhaps not too surprising given
the opposite direction of the comparison of inter-reference
times in Theorem 6. It is possible that some comparison other
than (42) might hold, say in the increasing concave ordering13

[24], i.e., for pmfs p and q on N such that p ≺ q,

D(q) ≤icv D(p). (43)

This comparison is compatible with the weaker result of Yue
and Wong [20] that E [D(q)] < E [D(p)] whenever p ≺ q.

12As for the notions of working set and its size, the stack distance is usually
given through a “backward in time” definition. These two definitions coincide
under the i.i.d. assumption enforced on the request stream.

13For IR-valued rvs X and Y , Y is greater than X in the increasing concave
ordering, written X ≤icv Y , if E [ϕ(X)] ≤ E [ϕ(Y )] for any increasing and
concave mapping ϕ : IR → IR for which the expectations are well defined.
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XIII. CONCLUDING REMARKS

Under the assumption that the request stream is modeled by
IRM, we have used the concepts of majorization and Schur-
concavity to formalize the “folk theorem” that the stronger the
locality of reference, the smaller the miss rate of the cache.
This folk theorem was shown to hold for a large class of
replacement policies, including the random and FIFO policies,
as well as the optimal policy A0. However, it fails to hold
in general for the (popular) LRU and CLIMB policies. This
suggests that popularity alone may not be strong enough to
capture the operational meaning of locality of reference.

The results obtained here are based on the basic IRM which
exhibits neither temporal nor spatial correlations. It would be
desirable to explore these issues for models with correlations
in order to further understand the operational meaning of
locality of reference to demand-driven caching.
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APPENDIX I
SOME EXPRESSIONS FOR RORA POLICIES

Considera RORA with pmf matrix r and let {Ωt, t =
0, 1, . . .} denote the sequence of cache states under RORA
(with the cache initially full as explained earlier).14 Introduce
a sequence of i.i.d. rvs {(Xt, Yt), t = 0, 1, . . .} taking values
in {1, . . . ,M}×{1 . . . ,M} with common pmf r, i.e., for each
t = 0, 1, . . .,

P [(Xt, Yt) = (k, 	)] = rk�, k, 	 = 1, . . . ,M.

The sequences of rvs {(Xt, Yt), t = 0, 1, . . .} and {Rt, t =
0, 1, . . .} are assumed mutually independent. Under RORA,
the document Ut to be evicted at time t is given by

Ut = 1 [Rt /∈ St] Ωt,Xt

where Ωt,k denotes the document in cache at position k =
1, . . . ,M . If Ut �= 0, the new document is inserted at position
Yt while if Ut = 0, no replacement occurs. Under the IRM,
the cache states {Ωt, t = 0, 1, . . .} is easily seen to form a
Markov Chain on the state space Λ(M ;N ).

The irreducibility properties of this Markov chain are deter-
mined by the eviction/insertion matrix r. With this in mind,
let S(r, s0) denote the irreducible component that is reachable
from the initial cache state s0 in Λ(M ;N ). On this component
S15, the Markov chain {Ωt, t = 0, 1, . . .} is ergodic; its
stationary distribution exists and is given by

π(s) = C−1p(i1)p(i2) · · · p(iM ) (44)

14Observe that the set St of documents in cache at time t is recoverable
from the cache state Ωt.

15We have suppressed the dependence on r and s0 for notational simplicity.
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for each cache state s = (i1, . . . , iM ) (in S) with normalizing
constant given by

C =
∑
s∈S

p(i1)p(i2) · · · p(iM ). (45)

This is readily verified using the Global Balance Equation [18].
Moreover, if we denote by Mr(p; s0) the miss rate achieved
under RORA(r) when starting in cache state Ω0 = s0, we find

Mr(p; s0) = lim
t→∞

1
t

t∑
τ=1

1 [Rτ �∈ Sτ ] a.s.

=
∑
s∈S

π(s)
∑
i/∈s

p(i) (46)

where i /∈ s denotes the set of elements in N which are not
in s [18].

The exact form of the stationary distribution depends on S,
thus on r and on any initial condition s0 that gives rise to S.
We recall the definition (25) of the set Σ of non-replaceable
positions, and we refer the reader to the discussion in Section
VIII before embarking on the derivation of the stationary
distribution and miss rate under the two basic cases. Additional
details are available elsewhere [18].

Case 1 – The set Σ being empty, the Markov chain has
exactly one irreducible component S = Λ(M ;N ), and the
stationary distribution is given by (44) and (45). By reporting
(44) and (45) with S = Λ(M ;N ) into (46), we find

Mr(p; s0)

= C−1
∑

(i1,...,iM )∈Λ(M ;N )

p(i1) · · · p(iM )
∑

i/∈{i1,...,iM}
p(i)

= C−1
∑

(i1,...,iM+1)∈Λ(M+1;N )

p(i1) · · · p(iM+1). (47)

As in the proof of Theorem 2, we note the relations∑
(i1,...,iK)∈Λ(K;N )

p(i1) · · · p(iK) = K!EK(p) (48)

for all K = 1, . . . , N , and the expression (27) is now
immediate from (45), (47) and (48).

A special case occurs when N = M + 1 under the FIFO
policy with either r1M = 1 or rM1 = 1: If s0 = (i1, . . . , iM ),
then only M + 1 states can be reached from s0, i.e., S
contains (i1, . . . , iM ), (i2, . . . , iM , iM+1), (i3, . . . , iM+1, i1),
. . . , (iM+1, i1, . . . , iM−1). Thus, the state space reduces to
Λ�(M ;N ) and the stationary distribution simplifies to

π(s) =
p(i1) · · · p(iM )∑

{i1,...,iM}∈Λ�(M ;N ) p(i1) · · · p(iM )
(49)

with s = {i1, . . . , iM} arbitrary in Λ�(M ;N ). Upon utilizing
(49) and following the steps above, we conclude that the miss
rate Mr(p; s0) is also given by (27).

In view of this discussion, in Case 1 it is appropriate to
drop the dependence of the miss rate on s0 as was done in
Section VIII.

Case 2 – The set Σ is not empty with |Σ| = m for
some m = 1, . . . ,M − 1. Given an initial cache state s0 in

Λ(M ;N ), we let Σ(s0) be the set of initial documents with
their positions in Σ and these documents will never be replaced
during the operation of the cache. With Σ(s0)c denoting the
documents not in Σ(s0), the state space of Case 2 reduces to
S = {Σ(s0)∪s′ : s′ ∈ Λ(M −m; Σ(s0)c)} and the stationary
distribution is given by

π(s) =
p(i1) · · · p(iM−m)∑

(i1,...,iM−m)∈Λ(M−m;Σ(s0)c) p(i1) · · · p(iM−m)

where we have set s = Σ(s0) ∪ s′ with s′ = (i1, . . . , iM−m)
arbitrary in Λ(M −m; Σ(s0)c). By injecting this last expres-
sion into (46) and following the same steps as in Case 1, we
get

Mr(p; s0) =

∑
(i1,...,iM−m+1)

p(i1) · · · p(iM−m+1)∑
(i1,...,iM−m) p(i1) · · · p(iM−m)

where
∑

(i1,...,iM−m+1)
and

∑
(i1,...,iM−m) denote the sum-

mations taken over the sets Λ(M − m + 1;Σ(s0)c) and
Λ(M −m; Σ(s0)c), respectively. Define the element t in IRN

by ti = 0 for i in Σ(s0) and ti = 1 otherwise. With this
element t, it is plain from (48) that the expression for the
miss rate above becomes (29).

Again, a special case occurs when N = M+1 under FIFO-
like policies, i.e., for some k, 	 = 1, . . . ,M , rk� = 1 with
|Σ| = m. We now have S = {Σ(s0) ∪ s′ : s′ ∈ Λ�(M −
m; Σ(s0)c)} and the stationary distribution is given by

π(s) =
p(i1) · · · p(iM−m)∑

{i1,...,iM−m}∈Λ�(M−m;Σ(s0)c) p(i1) · · · p(iM−m)

where s = Σ(s0) ∪ s′ with s′ = {i1, . . . , iM−m} arbitrary in
Λ�(M − m; Σ(s0)c). It is a simple matter to check that the
miss rate Mr(p; s0) also has the expression (29).

APPENDIX II
A PROOF OF THEOREM 5

We shall have repeated use for the next elementary lemma
where asymptotic equivalence is defined as follows: For map-
pings f, g : IR+ → IR, we write f(α) ∼ g(α) (α → ∞) if
limα→∞

f(α)
g(α) = 1.

Lemma 2: Consider a finite family a1, . . . , aK of positive
scalars. We have

K∑
k=1

a−α
k ∼ c ·

(
min

k=1,...,K
ak

)−α

(α→ ∞).

where c denotes the number of indices 	 for which it holds a� =
mink=1,...,K ak.

In what follows, without further mention, all asymptotics are
understood in the regime where α is large, and the qualifier
α → ∞ is now dropped from the notation. In particular, we
have Cα(N) ∼ 1.

The LRU policy – Fix α ≥ 0. Substituting (7)-(8) into the
expression (32) for the miss rate under the LRU policy readily
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leads to

Cα(N)2MLRU(pα) (50)

=
∑

s∈Λ(M ;N )

(∏M
�=1 i

−α
�

)(∑
j /∈{i1,...,iM} j

−α
)

∏M−1
k=1

(∑
j /∈{i1,...,ik} j

−α
)

where we set s = (i1, . . . , iM ) be an element in Λ(M ;N )
and for each k = 1, . . . ,M , j /∈ {i1, . . . , ik} denotes the set
of elements j in N which are not in the set {i1, . . . , ik}.

For any element s = (i1, . . . , iM ) in Λ(M ;N ), Lemma 2
yields ∑

j �∈{i1,...,ik}
j−α ∼

(
min

j �∈{i1,...,ik}
j

)−α

(51)

for each k = 1, . . . ,M , whence

M−1∏
k=1


 ∑

j �∈{i1,...,ik}
j−α


 ∼ ρ(s)−α (52)

where we have set

ρ(s) :=
M−1∏
k=1

(
min

j �∈{i1,...,ik}
j

)
.

By combining (50) and (51) with (52), we readily have

MLRU(pα) ∼
∑

s∈Λ(M ;N )

ν(s)−α (53)

where we have set

ν(s) :=

(∏M
�=1 i�

) (
minj /∈s j

)
ρ(s)

for any element s = (i1, . . . , iM ) in Λ(M ;N ). Utilizing
Lemma 2 on (53), we obtain

MLRU(pα) ∼ c ·
(

min
s∈Λ(M ;N )

ν(s)
)−α

(54)

where c is the number of elements s in Λ(M ;N ) that achieve
the minimum in (54).

It is clear that

min
s∈Λ(M ;N )

ν(s) (55)

≥
mins∈Λ(M ;N )

((∏M
�=1 i�

)
· (minj /∈s j

))
maxs∈Λ(M ;N ) ρ(s)

.

It is not too difficult to check that s = (1, . . . ,M) and s =
(1, . . . ,M−1,M+1) are the only two elements in Λ(M ;N )
that simultaneously achieve the minimum (M + 1)! of the

quantity
(∏M

�=1 i�

)
·(minj /∈s j

)
and the maximum M ! of ρ(s).

Hence, (55) does hold as an equality with

min
s∈Λ(M ;N )

ν(s) =
(M + 1)!
M !

= M + 1

and c = 2. It then follows from (54) that

MLRU(p) ∼ 2(M + 1)−α (56)

and the desired conclusion readily follows.

The CLIMB policy – Fix α ≥ 0. Upon substituting (7)-(8)
into the expression (33) for the miss rate under the CLIMB
policy we find

Cα(N)MCL(pα) (57)

=

∑
s∈Λ(M ;N )

(∏M
�=1 i

−α(M−�+1)
�

)
(
∑

j /∈s j
−α)∑

s∈Λ(M ;N )

∏M
�=1 i

−α(M−�+1)
�

where j /∈ s denotes the set of elements j in N which are not
in s.

Invoking Lemma 2, we immediately get

∑
s∈Λ(M ;N )

M∏
�=1

i
−α(M−�+1)
� ∼

(
min

s∈Λ(M ;N )

M∏
�=1

iM−�+1
�

)−α

=

(
M∏

�=1

	M−�+1

)−α

(58)

where the minimum is readily seen to be achieved by s =
(1, . . . ,M). Next, by using of Lemma 2 again, we see that

∑
j /∈s

j−α ∼
(

min
j /∈s

j

)−α

(59)

for any element s in Λ(M ;N ).
By combining (57)-(59) and making use of Lemma 2, we

readily obtain

MCL(pα) ∼ c ·
(

mins∈Λ(M ;N ) µ(s)∏M
�=1 	

M−�+1

)−α

(60)

where we have set

µ(s) =
M∏

�=1

iM−�+1
� ·

(
min
j /∈s

j

)

for s = (i1, . . . , iM ) in Λ(M ;N ) and c denotes the number of
indices achieving the minimum in (60). It is a simple matter
to check that s = (1, . . . ,M) and s = (1, . . . ,M − 1,M + 1)
are the only two elements in Λ(M ;N ) achieving the minimum
(M + 1)

∏M
�=1 	

M−�+1 of µ(s). Thus, with c = 2, (60) yields

MCL(pα) ∼ 2(M + 1)−α (61)

and the desired conclusion is now immediate.

From (56) and (61), it is plain that

MLRU(pα) ∼MCL(pα) ∼ 2(M + 1)−α

and this is consistent with plots (in log-log scale) displayed in
Figure 4 when α is large.
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