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Abstract 

Background: The concept of molecular similarity is one of the central ideas in cheminformatics, despite the fact that 

it is ill-defined and rather difficult to assess objectively. Here we propose a practical definition of molecular similarity in 

the context of drug discovery: molecules A and B are similar if a medicinal chemist would be likely to synthesise and 

test them around the same time as part of the same medicinal chemistry program. The attraction of such a definition 

is that it matches one of the key uses of similarity measures in early-stage drug discovery. If we make the assumption 

that molecules in the same compound activity table in a medicinal chemistry paper were considered similar by the 

authors of the paper, we can create a dataset of similar molecules from the medicinal chemistry literature. Further-

more, molecules with decreasing levels of similarity to a reference can be found by either ordering molecules in an 

activity table by their activity, or by considering activity tables in different papers which have at least one molecule in 

common.

Results: Using this procedure with activity data from ChEMBL, we have created two benchmark datasets for struc-

tural similarity that can be used to guide the development of improved measures. Compared to similar results from 

a virtual screen, these benchmarks are an order of magnitude more sensitive to differences between fingerprints 

both because of their size and because they avoid loss of statistical power due to the use of mean scores or ranks. 

We measure the performance of 28 different fingerprints on the benchmark sets and compare the results to those 

from the Riniker and Landrum (J Cheminf 5:26, 2013. doi:10.1186/1758-2946-5-26) ligand-based virtual screening 

benchmark.

Conclusions: Extended-connectivity fingerprints of diameter 4 and 6 are among the best performing fingerprints 

when ranking diverse structures by similarity, as is the topological torsion fingerprint. However, when ranking very 

close analogues, the atom pair fingerprint outperforms the others tested. When ranking diverse structures or carry-

ing out a virtual screen, we find that the performance of the ECFP fingerprints significantly improves if the bit-vector 

length is increased from 1024 to 16,384.
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Background
�e Similar Property Principle (SPP) is the observation 

that structurally similar molecules tend to have similar 

properties [1]. �is is a cornerstone of drug discovery, as 

it means that successive small changes to the structure of 

an active should retain biological activity against a target. 

In this case the SPP is really an expression of the nature 

of protein–ligand binding. As with any guiding principle, 

there are exceptions; in drug discovery these are referred 

to as activity cliffs [2] where small changes in the struc-

ture cause large changes in biological activity. Unfortu-

nately the SPP does not provide any guidance on how to 

identify or measure whether two molecules are structur-

ally similar. Computationally, the most common way to 

measure this is to compare molecular fingerprints, binary 

or count vectors that encode features of molecules. �is 

numerical measure of similarity may then be used for 

similarity searching, ligand-based virtual screens, clus-

tering and diversity analysis [3–5].
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As many molecular fingerprints are in widespread use 

[6], an important question to ask is which are better at 

measuring structural similarity. Benchmarks for ligand-

based virtual screening and investigations of neighbour-

hood behaviour could be considered as providing an 

answer to this question. A ligand-based virtual screen 

[7–11] tests the ability of a similarity measure to identify 

actives from within a set of decoys given a single active 

(or a small number of actives) as a query, with the under-

lying assumption that the actives are more structurally 

similar to each other than they are to the decoys. In other 

words, good performance in such screens relies on the 

reverse of the SPP, that molecules with similar proper-

ties are structurally similar. Note that such screens do not 

consider the degree of similarity beyond the goal of rank-

ing actives higher than decoys. Neighbourhood behav-

iour studies [12–15] investigate the correspondence 

between structural similarity measures and similarity in 

biological space (often a combined measure across sev-

eral targets). A typical study tries to identify the optimal 

structural similarity cutoff to yield the best balance of 

precision versus recall. Note that in this context, a “false 

similar” pair of molecules is structurally similar but not 

similar in terms of biological activity.

Several ligand-based virtual screening studies have 

found that the performance of the ECFP4 fingerprint is 

either the best or among the best, although one should 

note that the majority of these studies used a small num-

ber of targets (11 or fewer) and lacked an analysis of sta-

tistical significance. Hert et  al. [16] found that ECFP4 

fingerprints performed best on average for 11 targets 

from the MDDR (a viewpoint supported by a re-analysis 

of the same dataset by Bender et  al. [17]). Sastry et  al. 

[18] also looked at 11 targets from the MDDR and found 

that a radial fingerprint (which they identify as synony-

mous with ECFP, although different atom types may be 

used) was among the top three (Molprint2D and a den-

dritic fingerprint were better). However, on the Briem 

and Lessel benchmark dataset [19] (5 targets from the 

MDDR), Duan et al. [20] found that the same radial fin-

gerprint (that is, from Sastry et  al.) was best although 

Molprint2D was close in performance. In contrast to 

the previous studies, the 2013 study by Riniker and Lan-

drum included 88 targets, almost an order of magnitude 

more than previous ligand-based virtual screening stud-

ies, and did include a treatment of statistical significance. 

While the ECFP4 fingerprint had the best mean rank, the 

analysis was not able to show its mean rank to be signifi-

cantly better than that of topological torsions, ECFP6 or 

ECFC4. In the field of neighbourhood behaviour, Papa-

datos et  al. [14] found that ECFP6, SEFP4 and SEFP6 

performed consistently well across 27 chemotype-based 

datasets covering 9 targets.

Here we describe a new type of benchmark for struc-

tural similarity that takes into account the fact that struc-

tural similarity is a continuous scale rather than a binary 

property. �is is not a virtual screen but instead consists 

of series of molecules arranged by structural similarity 

with respect to a reference.

While the SPP does not provide any guidance on how 

to rank molecules by structural similarity, as a start-

ing point we consider molecule A and B to be similar if 

it is reasonable that a medicinal chemist would synthe-

sise and test A and B around the same time as part of the 

same medicinal chemistry program. �is definition has a 

number of attractive features. First of all, it is a measure 

of similarity directly linked to the task in which we are 

interested. It is also widely used in practice; typically a 

medicinal chemist has the final say on which molecules 

are selected for synthesis/testing from a set of hits in a 

virtual screen.

While there has been some recent work on compar-

ing human and computational measures of structural 

similarity [21], it is still the case that the “cognitive algo-

rithms by which medicinal chemists perceive similar-

ity are largely unknown” (to quote Maggiora et al. [22]). 

Our approach is to use the co-occurrence of A and B in 

an activity table in the published medicinal chemistry 

literature as an indication that two molecules are similar 

according to this definition, information which is avail-

able from the ChEMBL database [23]. In this way we 

extract pairs of molecules which were considered simi-

lar enough to be part of the same medicinal chemistry 

project, and on which a medicinal chemist was willing to 

bet their time that both would be active against the same 

target.

It may be that the answer to the question posed in the 

title depends on the degree of similarity. �at is, which fin-

gerprint is best may be different when searching for close 

analogues versus searching for more distant analogues, 

versus separating actives and decoys in a virtual screen of 

compounds available for purchase. To consider this, we 

have developed two distinct benchmarks, which test the 

ability to distinguish similarity within different ranges.

1. �e single-assay benchmark tests the ability to rank 

very similar structures relative to a reference. Five 

molecules differing by about 0.4 log units from each 

other were selected from the same ChEMBL assay. 

�ese are structurally similar according to our defini-

tion. Given the most active as the reference, the oth-

ers were ordered in decreasing order of activity. Our 

assumption is that the more similar the activity is to 

the reference, the more similar the structure will be.

2. �e multi-assay benchmark tests the ability to rank 

more diverse structures relative to a reference. Given 
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a reference molecule, a series of four molecules with 

decreasing similarity (that is, increasing distance) to 

the reference was generated by linking from one paper 

with activity data to another through molecules in 

common between both. Figure  1 illustrates the con-

cept: M1 and M3 are similar according to our defini-

tion, as are the pairs M3 and M5, M5 and M7, M7 and 

M9. We assume that relative to M1, structural similar-

ity will decrease as one moves through the series M3, 

M5, M7, and M9 due to the size of chemical space 

(even in the vicinity of a particular target) and the 

nature of a random walk.

While no one similarity measure will be the best in 

every instance, the main goal of the current study is to 

determine which similarity measures in general corre-

spond best to a medicinal chemist’s notion of similar-

ity, and which should be avoided. Furthermore, we wish 

to provide benchmarks that will aid the development of 

improved similarity measures as they can distinguish 

between even small differences in performance. As 

improvements typically stem from incremental changes 

and parameter testing, this sensitivity will help guide 

these efforts. Finally, by comparison with the corre-

sponding results from a re-analysis of the virtual screen-

ing study of Riniker and Landrum, we can investigate the 

extent to which structural similarity is the same at dif-

ferent ranges of similarity, and determine whether the 

described benchmarks be useful in developing finger-

prints with improved performance in a virtual screen.

Methods
Structural �ngerprints tested

�e molecular fingerprints used were taken from the 

benchmarking platform described by Riniker and Lan-

drum [9] and are listed in Table 1. Although their study 

focused on results for 14 fingerprints, the associated code 

[24] includes a further 14, mainly additional variants 

of circular fingerprints but also hashed forms of atom 

pairs (HashAP) and topological torsions (HashTT). In 

this study we have used the full set of 28 fingerprints as 

implemented in the RDKit version 2015.09.2 [25].

�e fingerprints may be classified as follows. Additional 

details are in the publication by Riniker and Landrum:

1. Path-based fingerprints RDKx where x is 5, 6, 7 

(hashed branched and linear subgraphs up to size 

x), TT (topological torsion [26], a count vector) and 

a binary vector form HashTT, AP [27] (atom pair, a 

count vector) and a binary vector form HashAP.

2. Substructure keys Avalon [28], MACCS.

3. Circular fingerprints �e extended-connectivity fin-

gerprints [29] ECFPx where x is 0, 2, 4, 6, and the 

corresponding count vectors denoted as ECFCx. 

Also the feature-class fingerprints FCFPx and corre-

sponding count vectors FCFCx where x is 2, 4, 6.

A length of 1024 bits was used for all binary finger-

prints listed above, but for comparison a longer length 

of 16384 bits was used for a number of fingerprints (as 

in the original study). �is longer version is indicated by 

the prefix “L”: LAvalon, LECFP6, LECFP4, LFCFP6 and 

LFCFP4. �e Tanimoto coefficient was used to measure 

similarity for all binary fingerprints, while the Dice coef-

ficient was used for count vectors.

Dataset of similar structures

�e set of all IC50, Ki and EC50 assays in ChEMBL 20 

was used as the source for activity data. Data marked by 

ChEMBL as duplicates from earlier publications were 

discarded as these may be reference compounds with a 

structure distinct from the rest of the assay. �e dataset 

was restricted to assays containing from 8 to 25 (inclu-

sive) unique molecules. Smaller assays were found to 

contain more dissimilar molecules, and the value of 8 

was chosen as a trade-off between retaining as much data 

as possible and reducing the number of dissimilar mol-

ecules retained. �e upper value of 25 was chosen con-

servatively to limit the chance that an assay described 

more than one scaffold series or was selected from a HTS 

campaign.

ChEMBL provides ‘parent structures’ for structures 

in the database—this is the neutral form with any salt 

removed. �ese parent structures were used in prefer-

ence to the original structure (where they differed). Fur-

thermore, stereoisomers were normalised to the same 

parent compound. While in theory it would be interest-

ing to consider differences in stereochemistry in the con-

text of structural similarity, the presence of erroneous 

stereoisomers due to unspecified stereocentres meant 

that normalisation was required. In any case, none of the 

2D fingerprints investigated in the current study are sen-

sitive to stereochemistry.

Fig. 1 Composition of a series in the multi-assay benchmark. The 

diagram shows a series consisting of five molecules M1, M3, M5, M7 

and M9 (in that order) taken from four assays in four different papers, 

where each assay has a compound in common
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In order to reduce the incidence of dissimilar structures 

in an assay, molecules were excluded from the dataset if 

they were members of any of the following sets. Promis-

cuous molecules were identified as those present in 5 or 

more papers in the entire set of IC50, Ki and EC50 data. 

Molecules with SMILES strings present in Wikipedia 

were identified using data provided by Ertl et al. [30, 31]. 

Finally, molecules marked by ChEMBL as having Interna-

tional Nonproprietary Names (INNs) were also excluded. 

Note that the stereo-normalised parent forms were used 

in each of these steps.

Multi-assay benchmark

�e multi-assay benchmark was created from the dataset 

of similar structures as follows. �e dataset was first con-

verted to a graph of edges connecting molecules in the 

same assay: inner edges connect molecules that are both 

in at least two papers while outer edges connect mole-

cules where at least one is in at least two papers.

To create the first series in the benchmark, the first 

molecule in the dataset that was part of an outer edge was 

chosen. From this starting point a breadth-first search 

was made through the graph to create all series consisting 

of an outer edge, connected to an inner edge, connected 

to another inner edge, and finally to another outer edge. 

Next this set of series was filtered to ensure that no edge 

appeared in the same paper as another edge. To promote 

a diverse dataset, it was further filtered to remove any 

series where either end of the first edge was already pre-

sent in a benchmark series as part of a first edge. If any 

series remain, a single one is chosen whose component 

molecules appear in the fewest number of papers, and 

this series is added to the benchmark. �is procedure is 

repeated for each molecule in the dataset that is part of 

an outer edge, giving a complete benchmark dataset size 

of 3629 (at minimum, see next paragraph).

To assess statistical significance, 1000 repetitions of the 

benchmark dataset were generated by randomly shuffling 

all components of the dataset (i.e. the order of the mole-

cules, the set of neighbours) and repeating the procedure 

described above. On average each repetition contained 

3675 series, but as the minimum size was 3629, only 

the first 3629 series in each repetition were used for all 

analyses. To assess the degree of variation introduced by 

the repetitions, a pairwise comparison showed that suc-

cessive repetitions had only 33 (±5) series in common, a 

value that rises to 321 (±17) when considering first two 

molecules in common and 673 (±20) for first molecules 

in common.

Single-assay benchmark

�e single-assay benchmark was created from the subset 

of the dataset of similar structures that contained IC50 

and Ki data marked as binding assays. Within an assay, 

molecules marked as inactive were excluded as was 

the molecule (or molecules) having the lowest activity 

value. Also, any assay that did not contain 5 molecules 

with activities separated by at least 0.40 log units was 

discarded.

To create the first series in the benchmark, the first 

assay in the dataset was selected and an attempt was 

made to find a set of 5 molecules whose activities differ 

by at least 0.38 log units (this attempt involved iterating 

randomly over all possible selections of 5 molecules from 

the assay several thousand times). �is procedure was 

repeated for each assay in the dataset that is in a differ-

ent paper from those series already added to the bench-

mark, giving a complete benchmark dataset size of 4563 

(at minimum).

To assess statistical significance, 1000 repetitions of the 

benchmark dataset were generated by randomly shuf-

fling the order of the assays and repeating the procedure 

described above. On average each repetition contained 

4573 series, but as the minimum size was 4563, only the 

first 4563 series in each repetition were used for all analy-

ses. To assess the degree of variation introduced by the 

repetitions, a pairwise comparison showed that succes-

sive repetitions had only 331 (±13) series in common, a 

value that rises to 1383 (±24) when considering first two 

molecules in common and 2576 (±26) for first molecules 

in common.

Evaluation of relative performance on the single- 

and multi-assay benchmarks

Each fingerprint was used to rank the second and sub-

sequent members of each series by structural similarity 

with respect to the first member, the reference molecule. 

�is ranking was compared to the order in the bench-

mark using the Spearman correlation. To evaluate the rel-

ative performance of two fingerprints according a single 

repetition of the benchmark, the following comparison 

statistic was used: the net difference between the number 

of series for which the correlation value for fingerprint A 

was larger than fingerprint B minus the number of series 

where it was smaller. Given the 1000 repetitions, a dis-

tribution of these net differences was obtained. For two 

fingerprints with similar performance, this distribution 

should be centred around zero, and in general the mean 

value of this distribution gives a measure of the compara-

tive performance. �e maximum possible value of the net 

difference is the size of the dataset.

Statistical significance at a confidence level of 1  % 

was assessed using a two-sided T-test (the ttest_1sampl 

method of SciPy [32]) where the null hypothesis is 

that the mean of the distribution is zero. As there are 

378 pairwise comparisons we corrected for multiple 
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comparisons using the Holm–Bonferroni correction [33]. 

For the single- and multi-assay benchmarks, only 4 and 

5 comparisons respectively were not found to be statisti-

cally significant.

In order to summarise the data to form Hasse dia-

grams, it was necessary to identify incomparable finger-

prints. For example, FCFP4 and AP are incomparable 

in the context of the multi-assay benchmark. Although 

the pairwise data shows that FCFP4 is better than AP, 

this is incompatible with pairwise data involving the 

HashTT fingerprint as AP is better than HashTT but the 

difference between HashTT and FCFP4 is not statisti-

cally significant. As a result, no edge is shown between 

FCFP4 and AP. For the multi-assay benchmark four fin-

gerprint pairs were identified as incomparable, while 

none were identified as incomparable on the single-assay 

benchmark.

Re-analysis of the Riniker–Landrum benchmark

�e Riniker and Landrum benchmarking platform [9] is 

a ligand-based virtual screen against 88 protein targets. 

It is the union of three distinct datasets: 50 targets from 

ChEMBL 14, 21 from the Directory of Useful Decoys [34] 

(DUD) and 17 from the Maximum Unbiased Validation 

(MUV) dataset [35]. For each protein target, at least 30 

actives were present. 50 repetitions of each screening 

experiment were carried out where 5 actives were ran-

domly selected as the query and 20 % of the decoys were 

held back while the remaining actives and decoys were 

ranked based on maximum similarity to the query mol-

ecules (MAX fusion). �e evaluation methods used in 

the original study included the area under the ROC curve 

(AUC), and a variety of early recognition methods. We 

focus here on results for BEDROC(20) [36] as this is the 

early recognition method for which the results are listed 

in Table 1 of the original study.

�e datasets and software used to produce the results 

were included with the paper and also deposited in a 

GitHub repository [24]. We reran the benchmark pro-

cedure using the code in the repository and version 

2015.09.2 of the RDKit cheminformatics toolkit. �e 

original analysis of the benchmark results ranked the 

fingerprints for each repetition using a specific evalua-

tion method [for example, BEDROC(20)], took the mean 

of these ranks over the 50 repetitions and then the mean 

over all of the proteins. �e statistical significance of the 

pairwise differences was assessed using a bootstrapping 

procedure that sampled with replacement the ranks from 

each repetition. Sheridan [37] has also advocated the use 

of mean ranks instead of mean scores, as the latter are 

highly influenced by those proteins with a large range of 

scores. However the use of the mean rank is itself prob-

lematic as the pairwise similarity of two methods can be 

altered (and even inverted) by adding additional methods 

to an evaluation.

We avoided these problems by measuring the relative 

performance of two fingerprints using the same method 

described above for the new benchmarks. Using the data 

from a single repetition of the Riniker–Landrum bench-

mark, the following comparison value was used for each 

pair of fingerprints A and B: the net difference between 

the number of protein targets for which the evaluation 

method for fingerprint A was better than fingerprint B 

minus the number of targets where it was worse. Given 

the 50 repetitions, a distribution of this net difference 

was obtained. For two fingerprints with similar perfor-

mance, this distribution should be centred around zero, 

and in general the mean value of this distribution gives a 

measure of the comparative performance. �e maximum 

possible value of the net difference is the size of the data-

set, 88.

�e remainder of the analysis is the same as that 

described above for the single-assay and multi-assay 

benchmarks. Of the 378 pairwise comparisons, 35 were 

not found to be statistically significant at the 1 % level. No 

fingerprint pairs were found to be incomparable. Com-

pared to the analysis in the original paper, this approach 

has greater statistical power; for the original analysis, 46 

of the 91 pairwise comparisons (of 14 fingerprints) were 

not statistically significant at the 5 % level. Qualitatively 

the results are largely in agreement, although a com-

parison with Table 1 in the original study does highlight 

some differences; for example, RDK5 performs worse 

in our analysis, and the order of LAvalon and Avalon is 

reversed.

Results and discussion
Identifying structurally similar molecules from ChEMBL 

assays

Both of the new benchmarks use co-appearance in the 

same ChEMBL assay as an indication that two molecules 

are structurally similar (according to the definition in 

the Introduction). However, the naïve assumption that 

all molecules in the same ChEMBL assay are structurally 

similar is of course not true. Molecules already known 

to modulate the activity (e.g. inhibitors or agonists) are 

sometimes included for comparison; known inactives may 

be present as internal controls; assays may include several 

different chemotypes or scaffolds; indeed, the molecules 

in an assay may bear no structural similarity beyond hit-

ting a particular target (e.g. the result of a HTS campaign). 

While it is tempting to use a similarity measure to filter 

out structures that are dissimilar to the majority of an 

assay, this must be avoided as it would bias the results.

Instead we have used a series of filters that indi-

rectly remove data that has a high probability of being 
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dissimilar (see “Methods” section). To begin with, the 

dataset is restricted to assays containing between 8 and 

25 molecules (inclusive). �en molecules are removed 

if they appear in more than four papers (promiscuous 

molecules), if they are present in Wikipedia or if they 

have an INN. �e effect of each successive filter on the 

within-assay pairwise similarity is shown in Fig. 2. With 

each filter, the peak at a Tanimoto value of 0.1 is reduced, 

an indication that structures dissimilar to the majority 

of the assay have been removed. Although the effect of 

eliminating Wikipedia structures may be small compared 

to earlier filters, visual inspection of benchmark series 

containing Wikipedia structures indicated that in about 

half of the cases the Wikipedia structure was not struc-

turally similar to at least one of its immediate neighbours 

in the series. A similar inspection for the few remaining 

structures with INNs did not indicate that retaining them 

would cause any problem but it seemed a reasonable pre-

caution to also remove those.

Naturally the procedure described here also removes a 

large amount of acceptable data in the context of many 

assays but this is unavoidable. It also will not eliminate 

all dissimilar structures since it is only able to identify 

such structures indirectly. Despite this, the procedure 

described was quite successful as illustrated by the reduc-

tion in the size of the peak at 0.1 Tanimoto in Fig. 2, and 

this is supported by inspection of the series generated for 

each benchmark.

Ordering molecules by structural similarity relative to a 

reference

In order to test a fingerprint’s ability to order molecules 

by structural similarity, we created two distinct bench-

mark datasets of thousands of series of 5 molecules, each 

series containing a reference molecule and an ordered 

arrangement of 4 molecules.

�e single-assay benchmark consists of 4563 series 

each containing five molecules from the same ChEMBL 

Table 1 Key to �ngerprint abbreviations used

See “Methods” section for associated references

Abbreviation Fingerprint description Class

AP Atom pair Path-based

Avalon Developed for substructure screen-out when searching Substructure keys

ECFC0 Count vector form of ECFP0 Circular

ECFC2 Count vector form of ECFP2 Circular

ECFC4 Count vector form of ECFP4 Circular

ECFC6 Count vector form of ECFP6 Circular

ECFP0 Extended-connectivity fingerprint of diameter 0 Circular

ECFP2 Extended-connectivity fingerprint of diameter 2 Circular

ECFP4 Extended-connectivity fingerprint of diameter 4 Circular

ECFP6 Extended-connectivity fingerprint of diameter 6 Circular

FCFC2 Count vector form of FCFP2 Circular

FCFC4 Count vector form of FCFP4 Circular

FCFC6 Count vector form of FCFP6 Circular

FCFP2 Feature-class fingerprint of diameter 2 Circular

FCFP4 Feature-class fingerprint of diameter 4 Circular

FCFP6 Feature-class fingerprint of diameter 6 Circular

HashAP Bit vector form of AP Path-based

HashTT Bit vector form of TT Path-based

LAvalon 16384-bit form of Avalon Substructure keys

LECFP4 16384-bit form of ECFP4 Circular

LECFP6 16384-bit form of ECFP6 Circular

LFCFP4 16384-bit form of FCFP4 Circular

LFCFP6 16384-bit form of FCFP6 Circular

MACCS Molecular ACCess System structural keys Substructure keys

RDK5 Encodes paths of maximum length 5 Path-based

RDK6 Encodes paths of maximum length 6 Path-based

RDK7 Encodes paths of maximum length 7 Path-based

TT Topological torsion fingerprint Path-based
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assay where none of the five molecules is within 0.38 

activity units of another. �e members of each series are 

ordered by their activity with respect to the most active 

(the reference molecule). Examples from three differ-

ent publications are shown in Fig. 3a [38–40]. �e basis 

for the use of these data as a benchmark for structural 

similarity is our assumption that structural similarity 

decreases relative to the reference molecule as one moves 

across the series to lower activity. While this procedure 

will not work for an arbitrary set of molecules active 

against a particular target (due to the presence of dif-

ferent scaffolds, binding modes and other confounding 

effects), it works in this case due to the constraint of our 

definition of similarity.

�e multi-assay benchmark consists of 4563 series con-

taining five molecules where the first two are from the 

same ChEMBL assay, the third comes from a different 

paper but co-occurs with the second, the fourth from a 

different paper but co-occurs with the third, and simi-

larly the fifth. �ree examples are shown in Fig. 3b each 

of which is based on structures from four publications 

[41–52]. �e basis for the use of these data as a bench-

mark for structural similarity is the assumption that 

structural similarity decreases relative to a reference mol-

ecule as one moves from one paper to another through 

co-occurring molecules, given the size of chemical space 

and the nature of a random walk.

�e assumptions listed above will not always be true, 

but this is not a problem so long as any other effects ran-

domly order the molecules. Of course, such randomly-

ordered series will add to the noise and set an upper 

bound on performance.

Figures  4 and 5 shows the distributions of Tanimoto 

values for the LECFP6 fingerprints of the four molecules 

in the series relative to the reference molecule. In both 

cases there is a clear shift to lower similarity values on 

moving across the series, which supports our assump-

tion. �is shift is much more marked for the multi-assay 

benchmark compared to the single-assay benchmark, 

which is expected given that the structures in the single-

assay benchmark are all from the same paper (and assay). 

As the structural differences in the multi-assay bench-

mark are greater, it should present an easier task for fin-

gerprints and so the performance is likely to be better.

Benchmarking �ngerprint performance

Each fingerprint was assessed for its ability to reproduce 

the series order for each series in the datasets, 4563 series 

in the case of the single-assay benchmark and 3629 for 

the multi-assay benchmark. �at is, can the similar-

ity measure correctly order four query molecules with 

respect to a reference molecule?

Figures 6 and 7 give an overview of the average perfor-

mance for a subset of the fingerprints. If we consider the 

multi-assay benchmark first (Fig. 7), one of the best per-

forming fingerprints (LECFP4) can reproduce or almost 

reproduce (off-by-one) the original series order in 2201 

of the 3629 cases (61  %). �is compares to the baseline 

ECFP0 fingerprint which can do so in only 1498 of the 

cases (41 %). �e single-assay benchmark presents a more 

challenging set of series to be ordered; one of the best per-

forming fingerprints (HashAP) only gets the answer close 

to correct for 1744 of the 4563 cases (38  %). �e corre-

sponding value for the ECFP0 fingerprint is 942 (20 %).

While Figs.  6 and 7 gives an overview of the average 

performance of different fingerprints, a method with 

more statistical power was used to calculate the relative 

performance of each fingerprint. If one considers a single 

repetition from either of the benchmarks, there are sev-

eral thousand independent test cases. For each one, it is 

possible to rank the various fingerprints by how well they 

perform. Using these ranks, for each pair of fingerprints 

A and B one can calculate the net difference between the 

number of times A performed better than B minus the 

number of times it performed worse. �e distributions of 

these net differences over 1000 repetitions give a mean 

net difference for each pair as well as the ability to test 

Fig. 2 Histogram showing the effect of successive filters on the 

pairwise similarity of structures in the same assay. Pairwise similarity 

was measured using the LECFP4 fingerprint for pairs of structures 

from each assay in the dataset and a histogram generated using a 

bin width of 0.05. The initial data (green) was for assays containing up 

to 25 structures. Successive filters were then applied to restrict the 

data to those assays of size 8 or greater, to remove promiscuous mol-

ecules, and to remove molecules found in Wikipedia or with INNs. For 

comparison, the pairwise similarity of randomly chosen molecules 

from the entire dataset is shown as the dashed line. Histograms were 

normalised to 100 % over all bins, except for the histogram for the 

random data which was scaled to 30 %
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statistical significance. A similar method was used to 

assess fingerprint performance for the Riniker–Landrum 

virtual screening benchmark, for which 50 repetitions 

were present.

 Figures 8, 9 and 10 show a subset of these distributions 

versus the HashTT fingerprint for each of the three bench-

marks. �e mean values of the histograms partition the fin-

gerprints into sets that are better than HashTT, worse than 

HashTT, and those where there is no significant difference. 

HashTT was chosen here as an example because its average 

performance across all of the benchmarks illustrates this 

partitioning. �ese mean values of the net difference are the 

primary result of the benchmarks and the complete matri-

ces are included in the Additional file  1 as tab-separated 

files. �e Additional file 2 includes 2D embeddings of the 

distance matrix created from the absolute values of the net 

differences; this gives an overview of the relative magnitude 

of the differences between fingerprints.  

Which �ngerprint best corresponds to the literature-based 

measures of structural similarity?

As a measure of the relative performance of two finger-

prints A and B on a benchmark, we used the net differ-

ence between the number of times A performed better 

than B minus the number of times it performed worse. 

Combined with multiple repetitions, this enabled us to 

make statistically significant comparisons between the 

majority of the fingerprints tested.

a

b

Fig. 3 Examples of series from a the single-assay benchmark, b the multi-assay benchmark
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Figure 11a and b summarise the relative performance 

of the fingerprints based on the complete set of net dif-

ferences for both the single- and multi-assay benchmark. 

Figure  11c shows the corresponding information for 

Riniker–Landrum benchmark. It should be noted first of 

all that the layout of this graph representation (strictly 

speaking, a Hasse diagram) does not make clear the mag-

nitude of the distances between fingerprints. For exam-

ple, while HashAP is the best performing fingerprint in 

the single-assay benchmark, its distance to TT (six posi-

tions below it in the graph) is 149 which corresponds to 

just 3.3 % of the dataset. On the other hand, given that 

a certain proportion of the dataset will contain series 

where the structures are incorrectly ordered (for exam-

ple, consider that ECFP0 has on average a better correla-

tion with the series order than LECFP4 on ~900 of the 

3629 series in the multi-assay benchmark), a better way 

to calibrate this value may be to consider it as 16 % of the 

distance between the best and worst fingerprints.

Looking at Fig.  11 it is clear that the overall perfor-

mance of the fingerprints is only moderately similar 

between the single- and multi-assay benchmarks, but 

that there is quite good agreement between the results 

from the virtual screen and the multi-assay benchmark. 

�ese similarities can be quantified by calculating a cor-

relation value between the net difference matrices based 

on the concordance of pairs, that is, whether A and B are 

relatively ordered the same in both matrices. �e corre-

lation value (Kendall tau) between the multi-assay and 

virtual screen benchmarks is 0.68 (0.76 if only using sta-

tistically significant values). �e corresponding value for 

the single-assay benchmark versus the multi-assay and 

virtual screen are 0.39 and 0.35 respectively (0.40 and 

0.39 for significant values).

Considering first the results from the multi-assay and 

virtual screening benchmarks, the LECFP4 and LECFP6 

fingerprints are consistently among the best tested. In 

Fig. 4 Histogram showing the structural similarity of structures in the 

single-assay benchmark with respect to their corresponding refer-

ence molecules. Similarity was measured with the LECFP6 fingerprint 

and a histogram created using bins of width 0.05. Histograms were 

normalised to 100 % over all bins. The data used here is taken from all 

1000 repetitions of the benchmark

Fig. 5 Histogram showing the structural similarity of structures in the 

multi-assay benchmark with respect to their corresponding reference 

molecules. Similarity was measured with the LECFP6 fingerprint 

and a histogram created using bins of width 0.05. Histograms were 

normalised to 100 % over all bins. The data used here is taken from all 

1000 repetitions of the benchmark

Fig. 6 Histogram of the performance for a subset of the fingerprints 

on the single-assay benchmark. The graph depicts the number of 

times a fingerprint had a particular correlation with the benchmark 

series order. The order of fingerprints in the legend matches the 

counts at correlation 1.0. The colours used correspond to those used 

by Riniker and Landrum [9] in their Fig. 5. The correlation values used 

in the graph cover all the possible rank correlations between two 

ordered series of length 4; intermediate values (due to ties) were 

rounded to the next lowest value for positive values and the next 

largest value for negative values
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fact, among the top fingerprints only the topological tor-

sion (TT) fingerprint is not an extended-connectivity or 

feature-class fingerprint. At the other end of the scale, 

the ECFP0, RDK7, ECFC0 and MACCS fingerprints are 

the poorest performers.

�e single-assay benchmark requires the fingerprints 

to correctly order very similar structures, many of which 

are matched pairs or contain minor modifications to 

scaffolds. Compared to the multi-assay benchmark, the 

most notable difference in the results depicted in Fig. 11a 

is that the atom pair fingerprints, AP and HashAP, move 

Fig. 7 Histogram of the performance for a subset of the fingerprints 

on the multi-assay benchmark. See caption for Fig. 6 for more details

Fig. 8 Histograms showing the relative performance of a subset of 

the fingerprints relative to the HashTT fingerprint in the single-assay 

benchmark. Relative performance was measured for each of the 1000 

repetitions by counting the number of times a particular fingerprint 

had higher correlation with the benchmark series compared to the 

HashTT fingerprint and subtracting the number of times it had lower 

correlation. The difference between the performance of the LECFP6 

and HashTT fingerprints was not found to be statistically significant. 

All others fingerprints shown were either better (those to the right) or 

worse (those to the left) than HashTT. A bin width of 10 was used

Fig. 9 Histograms showing the relative performance of a subset of 

the fingerprints relative to the HashTT fingerprint in the multi-assay 

benchmark. Relative performance was measured for each of the 1000 

repetitions by counting the number of times a particular fingerprint 

had higher correlation with the benchmark series compared to the 

HashTT fingerprint and subtracting the number of times it had lower 

correlation. The difference between the performance of the FCFP4 

and HashTT fingerprints was not found to be statistically significant. 

All others fingerprints shown were either better (those to the right) or 

worse (those to the left) than HashTT. A bin width of 10 was used

Fig. 10 Histograms showing the relative performance of a subset 

of the fingerprints relative to the HashTT fingerprint in the Riniker–

Landrum benchmark. Relative performance was measured for each 

of the 50 repetitions by counting the number of times a particular 

fingerprint had a higher BEDROC(20) value compared to the HashTT 

fingerprint and subtracting the number of times it had a lower value. 

The difference between the performance of the ECFC4 and HashTT 

fingerprints was not found to be statistically significant. All others 

fingerprints shown were either better (those to the right) or worse 

(those to the left) than HashTT. A bin width of 5 was used
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a b

c

Fig. 11 Directed graphs summarising the relative performance on a the single-assay benchmark, b the multi-assay benchmark and c the Riniker–

Landrum benchmark. All fingerprints higher in the graph are better than those below if a path between them exists. The numbers indicate the net 

difference (number of times better minus number of times worse) for neighbouring fingerprints. Note that the scales are different as the upper 

values are bounded by the dataset size: 3629 for a, 4563 for b, and 88 for c. Note that the net differences may not obey the triangle inequality. To 

find out the net difference for a non-neighbouring pair, see the tables in the Additional file 1
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from being average and poor (respectively) to being the 

best performers. �e atom pair fingerprint [27] encodes 

all pairs of atoms along with the shortest distance 

between them. Note that, unlike a Daylight-type finger-

print such as RDK5, the path itself is not encoded and 

the environment of an atom is only encoded to the extent 

of counting the number of heavy atoms attached. �is 

means that structural modifications that only change 

a few atoms (e.g. changing a carbon to a nitrogen, an 

R-group replacement, or moving an R-group around a 

ring) will only have a small effect on the value.

Another notable difference between the benchmarks 

is that the count vector forms of the four circular fin-

gerprints with diameter 4 and 6 improved the results for 

the single-assay benchmark, but were uniformly worse 

for the multi-assay and Riniker–Landrum benchmarks 

(except for a single instance where the value not was 

significantly different). �e key difference between the 

xCFC (count vector) and xCFP (bit vector) fingerprints 

is that where the same structural feature is observed 

more than once the count vectors record the number of 

observations while the bit vector forms just record its 

presence. As the count vector is more information-rich, 

one would expect the corresponding similarity measure-

ments to always perform better. Looking at the results for 

the multi-assay benchmark, while the results for LECFP6 

are not (statistically) significantly different than those for 

ECFC6, the net difference for LECFP4 versus ECFC4 is 

23, that for LFCFP4/FCFC4 is 71 and that for LFCFP6/

LFCFC6 is also 71. �ese differences are unlikely to be 

due to collisions as the count vector as implemented in 

RDKit is a sparse vector of length 4294967296 bits. Hav-

ing inspected a number of series where LECFP4 outper-

forms ECFC4, we are still unsure why this difference is 

observed. It must be that penalising the absence of a sec-

ond (or third, etc.) feature to the same extent as penal-

ising the complete absence of a feature yields a worse 

similarity measure. In other words, that there is a large 

gain in similarity in having a bit (or equivalently a count 

of 1) in common between two fingerprints, but that 

increasing the count in common to 2 does not increase 

the similarity to the same extent.

�is still leaves the question of why the performance 

of the count vector forms is better on the single-assay 

benchmark. �e explanation may be a molecular weight 

effect. If we include the absolute difference in the molec-

ular weight as a method of ordering the benchmark 

series, in the multi-assay benchmark it had a poorer net 

difference than ECFP0 on 845 of the repetitions. In con-

trast, it slightly outperforms ECFP0 in the single-assay 

benchmark (by a net difference of 33). As the count vec-

tor forms of the circular fingerprints are more sensi-

tive than the bit-vector forms to similarity in molecular 

weight, this may explain their improved performance in 

the single-assay benchmark.

It is to be expected that a shorter fingerprint length will 

introduce collisions thus adding noise to the calculation 

of similarity with a consequent loss of performance. �is 

was observed by Sastry et al. [18] for Daylight fingerprints 

with 1024 bits. To investigate this, Riniker and Landrum 

included five pairs of fingerprints as both the default 

length (1024 bits) and a long form (16,384 bits). In their 

analysis, no considerable improvement in performance 

was observed but when re-analysed we find that in each 

case the long form performed better. �is was also the case 

for the multi-assay benchmark; the net difference on the 

multi-assay benchmark for the LAvalon fingerprint versus 

the Avalon fingerprint was 132, while that for LECFP6/

ECFP6 was 172, LECFP4/ECFP4 was 99, LFCFP6/FCFP6 

was 96 and LFCFP4/FCFP4 was 57. As a larger number of 

bit collisions would be observed for the xCFP6 fingerprints 

versus xCFP4, the larger performance improvements 

found for the ECFP6 and FCFP6 fingerprints are expected. 

In contrast, the single-assay benchmark did not show a 

clear trend; the Avalon and FCFP6 fingerprints were better 

than their long forms by 28 and 9 respectively, while the 

LECFP6 and LECFP4 fingerprints were better than their 

short forms by 21 and 14 respectively (the LFCFP4/FCFP4 

difference was not statistically significant).

Conclusions
To our knowledge, the concepts behind both of the 

new benchmarks have not previously been explored. 

�ey present a number of advantages over previous 

benchmarks:

1. �e new benchmarks achieve a degree of separation 

of different fingerprints that is an order of magnitude 

greater than a virtual screening benchmark. �is 

is partly due to their size; each of several thousand 

series has a vote on which of two fingerprints is bet-

ter, compared to fewer than 100 for a large-scale vir-

tual screen.

2. �e new benchmarks are not prone to the problems 

associated with using the mean score or the mean 

rank to evaluate methods, problems which have 

reduced the statistical power of previous studies. 

Strictly speaking these problems can be avoided even 

for virtual screens, as we show in our re-analysis of 

the Riniker–Landrum study, but they are endemic in 

the field. Instead of taking the means and then com-

paring them, our approach is to do the pairwise com-

parisons first for each target (or series) and then col-

late the results.

3. �e new benchmarks are intended to measure ability 

to rank structures by similarity, whereas a benchmark 
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for virtual screening only measures this indirectly. 

For example, the use of multiple query structures in a 

virtual screen (as in the Riniker and Landrum study) 

is considered good practice as it improves recall [53, 

54]. However, this is a confounding factor when con-

sidering the ability to measure structural similarity. 

Good performance for one fingerprint might be due 

to structural similarity to one of the query structures, 

but for a different fingerprint good performance 

might be due to similarity to another.

4. �e issue of which metric to use to evaluate a virtual 

screen has made it difficult to compare and indeed 

assess studies, especially as the majority have not 

made their results available as part of the publication 

or provided a way to reproduce them. A particular 

problem is the continued use of metrics related to 

the average rank of the actives and that, as a result, 

cannot even distinguish between trivial examples of 

methods with good versus poor performance [36]. 

For the single- and multi-assay benchmarks, the eval-

uation metric is the rank correlation.

5. Compared to a virtual screen, which assumes that 

actives are more similar to each other than to inac-

tives, the new benchmarks are based upon different 

assumptions: namely, that within an assay molecules 

with similar activity tend to have similar structures, 

and that structural similarity decreases as one moves 

from one paper to another through molecules in 

common between both. Furthermore, the degree of 

similarity varies in each case. Given these differences, 

one can compare the results of the new benchmarks 

with a virtual screen to determine to what extent 

structural similarity is the same in different contexts.

While it is easy to assert that fingerprint performance 

depends on the particular context, it is nonetheless the 

case that certain fingerprints are more likely than others 

to perform well in general.

Here we provide conclusive evidence that extended-

connectivity fingerprints of diameter 4 and 6 are among 

the best performing fingerprints whether separating 

actives from decoys in a virtual screen or ranking diverse 

structures by similarity. �e topological torsion finger-

print is also found to perform well at these tasks. For 

the specific case of ranking very similar structures (for 

example, close analogues), the atom pair fingerprint out-

performs the others tested, with the count versions of the 

extended-connectivity fingerprints also performing well. 

Fingerprints to avoid when measuring similarity include 

Daylight-type path-based fingerprints and MACCS keys. 

It also appears that using fingerprints longer than 1024 

bits is worthwhile due to the improved performance. 

Finally, given the sensitivity of the multi-assay benchmark 

and the degree of agreement with the BEDROC(20) 

results for the virtual screen, we believe that the multi-

assay benchmark will prove useful for the development of 

improved fingerprints for virtual screening.

Supporting information
 �e datasets and Python scripts to reproduce the results 

are available from https://github.com/nextmovesoftware/

similaritybenchmark.
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