
Comparing Stress ECG 
Enhancement Algorithms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

With an introduction to a filter bank based approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
here are two predominant types of noise T that contaminate the electrocardiogram 

(ECG) acquired during a stress test: the 
baseline wander noise (BW) and electrode 
motion artifact, and electromyogram-in- 
duced noise (EMG) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11. BW noise is at a 
lower frequency, caused by respiration 
and motion of the subject or the leads. The 
frequency components of BW noise are 
usually below 0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHz, and extend into the 
frequency range of the ST segment during 
a stress test. EMG noise, on the other 
hand, is predominantly at higher frequen- 
cies, caused by increased muscle activity 
and by mechanical forces acting on the 
electrodes. The frequency spectrum of the 
EMG noise overlaps that of the ECG sig- 
nal and extends even higher in the fre- 
quency domain. In this article, we review 
some of the published ECG enhancing 
techniques to overcome the noise prob- 
lems, and compare their performance on 
stress ECG signals under adverse noise 
scenarios. We also describe the Filter 
Bank zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(FB) based ECG enhancing algo- 
rithm [9]. 

Overview 
Figure 1 shows a noise-free ECG beat 

with ST-segment depression induced by 
exercise (top) and various epochs of this 
ECG with different noise conditions, as 
during a stress test. It is important to meas- 
ure the dynamic changes in the morphol- 
ogy of segments of the ECG induced by 
the exercise, even in the presence of noise. 

Many ECG enhancing techniques to 
address the noise problem have been re- 
ported in the literature. In Ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[2]  a com- 
bination of mean and median algorithms 
is used on the filtered ECG. Reference [3] 
presents a BW noise removal filter which 
meets specifications in Ref. [41 and a time- 
varying filter to remove high-frequency 
EMG noise. Reference [5] provides a 
technique which subtracts the current 
heart-beat average to get a ‘QRS-free’ 
signal, estimates the BW from the down- 
sampled QRS-free signal, and then sub- 

tracts the estimated BW from the noisy 
ECG. Reference [6] uses a source consis- 
tency filtering technique that seeks to de- 
velop a transfer function of the cardiac 
dipole. In Ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7], an adaptive baseline 
wander filter is designed as a cascade of 
two adaptive filters. Reference [8] uses a 
cubic spline technique to estimate and 
then subtract the BW in the ECG. 

The cubic spline method works well 
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when the ‘knots’ used to estimate the BW 
are accurately determined. However, the 
determination of the knots can be ad- 
versely affected by a noisy ECG signal, 
which compromises the BW estimate. 
Adaptive filtering of the ECG assumes 
that either the signal or noise is stationary 
or nonstationary. These characteristics are 
not guaranteed in a stress ECG recording. 

The various ECG enhancement algo- 
rithms addressed in this article compute an 
enhanced beat from a set of ECG beats or 
epochs. We refer to the enhanced beat of 
any enhancing algorithm as the composite 
beat. Other articles may refer to the en- 
hanced beat as the “averaged’ beat, but we 
wish to avoid confusion with the usual 
sense of the word “averaged,” which indi- 
cates the arithmetic mean of data. 

Signal Enhancing Algorithms 
1. Mean composite: The mean com- 

posite Cmean is determined by computing 
the arithmetic mean of a set of noisy beat 
epochs. The epochs are time aligned using 
a fiducial point in the heart beat, such as 
the R wave. The mean composite is given 
by: 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs n  I L-1 
where Xk, k = 1, ... ,N are the noisy epochs 
of length L. 

This is the simplest strategy of enhanc- 
ing the ECG. In an ideal situation, where 
the noise is uncorrelated with the signal, 
is stationary, and has a Gaussian distribu- 
tion, the signal-to-noise-ratio is improved 
by a factor of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJZ . 

If one of the epochs has a sudden ECG 
baseline shift, or is an arrhythmia such as 
a ventricular ectopic beat, the resulting 
mean composite will be distorted. A pre- 
processing step prior to the mean compos- 
ite algorithm should determine the 
‘goodness’ of the epoch and decide 
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whether it should be included in t 
posite or rejected. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMedian composite: The 
composite, Cmedzan, is determmed 
pnting the median of sample valu 
the set of epochs, for each ti 
The epochs are time aligned 
fiducial point in the heart beat, such as the 
R wave. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cmeman(n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= median{x, (n) ,  xz(n) 

O < n l L - 1  

= 1, . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,N are the noisy epochs 

he median technique removes any 
rs in the distribution of data at each 

of length L 

cross the epochs. Thus, baseline 
an epoch will be disregarded and 

removed, since these represent 
the set of epochs to be compose 

composite algorithm combines the bene- 
fits of the mean and median composite 
algorithms [2]. The mean composite algo- 
rithm is computationally effici 
timal for high-frequency noise reduction, 
but is susceptible to low-frequency noise. 
The median composite algorithm is com- 
putationally expensive. Their combina- 
tion is an algorithm that is near optimal for 
high-frequency noise, good 
quency noise reduction, and is 
tionally efficient. 

groups by using one of three strategies A 
random grouping strategy partitions the 

ee groups ran- 

tions the first one 
one-third into 

the second group, and the final one-third 
into the last group. 
strategy partitions 
different groups The arithmetic mean 
composite is computed for eac 

ee groups, regardless of the 
The baseline level estimat 

each group, a low-pass filter with a corner 
frequency of approximately 15 Hz is used 
to remove the correlation between the 
high-frequency noise and the low-fre- 
quency noise. 

The hybrid composi S 

then obtained by summing th f 
the low-frequency signals wi 
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length L, and Pper is the percentage incre- 
mental parameter. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Filter Bank Based Composite 
The filter bank-based strategy relies on 

a filter bank (FB) containing a set of analy- 
sis filters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHi(z) and synthesis filters Fi(z) 
(Fig. 2). The analysis filters decompose 
the input signal, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx(n), into M frequency 
bands (subbands) and subsample by a fac- 
tor of M. Processing can be performed on 
each subband independently. The synthe- 
sis filters combine the processed subbands 
to reconstruct the input signal. Thus, a 
FB-based algorithm involves decompos- 
ing a signal into frequency subbands, 
processing these subbands according to 
the application, and reconstructing the 
processed subbands. The design and use 
of FBs is widely reported in the literature 

Many signals contain specific energy 
distributions in the frequency domain. For 
example, a significant proportion of the 
energy from the QRS complex in the ECG 
extends to a frequency of 40 Hz, and even 
more if the Q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, and S waves have a very 
sharp morphology. The P and T waves, in 
general, have a significant proportion of 
energy only up to 10 Hz. Thus, there is a 
benefit in using a FB-based algorithm, 
where time and frequency dependent 
processing can be performed. 

FB block diagram: Assume that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FB contains M analysis and synthesis filters, 
each of length L. The analysis filters Hi(z), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0,1, ..., M-1, bandpass the input signal 
X(z )  to produce the subband signals Ui(z): 

[ll-131. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

UL(Z) = H, (z )X (z )  1 = 1,2, ..., M -  1 

Since the effective bandwidth of Ui(z) 
2n: . 

is -, it can be downsampled to reduce 
M 

the total rate. The downsampling process 
keeps one sample out of M samples. The 
downsampled signal Wi(z) is: 

for 1 = 41, ... M - 1 

Taking advantage of the downsam- 
pling, we can efficiently apply the filter- 

ing process at - the input rate. This 

implementation is referred to as polyphase 
implementation and contributes to the 
computational efficiency of the FB-based 
algorithm [ 1 11. 

Time and frequency dependent proc- 
essing can now be performed on some or 
all of the subband signals to result in a 

1 

M 
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processed and downsampled subband sig- 
nal, Wpl(z). The nature of the processing 
involved is application dependent, and 
stress ECG enhancement is explained 
later. 

The reconstruction is achieved by up- 
sampling and interpolating the subband 
signals using a set of bandpass filters, 
Fi(z). Similar to the analysis bank, the 
filtering process in the synthesis bank can 
be efficiently implemented by taking ad- 
vantage of the M-1 zeros in the upsampled 
sequence, Vi(z). This processing contrib- 
utes to the overall computational effi- 
ciency of the FB-based algorithm. 

The processed subband signals, Oi(n), 
can then be added algebraically point-by- 
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1. Examples of a noise-free ECG beat contaminated with various types of noise. 
EMG is electromyogram noise and BW is baseline wander noise. The SNR level is 
low enough so a6 to distort the underlying ECG signal. 

point to result in a time and frequency 
dependent processed version, Y(z), of the 
input signal, X(z) .  The analysis and synthe- 
sis filters must be designed to incorporate 
useful properties for the application at hand. 

Filter Bank Properties 
The analysis filters decompose the 

ECG into uniform frequency subbands. 
For stress ECG enhancement, and many 
other ECG processing tasks, it is useful 
while processing each subband to have a 
fixed or deterministic relationship be- 
tween data in the processed subbands and 
data at the input. This requirement implies 
that the analysis filters have linear phase 
frequency characteristics, or constant 
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group delay zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor all frequencles in the pass- 
band. 

The linear phase requirement ensures 
that all frequencies at the input will h 
the same sample delay through the 
sis filters. It is then possible, for ex 
to determine the exact location of the R 
wave and other fiducial points in th 

bands. Moreover, this linear phase re- 
quirement on each filter in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFB should 
be distinguished from the linear phase 
property of the whole zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA€3 system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf there 
were no processing block in Fig. 2, the 
output, y(n), could have three types of 
distortion from the input, n(n). The first 
distortion is the aliasing introduced by the 

ANALYSIS BANK SYNTHESIS BANK 

bank-based algorithm enables time 

are shown. One set of filters has the 
utations per second. Ideal m 

processing tasks. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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tion requires reconstruction at the output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of the filter bank (see Fig. 2). For these 
applications, only decomposition of the 
input into frequency subbands is of inter- 
est. Stress ECG enhancement, however, 
requires reconstruction of the processed 
subbands. This task requires a PR filter 
bank with no phase or magnitude distor- 
tion. 

The 32-channel FB was designed, 
based on an algorithm from Ref. [14]. The 
analysis and synthesis filters have linear 
phase responses and their magnitude re- 
sponses are as shown in Fig. 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Subband Processing 
The FB structure enables processing of 

a signal in a specific time period and a 
specific frequency region. The FB-based 
algorithm decomposes the ECG into 32 
uniform subband frequencies of the signal 
(see Fig. 3). The 0 to 180 Hz frequency 
bandwidth of the input signal is decom- 
posed into 32 uniform frequency sub- 
bands, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ [0 to 5.6251, [5.625 to 11.251, .... 
[174.375 to 180]}Hz. 

The subband in the [0 to 5.6251 Hz 
range, which contains most of the energy 
of the P and T waves, is not processed in 
any way. In the remaining subbands, the 
signal components are attenuated to vari- 
ous levels in time periods that correspond 
to the non-QRS region. Since the P and T 
waves do not have energy at higher fre- 
quencies, we attenuate the signal compo- 
nents in these t ime periods and 
frequencies. The QRS region of the ECG 
is not modified in any of the subbands. 
The processed subband signals are then 
reconstructed by the synthesis filters to 
result in a time and frequency dependent 
processed version of the input signal, in 
which noise has been reduced without dis- 
torting ECG components of interest. 

The Q and S fiducial points to mark the 
QRS complex are determined from the 
input noisy ECG using the algorithm de- 
scribed in Ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[15]. Since each of the 
analysis filters has linear phase, the Q and 
S waves can be located in each subband 
signal after accounting for filter delays. 

FB-based Composite 
An FB based composite is obtained by 

performing the above operations on the 
input ECG. To compute a FB based com- 
posite from a set of more than one noisy 
epoch, the FB composite is computed for 
each epoch, and then the mean of the 
resulting composites computed. 
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4. Composites from various enhancing algorithms using nine noisy epochs of the 
noise-free ECG. Under a Gaussian noise scenario, (SNR = 0 dB), the FB-based com- 
posite has the closest resemblance to the noise-free ECG than the other composites. 

Methods 

Stress ECG data 
A noise-free ECG beat cycle with an 

exercise-induced ST segment depression 
was obtained from the MITBIH database 
[ 161. This beat was used as a template of 
a noise-free ECG epoch. Noisy beat ep- 
ochs were constructed by adding pure- 
noise segments to the template. Noisy data 
were either generated ;rrtificially or ob- 
tained from the MITBIH database. Arti- 
ficial noisy data were generated with an 
independent Gaussian distribution. BW 
and EMG noise were read from the 
MITBIH database [I]. The noisy beat 
epochs could be accurately aligned, since 
the location of the R wave was known 
from the underlying noise-free ECG beat. 

Signal-to-noise-ratio: We used the 
SNR parameter to quantify and compare 
the performance of the algorithms, and 
also to determine the noise level in an 
enhanced ECG beat. The SNR was de- 
fined as [ 171: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

SNR = 10 X log,, - so 

No 

where S was a noise-free ECG template of 
length L, N was a noise vector of length 
L, and Xo was defined as: 

where px was the mean of the signal X. 
To generate a noisy epoch of an ECG 

beat, the sample values of the noise vector 
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Noise-free zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAECG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

z 2  
% 
C j l  

0 

-1 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2  0 4  06 

Mean Median 

3 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
> 2  

> 2  E 
€ 1  ( 3 ’  

0 cj 
? I O  W O  

-1 -1 

0 0 2  0 4  0 6  0 0.2 0.4 0 6 

> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E 
Cj 
Y 

filter Bank Incremental zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 

> 2  
E 

0 
W O  

-1 

( 3 l  

> 
E 

0 
W 

Cj 

0 0 2  0 4  0.6 0 0.2 0.4 0.6 

were multiplied by a gain fact 

the SNR of an ECG com 

used. 

ECG Composites 

of the algorithms when input with nine 
noisy ECG epochs. Each of the nine ep- 
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quires determining the isoelectric level as 
well as the detection of the J point and the 
onset of the T wave. These processing 
tasks are compromised by too high a noise 
level in the enhanced ECG. 

The mean algorithm operates best in a 
stationary and uncorrelated noise sce- 
nario. These ideal scenarios do not usually 
exist in stress ECG records. The median 
algorithm works well at removing ex- 
treme data values in a distribution of ECG 
epochs. However, a usual preprocessing 
step for an ECG enhancing algorithm de- 
termines the ‘goodness’ of an ECG epoch 
before it is included in the set of epochs to 
be composed. Thus, this primary benefit 
of the median algorithm normally occurs 
of in this preprocessing step. 

The hybrid algorithm removes noise 
fairly well as compared to the mean com- 
posite, but in addition better handles base- 
line shifts present in epochs than does the 
mean algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 2 ] .  The trimmed mean 
method inherently combines mean and 
median techniques. The incremental algo- 
rithm does not directly exploit the nature 
of the noise. Thus, its enhancing perform- 
ance is minimal. However, in a noise-free 
scenario, the incremental technique is po- 
tentially useful to track quickly and accu- 
rately dynamic changes in the ST segment 
as compared to the mean composite algo- 
rithm, which averages dynamic ST seg- 
ment changes. Its usefulness in this area 
remains to be studied. 

The FB composite enhances the ECG 
best under both Gaussian and EMG noise 
scenarios, and is also computationally in- 
expensive. It operates on the noise charac- 
teristics in the time and frequency 
domains, independently. The FB also po- 
tentially offers a way to perform other 
ECG processing tasks, such as R wave 
detection, enhancement and beat classifi- 
cation. These tasks can be carried out be- 
cause the analysis filters decompose the 
ECG into various subbands, which can be 
used for further analysis. Thus, with one 
set of filters, various tasks could be per- 
formed in parallel, improving the overall 
computational efficiency of existing ECG 
processing systems. 

As for improving the SNR, during a 
stress test it is important to measure 
changes in the ST segment as quickly as 
possible after they occur. Most enhancing 
algorithms require a set of ECG epochs 
from which one enhanced beat is com- 
puted. Various features of the morphology 
(such as ST segment depression) are then 
computed from this enhanced beat by us- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 4 6 8  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
# of epochs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6. SNR improvement over an incremental number of epochs under Gaussian (left) 
and EMG noise scenarios. The FB composite shows better SNR improvement with a 
fewer number of epochs 

ing other algorithms. Using a large 
number of epochs in the set will result in 
‘time-averaged’ features. It is thus impor- 
tant to get an enhanced ECG using as few 
epochs as possible. 

The FB-based composite provides the 
best SNR in the fewest number of beats. 
However, studies still remain to be per- 
formed on the accuracy of ST measure- 
ments under various noise scenarios. For 
example, in a noise-free scenario it is 
likely that the incremental algorithm will 
track changes in the ST segment more 
quickly and accurately than the mean al- 
gorithm. 

We also compared the performance of 
the algorithms on ECGs contaminated 
with Gaussian and EMG noise only. A 
high-pass filter such as the one described 
in Ref. [3] or any other that meets the 
specifications given in Ref. [4] can be 
used to preprocess the sing 
any of the above algo the 
high-pass filter can be incorporated into 
the lowest subband of the FB algorithm. 
This filter would then operate at a lower 
rate since it is filtering the downsampled 
0 to 5.625 Hz subband. The resulting FB 
algorithm would then filter BW and EMG 
noise. 

Acknowledgments 
This work was supported by a grant 

from Burdick Inc., Milton, WI., USA. The 
authors would like to thank Steffen Traut- 
mann for his help with the design of the 
filter banks. 

References 
1. Moody GB, Muidrow WK, and Mark RG: 
A noise stress test for arrhythmia detectors.&om- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
puters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin Cardiology. pp. 381-384, 1984. 

2. Mertens J and Mortara D: A new algorithm 
for QRS averaging. Comp. in Cardiol., pp. 
367-369,1984. 

3. Pinto V: Filters for the reduction of baseline 

wander and muscle artifact in the ECG. Journal 
of Electrocardiology., vol. 25, suppl., pp. 40-48, 
1992. 
4. Bailey JJ, Berson AS, Garson A, Horan LG, 
Macfarlane PW, Mortara DW, and Zywietz C: 
Recommendations for the standardization and 
specifications in automated electrocardiography: 
Bandwidth and digital signal processing. A report 
for health professionals by an ad hoc writing group 
of the committee of electrocardiography and car- 
diac electrophysiology of the council on clinical 
cardiology, American Heart Association. Circula- 
tion. no. 2, pp. 730-739, 1990. 
5. Sornmo L: Time-varying filtering for removal 
of baseline wander in exercise ECGs. Computers 
in Cardiology. pp. 145-148, 1991. 
6. Mortara DW: Source consistency filtering -A 
new tool for ECG noise reduction. Computers in 
Cardiology. pp. 125-128, 1991. 
7. Jane R, Laguna P, Thakor NV, and Caminal 
P Adaptive baseline wander removal in the ECG: 
Comparative analysis with cubic spline technique. 
Computers in Cardiology., pp. 143-146, 1992. 
8. Meyer, CR, and Keiser HN: Electrocardio- 
gram baseline noise estimation and removal using 
cubic splines and state-space computation tech- 
niques. Computers and Biomedical Research, vol 
10, pp. 459470,1977. 
9. Afonso VX, Tompkins WJ, Nguyen TQ, 
Trautmann S, and Luo S: Filter bank-based 
processing of the stress ECG. Proc. Annu. Int. 
cons IEEEEng. Med. Biol. Soc., Sep. 1995. 
10. Albrecht P, Rice K, Jarisch WR, and Mark 
G: Efficient measurement of long term ST seg- 
ment trends. Proc. of the Fifth Annu. Cons, pp. 
644449, 1983 
11 Vaidyanathan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP P  Multirate systems and 
filter banks. Englewood Cliffs, NJ. Prentice-Hall, 
1993. 
12. Queiroz RL, Nguyen TQ, and Rao KR: The 
class of GenLOTs: Generalized linear-phase 
lapped orthogonal transforms. Proc. ISCAS. no. 2, 
277-280,1994. 
13. Soman AK, Vaidyanathan PP, and Nguyen 
TQ: Linear phase paraunitary filter banks: The- 
ory, factorizations and designs. IEEE Trans. on 
Signal Processing, vol. 41, no. 12., pp. 
3480-3495,1993. 
14. Malvar HS: Signal processing with lapped 
transforms, Artech House, Nonvood, MA, 1992. 
15. Weisner SJ, Tompkins WJ, and Tompkins 

May/June 1996 IEEE ENGINEERING I N  MEDICINE AND BIOLOGY 43 



courses on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAElectvocardiol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, 1994. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

44 


