2758 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 11, NOVEMBER 1997

Comparing Support Vector Machines with Gaussian
Kernels to Radial Basis Function Classifiers

Bernhard Scblkopf, Kah-Kay Sung, Chris J. C. Burges, Federico Girosi,
Partha Niyogi, Tomaso Poggio, and Vladimir Vapnik

Abstract—The support vector (SV) machine is a novel type
of learning machine, based on statistical learning theory, which . o
contains polynomial classifiers, neural networks, and radial basis
function (RBF) networks as special cases. In the RBF case, the ¢ .
SV algorithm automatically determines centers, weights, and .
threshold that minimize an upper bound on the expected test . ° s
error. ‘

The present study is devoted to an experimental compar-
ison of these machines with a classical approach, where the e L
centers are determined byk-means clustering, and the weights
are computed using error backpropagation. We consider three . .
machines, namely, a classical RBF machine, an SV machine
with Gaussian kernel, and a hybrid system with the centers g .
determined by the SV method and the weights trained by error
backpropagation. Our results show that on the United States o]
postal service database of handwritten digits, the SV machine o © o
achieves the highest recognition accuracy, followed by the hybrid o © o ©
system. The SV approach is thus not only theoretically well- C o
founded but also superior in a practical application. o

Index Terms—Clustering, pattern recognition, prototypes, ra-
dial basis function networks, support vector machines.

Fig. 1. Simple two-dimensional (2-D) classification problem: Find a decision
function separating balls from circles. The box, as in all following figures,
I. INTRODUCTION depicts the regiof—1, 1]2.

ONSIDER Fig. 1. Suppose we want to construct a radial

basis function classifier
The first approach consists of choosing the centers for the
¢ llx — x| two classes separately, irrespective of the classification task to
f(x) =sgn Z w; exXp <—67> +0 (1) be solved. The classical technique of finding the centers by
i=1 ‘ some clustering techniquéodfore tackling the classification
roblem) is such an approach. The weightsare then usually

(b and ¢; being constants, the latter positive) separating ba Sund by either error backpropagation [17] or the pseudo-
from circles, i.e., taking different values on balls and circleﬁwerse method (e.g., [15])

.2 . . .
?(;)r\wlie?\?ag\ig clzlioosze theentersx;? Two extreme cases are An alternative approach consists of choosing, as centers,
(Fig. 2). points that arecritical for the classification task at hand.

_ _ _ . Recently, thesupport vector algorithmvas developed [3], [7],
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with K centers has the form

. - g(x) = Z w; G (x) + b

K 5
R —— - S L) Y
. ¢ e 2 " @) g 207

. X whereg; is theith Gaussian basis function with centgrand

o" . variances?. The weight coefficientss; combine the Gaussian
@® © terms into a single output value, ahds a bias term. Building

© a Gaussian RBF network for a given learning task involves

o x a) determining the total number of Gaussian basis functions
o © to use for each output class and for the entire system;
© b) locating the Gaussian basis function centers;
S ¢) computing the cluster variance for each Gaussian basis
o function;
d) solving for the weight coefficients and bias in the

) i . - summation term.
Fig. 2. RBF centers automatically found by the SV algorithm (indicated bé . ) . .
extra circles), using; = 1 for all 7 [cf., (1)]. The number of SV centers One can implement a binary pattern classifier on input vectors

accidentally coincides with the number of identifiable clusters (indicated By s a Gaussian RBF network by defining an appropriate

crosses found bye-means clustering withk = 2 and & = 3 for balls

and circles, respectively), but the naive correspondence between clusters%HH)Ut Fhre.shold that separe_ltes the two patte.m _Cl_asses' o

centers is lost; indeed, three of the SV centers are circles, and only twoln this first system, we implement each individual digit

of them are balls. Note that the SV centers are chosen with respect to fegognizer as a spherical Gaussian RBF network trained with a

classification task to be solved. . . . . .
classical RBF algorithm. Given a specified number of Gaussian

basis functions for each digit class, the algorithm separately

computes the Gaussian centers and variances for each of

boundary [24]. These are trsipport vectorghat correspond yq o digit classes to form the system’'s RBF kernels. The

to the centers in input space. rFEJgorithm then solves for an optimal set of weight parameters

Thlte g%?l _Of dthe_trpkresent stuldytls_ to co:jnp?re _rea:l-vRvg etween the RBF kernels and each output node to perform the
resufts ‘obtained with--means ciustering and classica desired digit recognition task. The training process constructs

training to those obtained when the centers, weights, a ten digit recognizers in parallel so that one can reuse the

threshold are automatically chosen by the SV algorithm. Ame Gaussian basis functions among the ten digit recognizers.

this end, we decided to undertake a performance study Y avoi o : L ;
- . . avoid overfitting the available training data with an overl
combining expertise on the SV algorithm (AT&T Bell Labo- g 9 y

tori d the classical RBE networks (M h ctomplex RBF classifier connected to every Gaussian kernel,
ra o_rles) and on the classica networks ( assac usew use a “bootstrap” like operation that selectively connects
Institute of Technology). We report results obtained on

) . . oN &ch recognizer’s output node to only a “relevant” subset of all
United States Postal Service database of handwritten dlgltsbasis functions. The idea is similar to how we choose relevant

V\tl_e have grganllsedththe ImaFtehrlaI as f(cj)lltowts. .Int;hednf?ﬁtear—miss clusters for each individual digit recognizer in the
section, we describe the algorithms used fo train he dilie riginal system. The training procedure proceeds as follows

ent types of RBF classifiers compared in this paper. F or further details, see [23]).

lowing that, we present an experimental comparison of t e1 The fi . K d . .
approaches. We conclude with a discussion of our findings. ) The first training ta§ IS to determine an gpproprlate
number & of Gaussian kernels for each digit class.

This information is needed to initialize our clustering
Il. CONSTRUCTING RADIAL BASIS FUNCTION CLASSIFIERS procedure for computing Gaussian RBF kernels. We
opted for using the same numbers of Gaussian kernels
as the ones automatically computed by the SV algorithm
(see Table 1).
Our next task is to compute the Gaussian kernels for
each digit class. We do this by separately performing
classical k.-means clustering (e.g., [11]) on each digit
class in the training database. Each clustering operation
returns a set of Gaussian centroids and their respective

We describe three RBF systems trained in different ways.
In Section II-A, we discuss the first system trained along more
classical lines. In Section II-B, we describe the SV algorithm,
which constructs an RBF network whose parameters (centers?)
weights, threshold) are automatically optimized. In Section
II-C, we finally use the SV algorithm merely to choose the
centers of the RBF network and then optimize the weights

separately. : . o
P y variances for the given digit class. Together, the Gauss-
] ] ] ian clusters from all ten digit classes form the system’s
A. Classical Spherical Gaussian RBF'’s RBF kernels.

We begin by first describing the classical Gaussian RBF3) For each single-digit recognizer, we build amitial
system. AN-dimensional spherical Gaussian RBF network RBF network using only Gaussian kernels from its
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TABLE |
NUMBERS OF CENTERS (SUPPORT VECTORY AUTOMATICALLY EXTRACTED BY THE SV MACHINE. THE FIRST Row GIVES THE TOTAL NUMBER FOR
EacH BINARY CLASSIFIER, INCLUDING BOTH POSITIVE AND NEGATIVE EXAMPLES; IN THE SECOND Row, WE ONLY COUNTED THE POSITIVE
SuPPORTVECTORS THE LATTER NUMBER WAS USED IN THE INITIALIZATION OF THE k-MEANS ALGORITHM, CF., SECTION II-A

digit class 0 1 2 3 4 5 6 7 8 9
# of Support Vectors 274 | 104 | 377 | 361 | 334 | 388 | 236 | 235 | 342 | 263
# of positive Support Vectors || 172 | 77 | 217 | 179 | 211 | 231 | 147 | 133 | 194 | 166

target class, using on-line backpropagation of medest set) if the numbef of training examples is limited. To
squared error to train the weights (the desired outpotake the most out of a limited amount of data, novel statistical
is set to 1 or O for positive and negative examplesgechniques have been developed during the last 25 years. The
respectively). We then separately collect all the falssructural risk minimizatiorprinciple [24] is based on the fact
positive mistakes each initial digit recognizer makes aiat for the above learning problem, for anye A with a

the training database. probability of at leastl — », the bound

4) In the final training step, we augment each initial digit h
recognizer with additional Gaussian kernels from outside R(a) € Remp(a) + ¢ {ﬂ (2)
its target class to help reduce misclassification errors.

We determine which Gaussian kernels are “relevanfo|ds, whereg is defined as
for each recognizer as follows. For eafdise positive
mistake the initial recognizer makes during the previous 20
step, we look up the misclassified pattern’s actual digit h h<10g T 1) — log (1/4)
class and include the nearest Gaussian kernel from its { } = 7

class in the “relevant” set. Thitnal RBF network for

each single-digit recognizer thus contains every GausBie parameterh is called the Vapnik—Chervonenkis (VC)
ian kernel from its target class, and several “relevandtimensionof a set of functions. It describes the capacity of
kernels from the other nine digit classes, trained by errarset of functions implementable by the learning machine. For
backpropagation. Because our final digit recognizekdnary classification is the maximal number of points that
have fewer weight parameters than a naive system titan be separated into two classes in all possiblevays by
fully connects all ten recognizers to every Gaussiasing functions of the learning machine, i.e., for each possible
kernel, we expect our system to generalize better ¢gparation, there exists a function that takes the value 1 on

L

new data. one class and-1 on the other class.
According to (2), given a fixed numbérof training exam-
B. The Support Vector Machine ples, one can control the risk by controlling two quantities:

Remp(a) and h({fa: o € A’}), with A’ denoting some
subset of the index set. The empirical risk depends on the
function chosen by the learning machine (i.e., ah and it
can be controlled by picking the riglt. The VC dimension
{far a € A}, fa: RY — {1, +1} h depends on theset of functions{f,: a € A’} that the
learning machine can implement. To contiglone introduces
a structure of nested subsets, := {f, : o € A,} of

(X17 y1)7 Ty (Xév y[)v X; € RN7 Yi € {_17 +1} {f‘l a € A}

where each one is generated from an unknown probability S5 cSc---CS, C - 3)
distribution P(x, y), we want to find a functionf,- that . ) )

provides the smallest possible value for the average erM§pose VC dimensions, as a result, satisfy

tcr:)emrﬁzllited on novel examples randomly drawn fréhcalled hy<hy < o <h, <

1) Structural Risk Minimization:For the case of two-class
pattern recognition, the task t#arning from examplesan be
formulated in the following way. Given a set of functions

and a set of examples

For a given set of observations, %), ---, (x¢, y¢) the
R(a) = / 5 [fa(%) =yl dP(x, y). structural risk minimization princrifalehoo)ses the( functi)oﬁly
in the subset{f,: « € A,} for which the guaranteed risk
bound [the right-hand side of (2)] is minimal.
The remainder of this section follows [18] in briefly re-
viewing the SV algorithm. For details, the reader is referred

The problem is thatR(«) is unknown sinceP(x, y) is un-
known. Therefore, amduction principlefor risk minimization
iS necessary.

The straightforward approach to minimize #pirical risk

to [25].
150 2) A Structure on the Set of HyperplaneBSach particular
Remp(a) = 7 Z 3 | fa(x:) — wil choice of a structure (3) gives rise to a learning algorithm. The
=1

SV algorithm is based on a structure on the set of separating
turns out not to guarantee a small actual risk (i.e., a smalperplanes. To describe it, first note that given a dot product
error on the training set does not imply a small error on spaceZ and a set of vectors,, ---, z,. € Z, each hyperplane
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{z € Z: (w-z)+ b = 0} corresponds to a canonical paiwith nonzero coefficientsy; only where the corresponding
(w, b) € Z x R if we additionally require example(z;, y;) precisely meets the constraint (9). These
are calledsupport vectors All remaining examples of the
training set are irrelevant. Their constraint (9) is satisfied

i.e., that the scaling ofv andb be such that the point closestammatIcally (with¢; = 0), and they do not appear in the

to the hyperplane has a distancelgfw]||. Let R be the radius %Emi'on L(Jiulj)ra tTi:e r%oiglrﬁlfnri]rt\& a:gt:cl(()elrjr?degxisrr?il\z/?g the
of the smallest balBg(a) = {z € Z: ||z—a|| < R} (a € Z) 949 prog gp :

min |(woz)+b =1 @

containing the pointz, ---, z,, and £ )
W(a) = o — 5 ooyyiyi(zi - z;)  (12)
Jo,u = sgn[(w - z) + ] () ; =R ’
where the decision function is defined on these points. Thgpject to
possibility of introducing a structure on the set of hyperplanes .
is based on the result [25] that the set of canonical hyperplanes L _
{fw.v: ||w|]| < A} has a VC dimension satisfying 0<a;<y, i=1., 4 andy ami=0. (13)

=1
2 42
h<RA"+1. 6) By linearity of the dot product, the decision function (5) can

Note: Dropping the conditiori|w|| < A leads to a set of thus be written as
functions whose VC dimension equalé + 1, where N is ‘
the dimensionality ofZ. Due to|lw|| < A, we can get VC f(z) =sgn [Z yicvi - (z-2;) + b
dimensions that are much smaller th&n enabling us to work i=1
in very high dimensional spaces. Thus far, we have described the case of linear decision surfaces

3) The Support Vector AlgorithmNow, suppose we want 156 To allow for much more general decision surfaces,
to find a decision functiorf,,,, with the propertyfw,s(2:) = one can first nonlinearly transform a set of input vectors

. (14)

Yiy L = 1,---, £ If this function exists, canonicality (4) X, -+, X, into a high-dimensional feature space by a map
implies ®: x; — z; and then do a linear separation there. Maximizing
vil(w-z;) + ] > 1, i=1, ., L. ) (12) and evaluating (14) then requires the computation of dot

_ . products(®(x) - ®(x;)) in a high-dimensional space. We are
In practice, a separating hyperplane often does not exigferested in cases where these expensive calculations can be

To allow for the possibility of examples violating (7), [7]reduced significantly by using a suitable functiinsuch that
introduces slack variables

d(x) - d(x;)) = K(x, x; (15)
€30 el .t @® (0(x) - &(xi)) = K(x, xi)
leading to decision functions of the form
to get
¢
villw-z) +0]21-¢, i=1-, L 9) Fx) =son|> " yici - K(x, %) + b (16)
The SV approach to minimizing the guaranteed risk bound (2) =t
consists of the following. Minimize In practice, we need not worry about conceiving the niap
. We will choose ak that is the continuous Kernel of a positive
— L(w. S 10 definite integral operator, and Mercer’s theorem of functional
(W, &) =5 (w-w)+7 ; ¢ (10) analysis then tells us thdt can be expanded in a uniformly

biect to th traints (8) and (9). Due to (6), minimizi convergent series in terms of Eigenfunctiahsand positive
subject to the constraints an . Due to (6), minimizing;
uboj ! u INIMIZINGigenvalues);

the first term is related to minimizing the VC dimension of the

considered class of learning machines, thereby minimizing the s

second term of the bound (2) [it also amounts to maximizing K(x, xi) = Z gt (R)95 (%:)

the separation margin, cf., the remark following (4)]. The term =1

>>i—1 & on the other hand, is an upper bound on the numbesresponding to a dot produgb(x) - ®(x;)) in the (possibly

of misclassifications on the training set—this controls th@finite-dimensional) range of

empirical risk term in (2). For a suitable positive constant

this approach therefore constitutes a practical implementation D:x — [\/Tﬂ/n(x)’ \/Tﬂ/)Q(X), }

of structural risk minimization on the given set of functions. . )
Introducing Lagrange multipliersa; and using the (see [3], [25]). Consequently, everything that has been said

Kuhn—Tucker theorem of optimization theory, the solutiofbout the linear case also applies to nonlinear cases obtained
can be shown to have an expansion by using a suitable kernel( instead of the Euclidean dot

product (Fig. 3). We are now in a position to explain how the

¢ SV algorithm can construct RBF classifiers. We simply use
W= Z YiteiZ; (11)
i=1 K(x, x;) = exp (=||x — x|*/¢) @a7)
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1 TABLE 1

4 1nput space § feature space BINARY CLAsSIFICATION: NUMBERS OF TEST ERRORS (OuT oF 2007

°® TEST PATTERNS) FOR THE SYSTEMS DESCRIBED IN SECTIONS II-A—-C
i o digil class 0] 1]2 3 [4][5]6]7]8]9
© classical RBF 20116 (43 | 38146 (31|15 ] 18| 37 | 26
q)’ \ RBF with SV centers || 9 | 12 | 27 | 24 | 32 [ 24 | 19 | 16 | 26 | 16
® full SV machine 16 8125 (19729123 (14| 12] 25 16

[ ] ® [ ] °
[ ]

Fig. 3. By the use of a nonlinear kernel function (15), it is possible Jure spaces has been applied in other domains as, for instance,

compute a separating hyperplane with maximum margin in a feature spa@@nlinear principal component analysis [20].
without explicitly mapping into that space. The feature space is related to input

space via a nonlinear map, causing the decision surface to be nonlinear in . .
input space (e.g., of a Gaussian RBF type). C. A Hybrid System: RBF Network with SV Centers

The previous section discusses how one can train RBF like
(see [1]). Other possible choices &f include K(x, x;) = networks using the SV algorithm [cf., (16), (17)]. This involves
(x - x;)¢, yielding polynomial classifiers of degre¢ and the choice of an appropriate kernel functishand solving the
K(x,x;) = tanh[s - (x - x;) + ©] for constructing neural guadratic optimization problem (18). The SV algorithm thus
networks. automatically determines the centers (which are the support

To find the decision function (16), we maximize [cf., (12)]VECtOrs), the weights (given by), and the threshold for
the RBF machine.
To assess the relative influence of the automatic SV center

14 choice and the SV weight optimization, respectively, we built
W(a) = Z o — % Z oy K (%, x5) (18) another RBF system constructed with centers that are simply
i=1 i,5=1 the support vectors arising from the SV optimization and with

the weights trained separately.

subject to the constraints (13). Sinéeis required to satisfy b addenda
Mercer's conditions, it corresponds to a dot product in an-

other space (15); thu$y;y; K (x;, x;)];; is a positive matrix,
providing us with a problem that can be solved efficientl
To compute the threshold, one takes into account that du
to (9), for support vectors; for which & = 0, we have

1) Computational ComplexityBy construction, the result-

)}ng classifiers after training will have the same architecture and
fFomparable sizes. Thus, the three machines are comparable in
classification speed and memory requirements.

. e = Differences are, however, noticeable in training. Regarding
EEIFﬁzr?ﬁerﬁ(exrjn’a)rclg :)ranVijesearcﬁhe SV algorithm fraining time, the SV machine was faster than the RE’F
has been empirically shown to exhibit good generalizatioﬁ'}'s'[em by abqut an order of magnitude due to the formulation
ability [7]. This applies for different types of SV machine$S 2 quadratic programming problem that can be solved

obtained by using different kernel functions [cf., (17)]_eﬁ‘|0|ently. The optimization, however, requires us to work

moreover, different machines have been found to use IarggY hdpi);erltla_lly Iarget m_atnces. In tg?’ |mhplerl1(19ntagon t[@ we
the same SV's, e.g., most of the centers of an SV machiff®¢: e training data IS processed in chunks, and matrix Sizes

with Gaussian kernel coincide with the first-layer weights ofere of the orc?erSOO X 500 For_p_roblems .W'th very large
neural network SV classifiers [18]. numbers of SV’s, a modified training algorithm has recently

" . . been proposed by [14].
The accuracy can be further improved by incorporatin ; - .
invariances of the problem at hand, as with the virtual S 2) Different Ways of Training an RBF ClassifieDue  to

method. There, one generates artificial examples by transfonr- anotl_ (1?2]’ tthe_ S_‘V Zlg:)rltlhn:hputs emr:hi\s_lsd(_)fp cortr?ctly
ing SV’s and retrains on these in a second training run with>gParating the training data. In this respect, it IS itierent from

computational complexity comparable to the first one [19]. | e classical RBF approach of training in the least-squares

addition, the decision rule (16), which requires the evaluati(me.tr'c’ .Wh'Ch IS more CO”CETT‘?" with the.gen(_aral problem of
stimating posterior probabilities than with directly solving

of kernel functions for the test example and all SV'’s, can be lassification task at hand. Th st h tudi
sped up with the reduced set technique [4] by approximatiﬁl classiication task at hand. 1here exist, however, siudles
estigating the question of how to select RBF centers or

(16) with an expansion using fewer terms. These methods ha S . e
e§<emplars to minimize the number of misclassifications; see,

I ial i f I ial SV hi ) .
ed to substantial improvements for polynomial SV mac |m?8Lr instance, [2], [6]. [8], and [16]. A classical RBF system

([5] cut the error rate on a character recognition task by L . .

third and obtained a speed-up by a factor of 50), and they aﬁ%u'd also be mad(_a more d|scr|m|nan_t by using moving _cen_ters

directly applicable also to Gaussian SV machines. e.g., [15]) or a different cost function as the classification
igure of merit [9]. In fact, it can be shown that Gaussian

Besides pattern recognition, modified versions of the s\ F larizati work valent to SV hi
algorithm have been used for regression estimation and ti g regularization networks are equivaient to machines

series prediCtion [1_2]’ [13]’ [25]7 [27]' M'oreO\'/er, th_e kernel IMore information on SV methods can be obtained via http://iwww.mpik-
method for computing dot products in high-dimensional feaeb.mpg.de/people/personal/bs/svm.html.
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TABLE I
TEN-CLASS DIGIT RECOGNITION ERROR RATES FOR THREE RBF QLASSIFIERS CONSTRUCTED WITH DIFFERENT ALGORITHMS.
THE FIRST SYSTEM IS A CLASSICAL ONE, CHOOSING ITS CENTERS BY k-MEANS CLUSTERING. IN THE SECOND SYSTEM, THE
SuPPORT VECTORS WEREUSED AS CENTERS AND IN THE THIRD ONE, THE ENTIRE NETWORK WAS TRAINED USING THE SV ALGORITHM

2763

Classification Error Rate

USPS Database classical RBF | RBF with SV centers | full SV machine
Training (7291 patterns) 1.7% 0.0% 0.0%
Test (2007 patterns) . 6.7% 1.9% 4.2%
» * N

Fig. 4. Simple two-class classification problem as solved by the SV algbig. 5. Two-class classification problem solved by the SV algorittyn 1
rithm [c; = 1 for all i; cf., (1)]. Note that the RBF centers (indicated by extrdor all 4; cf., (1)].
circles) are closest to the decision boundary.

B. United States Postal Service Database

if the regularization operator and the cost function are choser‘We used the USPS database of 9298 handwritten digits

appropriately [22]. gzgl for training, 2007 for testing) collected from mail

.It. IS Important t_o_ stre;s that. the SV ”.‘aCh'”e does nenvelopes in Buffalo, NY (cf., [10]). Each digit is B x 16
minimize the empirical risk (misclassification error on the : . ; .
L LT image represented as a 256-dimensional vector with entries
training set) alone. Instead, it minimizes the sum of an upper ; . . .
- . etween—1 and 1. Preprocessing consisted of smoothing with
bound on the empirical risk and a penalty term that depends . : N ;
. o a Gaussian kernel of widtlr = 0.75. The SV machine

on the complexity of the classifier used.

results reported in the following were obtained with= 10
and ¢ = 0.3 - N [cf., (10), (17)], whereN = 256 is the
dimensionality of input spaceln all experiments, we used the
SV algorithm with standard quadratic programming techniques
(conjugate gradient descent).

1) Two-Class ClassificationTable | shows the numbers

What are the support vectors? They are elements of the doftasu_pport vectors, €., RBF centers, extrqcted by th_e_ SV
o . algorithm. Table Il gives the results of binary classifiers

set that are “important” in separating the two classes from eac . . . .

. . . separating single digits from the rest for the systems described
other. Support vectors with zero slack variables (8) lie on tfi1e Sections 11-A—C
boundary of the decision surface, as they precisely satisfy tlrlI e :
; : : . : . : . 2) Ten-Class ClassificationFor each test pattern, the arbi-
inequality (9) in the high-dimensional space. Figs. 4 and 5 il-_: . : -

. U ration procedure in all three systems simply returns the digit

lustrate that for the used Gaussian kernel, this is also the casg,in . .
. L . . . class whose recognizer gives the strongest responaele 1l
input space. This raises an interesting question from the poin

of view of interpreting the structure of trained RBF networks.

The traditional view of RBF networks has been one where thethe Sv machine is rather insensitive to different choices-.oFor all
centers were regarded as “templates” or stereotypical pattemagies in0.1, 0.2, - -, 1.0, the performance is about the same (in the area
It is this point of view that leads to the clustering heuristic fo? 4-4-5%)-

training RBF networks. In contrast. the SV machine pOSitS an3ln the SV case, we constructed ten two-class classifiers, each trained to
! arate a given digit from the other nine. Ten-class classification was done

lternate point of vi ith the centers being th B
alternate p'Olln 0 V'eW’_V\” e C_e_n ers €ing those examp ording to the maximal output before applying the sgn function, among the
that are critical for a given classification task. two-class classifiers. These outputs can be used for reject decisions.

Ill. EXPERIMENTAL RESULTS

A. Toy Examples



2764 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 11, NOVEMBER 1997

shows the ten-class digit recognition error rates for our original ACKNOWLEDGMENT

system and the two RBF-based systems. , The authors would like to thank K.-R. tller, P. Simard,
The fully automatic SV machine exhibits the highest tegf,y A smola for useful discussions. B. St#opf thanks the
accuracy of the three systerhdJsing the SV algorithm to \1assachusetts Institute of Technology for its hospitality during

choose the centers for the RBF network is also better thannee week visit in March 1995, where this work was started.
the baseline procedure of choosing the centers by a clustering

heuristic. It can be seen that in contrast to kameans cluster
centers, the centers chosen by the SV algorithm allow zero
training error rates.

The considered recognition task is known to be rathell] M. Aizerman, E. Braverman, and L. Rozonoer, “Theoretical founda-

: PR tions of the potential function method in pattern recognition learning,”
— 0,
hard—the human error rate is 2.5%, which is almost matched , . - Remote Contrvol. 25, pp. 821-837, 1964.

by a memory-based Tangent-distance classifier (2.6%; S&8 A. Barron, “Predicted squared error: A criterion for automatic model
[21])_ Other results on this data base include a Euclidean selection,” in Self-Organizing Methods in Modelings. Farlow, Ed.

. . i . New York: Marcel Dekker, 1984.
distance nearest neighbor classifier (5.9%; see [21]), a tW@3 g E. Boser, I. M. Guyon, and V. Vapnik, “A training algorithm for

layer perceptron (5.9%), and a convolutional neural network optimal margin classifiers,” iffifth Annu. Workshop Comput. Learning

/- i i i i Theory Pittsburgh, PA, 1992, pp. 144-152.
(5.0%; see [10]). By incorporating translational and rotat|ona[4] C. J. C. Burges, “Simplified support vector decision rules,Pioc. 13th

invariance using the Virtual SV technique ([19]; cf., our re-" " |t conf. Machine LearningL. Saitta, Ed. San Mateo, CA: Morgan
mark at the end of Section 11-B3), we were able to improve the éatjfrgarén, 1996.OI B Sofkoof. _— § dof
: : ; . J. C. Burges and B. Solkopf, “Improving the accuracy and speed o
performance of the considered Gaussian kernel SV maCh”@ support vector machines,” idvances in Neural Information Processing
(same values ofy andc) from 4.2 to 3.2% error. Systems 9M. Mozer, M. Jordan, and T. Petsche, Eds. Cambridge,
MA: MIT Press, 1997.
[6] E. I. Chang and R. L. Lippmann, “A boundary hunting radial basis
function classifier which allocates centers constructively,Advances
IV. SUMMARY AND DISCUSSION in Neural Information Processing Systemss5,J. Hanson, J. D. Cowan,
- - . . and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann, 1993.
The SV algorlthm prowdes a p”nC'pIEd way of ChOOSIhgm C. Cortes and V. Vapnik, “Support vector netvgorkM‘achine Learning
the number and the locations of RBF centers. Our experiments vol. 20, pp. 273-297, 1995.
on a real-world pattern recognition problem have shown thd?l R. O. Duda and P. E. HarRattern Classification and Scene Analysis.

. . New York: Wiley, 1973.
in contrast to a corresponding number of centers chosen by j 'B. Hampshire and A. Waibel, “A novel objective function for

k-means, the centers chosen by the SV algorithm allowed a improved phoneme recognition using time-delay neural netwotk&E
training error of zerg even if the weights were trained by, Jans- Neural Networksiol. 1, pp. 216-228, 1990,

. . 2 - . Y. Le Cun et al, “Backpropagation applied to handwritten zip code
classical RBF methods. The interpretation of this finding is that * recognition,” Neural Comput.vol. 1, pp. 541-551, 1989.

the SV centers are specifically chosen for the classification td&kl S. P. Lloyd, “Least squares quantization in PCNEEE Trans. Inform.

s L Theory vol. IT-28, pp. 129-137, 1982.
at hand, whereas-means does not care about picking thosgy; s muknherjee, E. Osuna, and F. Girosi, “Nonlinear prediction of chaotic

centers that will make a problem separable. time series using a support vector machine, Pimc NNSP 1997.

In addition,the SV centers yielded lower test error rates thaH-3! K-R. Muller, A. Smola, G. Rtsch, B. Sctlkopf, J. Kohimorgen, and
V. Vapnik, “Predicting time series with support vector machines,” in

k-meansit is interesting to note that using SV centers, while  pyc jcaNN 1997.
sticking to the classical procedure for training the weight$l4] E. Osuna, R. Freund, and F. Girosi, “Improved training algorithm for

; i ; support vector machines,” iRroc NNSP 1997.
improved training and test error rates by approximately t ?5] T. Poggio and F. Girosi, “Networks for approximation and learning,”

same margin (2%). In view of the guaranteed risk bound (2), " proc. IEEE vol. 78, pp. 1481-1497, 1990.
this can be understood in the following way. The improvemeiié] D. Reilly, L. N. Cooper, and C. Elbaum, “A neural model for category

: : learning,” Biol. Cybern, vol. 45, pp. 35-41, 1982.
in test error (risk) was solely due to the lower value of thﬁ_ﬂ D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-

training error (empirical risk); the confidence term [the second sentations by back-propagating errorisiature vol. 323, pp. 533-536,
term on the right-hand side of (2)], depending on the V¢  1986.

. . . . 18] B. Scholkopf, C. Burges, and V. Vapnik, “Extracting support data for a
dimension and, thus, on the norm of the weight vector, did nOt™ gjyen task,” inProc. First Int. Conf. Knowledge Discovery Data Mining,

change, as we stuck to the classical weight training procedure. U. M. Fayyad and R. Uthurusamy, Eds. Menlo Park, CA: AAAI, 1995.

; ; ; 9] , “Incorporating invariances in support vector learning machines,”
However, when we also trained the WEIthS with the S{} in Proc. Artificial Neural Networks-ICANNC. von der Malsburg, W.

algorithm, we minimized the norm of the weight yector [s€e  von Seelen, J. C. Vortiggen, and B. Sendhoff, Eds. Berlin, Germany:
(6) and (10)] in feature space and, thus, the confidence term, Springer, 1996, vol. 1112, pp. 47-52.

. ; f . ; 0] B. Sctolkopf, A. Smola, and K.-R. Nller, “Nonlinear component
Whlle still keeplng the training e_rror Ze,ro' Thus, C.OHSISIGIR analysis as a kernel eigenvalue problem,” Tech. Rep. 44, Max-Planck-
with (2), the support vector machine achieved the highest test |nstitut fiir biologische Kybernetik, @bingen, Germany, 1996.
accuracy of the three systems [21] P. Simard, Y. Le Cun, and J. Denker, “Efficient pattern recognition

using a new transformation distance,”Advances in Neural Information
Processing Systems 5, E. Moody, S. J. Hanson, and R. P. Lippmann,
Eds. San Mateo, CA: Morgan Kaufmann, 1993.

[22] A. Smola and B. Safikopf, “On a kernel-based method for pattern
recognition, regression, approximation and operator inversion,” Tech.
Rep. 1064, GMD, Berlin, 1997.

K. Sung, “Learning and example selection for object and pattern
detection,” Ph.D. thesis, Mass. Inst. Technol., Cambridge, 1995.

5As pointed out in Section 11-D2, the classical system could be made mdi24] V. Vapnik, Estimation of Dependences Based on Empirical Data.
discriminant as well by using different cost functions, e.g., the classification = Moscow: Nauka, 1979, in Russian; English translation: New York:
figure of merit [9], or by using moving centers (e.g., [15]). Springer-Verlag, 1982.

REFERENCES

4An analysis of the errors showed that about 85% of the errors committed
by the SV machine were also made by the other systems. This makes &g]
differences in error rates very reliable.



SCHOLKOPF et al: COMPARING SUPPORT VECTOR MACHINES WITH GAUSSIAN KERNELS TO RADIAL BASIS FUNCTION CLASSIFIERS 2765

[25] , The Nature of Statistical Learning TheoryNew York: Federico Girosi received the Ph.D. degree in theoretical physics from the
Springer-Verlag, 1995. University of Genoa, Genoa, ltaly.
[26] V. Vapnik and A. ChervonenkisTheory of Pattern Recognition  He is a Principal Research Scientist in the Department of Brain and Cogni-

Moscow, Russia: Nauka, 1974, in Russian. German translatioive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, and
W. Wapnik and A. Tscherwonenkisheorie der Zeichenerkennung.is Associate Director of the Center for Biological and Computational Learning
Berlin, Germany: Akademie-Verlag, 1979. at MIT. He has worked in the fields of neural networks, approximation theory,
V. Vapnik, S. Golowich, and A. Smola, “Support vector method foand computer vision. His current research topics include the study of neural
function approximation, regression estimation, and signal processingétwork architectures, the complexity of the approximation problem, and
in Advances in Neural Information Processing Systentd.9Ylozer, M. support vector machines and their applications to computer vision.

Jordan, and T. Petsche, Eds. Cambridge, MA: MIT Press, 1997.

[27]

Partha Niyogi received the B.Tech. degree from the Indian Institute of
Technology, New Delhi, and the Ph.D. degree in electrical engineering and

Bernhard Schblkopf received the M.Sc. degree Iné:omputer science from the Massachusetts Institute of Technology (MIT),

mathematics and the Lionel Cooper Memorial Priz

from the University of London, U.K., in 1992. In Ca}:rjbridge. hint " . it it dl ing th dit
1994, he received the Diplom in physics from the IS research interests are in pattern recognition and learning theory and its

Eberhard-Karls-Universit, Tubingen, Germany. application to probl_ems in speech and language processing. He is currently
He is a doctoral student with H.ihoff (Max- with Bell Laboratories, Murray Hill, NJ.

Planck-Institut &ir Biologische Kybernetik) and V.

Vapnik (AT&T Research). His scientific interests

include machine learning and perception.

Tomaso Poggioreceived the Ph.D. degree in theroetical physics from the
University of Genoa, Genoa, ltaly, in 1970.

He is the Uncas and Helen Whitaker Professor of the Department of Brain
and Cognitive Sciences at the Massachusetts Institute of Technology (MIT),
Cambridge. He is currently doing research in computational learning and
vision at the MIT Center for Biological and Computational Learning, of
Kah_Kay Sung received the Ph.D. degree in electrical engineering ar}uhlch he is Co-Director. He is also a member of the Atrtificial InteIIigence
computer science from the Massachusetts Institute of Technology, Cambrid%borator)’- He is the author of several papers in areas ranging from psy-
in 1995. chophysics and biophysics to information processing in man and machine,

He is currently a Lecturer at the Department of Information Systems addificial intelligence, and machine vision and learning.

Computer Science, National University of Singapore. His research interest®r- Poggio has received several awards, is on the editorial boards of a
include computer vision and machine learning. number of interdisciplinary journals, is a fellow of the American Association

for Artificial Intelligence, as well as the American Academy of Arts and
Sciences, and is an Honorary Associate of the Neuroscience Research Program
at Rockefeller University.

Chris J. C. Burgesreceived the B.A. degree with
first class honors in physics from Oxford University,

Oxford, U.K., and the Ph.D. degree in particle
physics from Brandeis University, Waltham, MA.
After a two-year postdoctoral position at the
Massachusetts Institute of Technology, Cambridg
in theoretical particle physics, he joined AT&T Bell
Laboratories, (now Lucent Technologies), Holmdel
NJ, and developed the routing algorithm AT&T now
uses to ensure physical diversity of its signaling
links. He then started working on applying neural
networks to handwriting recognition and developed several methods ni
used by banks in automated check readers. For the last two years, he tias

been working on developing support vector algorithms with V. Vapnik angears are related to the development of the support vector method. He is author

Vladimir Vapnik was born in Russia and received
the Ph.D. degree in theoretical cybernetics from the
Institute of Control Sciences, Academy of Science
of the USSR, Moscow, in 1964.

Since 1991, he has been working for AT&T Bell
Laboratories (since 1996, AT&T Labs Research),
Red Bank, NJ. His research interests include statisti-
cal learning theory, theoretical and applied statistics,
theory and methods of solving stochastic ill-posed
problems, and methods of multidimensional func-
tion approximation. His main results in the last three

others, concentrating on the pattern recognition problem, methods to speediimany publications, including seven monographs on various problems of

support vector machines, and the theory of kernel-based methods.

statistical learning theory.



