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Comparing Support Vector Machines with Gaussian
Kernels to Radial Basis Function Classifiers

Bernhard Sch¨olkopf, Kah-Kay Sung, Chris J. C. Burges, Federico Girosi,
Partha Niyogi, Tomaso Poggio, and Vladimir Vapnik

Abstract—The support vector (SV) machine is a novel type
of learning machine, based on statistical learning theory, which
contains polynomial classifiers, neural networks, and radial basis
function (RBF) networks as special cases. In the RBF case, the
SV algorithm automatically determines centers, weights, and
threshold that minimize an upper bound on the expected test
error.

The present study is devoted to an experimental compar-
ison of these machines with a classical approach, where the
centers are determined byk-means clustering, and the weights
are computed using error backpropagation. We consider three
machines, namely, a classical RBF machine, an SV machine
with Gaussian kernel, and a hybrid system with the centers
determined by the SV method and the weights trained by error
backpropagation. Our results show that on the United States
postal service database of handwritten digits, the SV machine
achieves the highest recognition accuracy, followed by the hybrid
system. The SV approach is thus not only theoretically well-
founded but also superior in a practical application.

Index Terms—Clustering, pattern recognition, prototypes, ra-
dial basis function networks, support vector machines.

I. INTRODUCTION

CONSIDER Fig. 1. Suppose we want to construct a radial
basis function classifier

sgn (1)

( and being constants, the latter positive) separating balls
from circles, i.e., taking different values on balls and circles.
How do we choose thecenters ? Two extreme cases are
conceivable (Fig. 2).
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Fig. 1. Simple two-dimensional (2-D) classification problem: Find a decision
function separating balls from circles. The box, as in all following figures,
depicts the region[�1; 1]2.

The first approach consists of choosing the centers for the
two classes separately, irrespective of the classification task to
be solved. The classical technique of finding the centers by
some clustering technique (before tackling the classification
problem) is such an approach. The weightsare then usually
found by either error backpropagation [17] or the pseudo-
inverse method (e.g., [15]).

An alternative approach consists of choosing, as centers,
points that arecritical for the classification task at hand.
Recently, thesupport vector algorithmwas developed [3], [7],
[25], implementing the latter idea. It is a general algorithm,
based on guaranteed risk bounds of statistical learning theory,
which in particular allows the construction of RBF classifiers.
This is done by simply choosing a suitable kernel function
for the SV machine (see Section II-B). The SV training
consists of a quadratic programming problem that can be
solved efficiently and for which we are guaranteed to find
a global extremum. The algorithm automatically computes the
number and location of the above centers, the weights, and
the threshold in the following way: By the use of a kernel
function (in the present case, a Gaussian one), the patterns
are mapped nonlinearly into a high-dimensional space. There,
an optimal separating hyperplane is constructed, expressed
in terms of those examples that are closest to the decision
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Fig. 2. RBF centers automatically found by the SV algorithm (indicated by
extra circles), usingci = 1 for all i [cf., (1)]. The number of SV centers
accidentally coincides with the number of identifiable clusters (indicated by
crosses found byk-means clustering withk = 2 and k = 3 for balls
and circles, respectively), but the naive correspondence between clusters and
centers is lost; indeed, three of the SV centers are circles, and only two
of them are balls. Note that the SV centers are chosen with respect to the
classification task to be solved.

boundary [24]. These are thesupport vectorsthat correspond
to the centers in input space.

The goal of the present study is to compare real-world
results obtained with -means clustering and classical RBF
training to those obtained when the centers, weights, and
threshold are automatically chosen by the SV algorithm. To
this end, we decided to undertake a performance study by
combining expertise on the SV algorithm (AT&T Bell Labo-
ratories) and on the classical RBF networks (Massachusetts
Institute of Technology). We report results obtained on a
United States Postal Service database of handwritten digits.

We have organized the material as follows. In the next
section, we describe the algorithms used to train the differ-
ent types of RBF classifiers compared in this paper. Fol-
lowing that, we present an experimental comparison of the
approaches. We conclude with a discussion of our findings.

II. CONSTRUCTINGRADIAL BASIS FUNCTION CLASSIFIERS

We describe three RBF systems trained in different ways.
In Section II-A, we discuss the first system trained along more
classical lines. In Section II-B, we describe the SV algorithm,
which constructs an RBF network whose parameters (centers,
weights, threshold) are automatically optimized. In Section
II-C, we finally use the SV algorithm merely to choose the
centers of the RBF network and then optimize the weights
separately.

A. Classical Spherical Gaussian RBF’s

We begin by first describing the classical Gaussian RBF
system. A -dimensional spherical Gaussian RBF network

with centers has the form

where is the th Gaussian basis function with centerand
variance . The weight coefficients combine the Gaussian
terms into a single output value, andis a bias term. Building
a Gaussian RBF network for a given learning task involves

a) determining the total number of Gaussian basis functions
to use for each output class and for the entire system;

b) locating the Gaussian basis function centers;
c) computing the cluster variance for each Gaussian basis

function;
d) solving for the weight coefficients and bias in the

summation term.

One can implement a binary pattern classifier on input vectors
as a Gaussian RBF network by defining an appropriate

output threshold that separates the two pattern classes.
In this first system, we implement each individual digit

recognizer as a spherical Gaussian RBF network trained with a
classical RBF algorithm. Given a specified number of Gaussian
basis functions for each digit class, the algorithm separately
computes the Gaussian centers and variances for each of
the ten digit classes to form the system’s RBF kernels. The
algorithm then solves for an optimal set of weight parameters
between the RBF kernels and each output node to perform the
desired digit recognition task. The training process constructs
all ten digit recognizers in parallel so that one can reuse the
same Gaussian basis functions among the ten digit recognizers.
To avoid overfitting the available training data with an overly
complex RBF classifier connected to every Gaussian kernel,
we use a “bootstrap” like operation that selectively connects
each recognizer’s output node to only a “relevant” subset of all
basis functions. The idea is similar to how we choose relevant
near-miss clusters for each individual digit recognizer in the
original system. The training procedure proceeds as follows
(for further details, see [23]).

1) The first training task is to determine an appropriate
number of Gaussian kernels for each digit class.
This information is needed to initialize our clustering
procedure for computing Gaussian RBF kernels. We
opted for using the same numbers of Gaussian kernels
as the ones automatically computed by the SV algorithm
(see Table I).

2) Our next task is to compute the Gaussian kernels for
each digit class. We do this by separately performing
classical -means clustering (e.g., [11]) on each digit
class in the training database. Each clustering operation
returns a set of Gaussian centroids and their respective
variances for the given digit class. Together, the Gauss-
ian clusters from all ten digit classes form the system’s
RBF kernels.

3) For each single-digit recognizer, we build aninitial
RBF network using only Gaussian kernels from its
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TABLE I
NUMBERS OF CENTERS (SUPPORTVECTORS) AUTOMATICALLY EXTRACTED BY THE SV MACHINE. THE FIRST ROW GIVES THE TOTAL NUMBER FOR

EACH BINARY CLASSIFIER, INCLUDING BOTH POSITIVE AND NEGATIVE EXAMPLES; IN THE SECOND ROW, WE ONLY COUNTED THE POSITIVE

SUPPORTVECTORS. THE LATTER NUMBER WAS USED IN THE INITIALIZATION OF THE k-MEANS ALGORITHM, CF., SECTION II-A

target class, using on-line backpropagation of mean
squared error to train the weights (the desired output
is set to 1 or 0 for positive and negative examples,
respectively). We then separately collect all the false
positive mistakes each initial digit recognizer makes on
the training database.

4) In the final training step, we augment each initial digit
recognizer with additional Gaussian kernels from outside
its target class to help reduce misclassification errors.
We determine which Gaussian kernels are “relevant”
for each recognizer as follows. For eachfalse positive
mistake the initial recognizer makes during the previous
step, we look up the misclassified pattern’s actual digit
class and include the nearest Gaussian kernel from its
class in the “relevant” set. Thefinal RBF network for
each single-digit recognizer thus contains every Gauss-
ian kernel from its target class, and several “relevant”
kernels from the other nine digit classes, trained by error
backpropagation. Because our final digit recognizers
have fewer weight parameters than a naive system that
fully connects all ten recognizers to every Gaussian
kernel, we expect our system to generalize better on
new data.

B. The Support Vector Machine

1) Structural Risk Minimization:For the case of two-class
pattern recognition, the task oflearning from examplescan be
formulated in the following way. Given a set of functions

and a set of examples

where each one is generated from an unknown probability
distribution , we want to find a function that
provides the smallest possible value for the average error
committed on novel examples randomly drawn fromcalled
the risk

The problem is that is unknown since is un-
known. Therefore, aninduction principlefor risk minimization
is necessary.

The straightforward approach to minimize theempirical risk

turns out not to guarantee a small actual risk (i.e., a small
error on the training set does not imply a small error on a

test set) if the number of training examples is limited. To
make the most out of a limited amount of data, novel statistical
techniques have been developed during the last 25 years. The
structural risk minimizationprinciple [24] is based on the fact
that for the above learning problem, for any with a
probability of at least , the bound

(2)

holds, where is defined as

The parameter is called the Vapnik–Chervonenkis (VC)
dimensionof a set of functions. It describes the capacity of
a set of functions implementable by the learning machine. For
binary classification, is the maximal number of points that
can be separated into two classes in all possibleways by
using functions of the learning machine, i.e., for each possible
separation, there exists a function that takes the value 1 on
one class and 1 on the other class.

According to (2), given a fixed numberof training exam-
ples, one can control the risk by controlling two quantities:

and , with denoting some
subset of the index set. The empirical risk depends on the
function chosen by the learning machine (i.e., on), and it
can be controlled by picking the right. The VC dimension

depends on theset of functions that the
learning machine can implement. To control, one introduces
a structure of nested subsets of

(3)

whose VC dimensions, as a result, satisfy

For a given set of observations the
structural risk minimization principlechooses the function
in the subset for which the guaranteed risk
bound [the right-hand side of (2)] is minimal.

The remainder of this section follows [18] in briefly re-
viewing the SV algorithm. For details, the reader is referred
to [25].

2) A Structure on the Set of Hyperplanes:Each particular
choice of a structure (3) gives rise to a learning algorithm. The
SV algorithm is based on a structure on the set of separating
hyperplanes. To describe it, first note that given a dot product
space and a set of vectors , each hyperplane
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corresponds to a canonical pair
if we additionally require

(4)

i.e., that the scaling of and be such that the point closest
to the hyperplane has a distance of . Let be the radius
of the smallest ball
containing the points , and

sgn (5)

where the decision function is defined on these points. The
possibility of introducing a structure on the set of hyperplanes
is based on the result [25] that the set of canonical hyperplanes

has a VC dimension satisfying

(6)

Note: Dropping the condition leads to a set of
functions whose VC dimension equals , where is
the dimensionality of . Due to , we can get VC
dimensions that are much smaller than, enabling us to work
in very high dimensional spaces.

3) The Support Vector Algorithm:Now, suppose we want
to find a decision function with the property

. If this function exists, canonicality (4)
implies

(7)

In practice, a separating hyperplane often does not exist.
To allow for the possibility of examples violating (7), [7]
introduces slack variables

(8)

to get

(9)

The SV approach to minimizing the guaranteed risk bound (2)
consists of the following. Minimize

(10)

subject to the constraints (8) and (9). Due to (6), minimizing
the first term is related to minimizing the VC dimension of the
considered class of learning machines, thereby minimizing the
second term of the bound (2) [it also amounts to maximizing
the separation margin, cf., the remark following (4)]. The term

, on the other hand, is an upper bound on the number
of misclassifications on the training set—this controls the
empirical risk term in (2). For a suitable positive constant,
this approach therefore constitutes a practical implementation
of structural risk minimization on the given set of functions.

Introducing Lagrange multipliers and using the
Kuhn–Tucker theorem of optimization theory, the solution
can be shown to have an expansion

(11)

with nonzero coefficients only where the corresponding
example precisely meets the constraint (9). These
are calledsupport vectors. All remaining examples of the
training set are irrelevant. Their constraint (9) is satisfied
automatically (with ), and they do not appear in the
expansion (11). The coefficients are found by solving the
following quadratic programming problem. Maximize

(12)

subject to

and (13)

By linearity of the dot product, the decision function (5) can
thus be written as

sgn (14)

Thus far, we have described the case of linear decision surfaces
[26]. To allow for much more general decision surfaces,
one can first nonlinearly transform a set of input vectors

into a high-dimensional feature space by a map
and then do a linear separation there. Maximizing

(12) and evaluating (14) then requires the computation of dot
products in a high-dimensional space. We are
interested in cases where these expensive calculations can be
reduced significantly by using a suitable functionsuch that

(15)

leading to decision functions of the form

sgn (16)

In practice, we need not worry about conceiving the map.
We will choose a that is the continuous Kernel of a positive
definite integral operator, and Mercer’s theorem of functional
analysis then tells us that can be expanded in a uniformly
convergent series in terms of Eigenfunctionsand positive
Eigenvalues

corresponding to a dot product in the (possibly
infinite-dimensional) range of

(see [3], [25]). Consequently, everything that has been said
about the linear case also applies to nonlinear cases obtained
by using a suitable kernel instead of the Euclidean dot
product (Fig. 3). We are now in a position to explain how the
SV algorithm can construct RBF classifiers. We simply use

(17)
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Fig. 3. By the use of a nonlinear kernel function (15), it is possible to
compute a separating hyperplane with maximum margin in a feature space
without explicitly mapping into that space. The feature space is related to input
space via a nonlinear map�, causing the decision surface to be nonlinear in
input space (e.g., of a Gaussian RBF type).

(see [1]). Other possible choices of include
, yielding polynomial classifiers of degree, and

for constructing neural
networks.

To find the decision function (16), we maximize [cf., (12)]

(18)

subject to the constraints (13). Since is required to satisfy
Mercer’s conditions, it corresponds to a dot product in an-
other space (15); thus, is a positive matrix,
providing us with a problem that can be solved efficiently.
To compute the threshold, one takes into account that due
to (9), for support vectors for which , we have

.
4) Further Remarks on SV Research:The SV algorithm

has been empirically shown to exhibit good generalization
ability [7]. This applies for different types of SV machines
obtained by using different kernel functions [cf., (17)];
moreover, different machines have been found to use largely
the same SV’s, e.g., most of the centers of an SV machine
with Gaussian kernel coincide with the first-layer weights of
neural network SV classifiers [18].

The accuracy can be further improved by incorporating
invariances of the problem at hand, as with the virtual SV
method. There, one generates artificial examples by transform-
ing SV’s and retrains on these in a second training run with a
computational complexity comparable to the first one [19]. In
addition, the decision rule (16), which requires the evaluation
of kernel functions for the test example and all SV’s, can be
sped up with the reduced set technique [4] by approximating
(16) with an expansion using fewer terms. These methods have
led to substantial improvements for polynomial SV machines
([5] cut the error rate on a character recognition task by a
third and obtained a speed-up by a factor of 50), and they are
directly applicable also to Gaussian SV machines.

Besides pattern recognition, modified versions of the SV
algorithm have been used for regression estimation and time
series prediction [12], [13], [25], [27]. Moreover, the kernel
method for computing dot products in high-dimensional fea-

TABLE II
BINARY CLASSIFICATION: NUMBERS OF TEST ERRORS(OUT OF 2007
TEST PATTERNS) FOR THE SYSTEMS DESCRIBED IN SECTIONS II-A–C

ture spaces has been applied in other domains as, for instance,
nonlinear principal component analysis [20].1

C. A Hybrid System: RBF Network with SV Centers

The previous section discusses how one can train RBF like
networks using the SV algorithm [cf., (16), (17)]. This involves
the choice of an appropriate kernel functionand solving the
quadratic optimization problem (18). The SV algorithm thus
automatically determines the centers (which are the support
vectors), the weights (given by ), and the threshold for
the RBF machine.

To assess the relative influence of the automatic SV center
choice and the SV weight optimization, respectively, we built
another RBF system constructed with centers that are simply
the support vectors arising from the SV optimization and with
the weights trained separately.

D. Addenda

1) Computational Complexity:By construction, the result-
ing classifiers after training will have the same architecture and
comparable sizes. Thus, the three machines are comparable in
classification speed and memory requirements.

Differences are, however, noticeable in training. Regarding
training time, the SV machine was faster than the RBF
system by about an order of magnitude due to the formulation
as a quadratic programming problem that can be solved
efficiently. The optimization, however, requires us to work
with potentially large matrices. In the implementation that we
used, the training data is processed in chunks, and matrix sizes
were of the order . For problems with very large
numbers of SV’s, a modified training algorithm has recently
been proposed by [14].

2) Different Ways of Training an RBF Classifier:Due to
(9) and (10), the SV algorithm puts emphasis on correctly
separating the training data. In this respect, it is different from
the classical RBF approach of training in the least-squares
metric, which is more concerned with the general problem of
estimating posterior probabilities than with directly solving
a classification task at hand. There exist, however, studies
investigating the question of how to select RBF centers or
exemplars to minimize the number of misclassifications; see,
for instance, [2], [6], [8], and [16]. A classical RBF system
could also be made more discriminant by using moving centers
(e.g., [15]) or a different cost function as the classification
figure of merit [9]. In fact, it can be shown that Gaussian
RBF regularization networks are equivalent to SV machines

1More information on SV methods can be obtained via http://www.mpik-
tueb.mpg.de/people/personal/bs/svm.html.
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TABLE III
TEN-CLASS DIGIT RECOGNITION ERROR RATES FOR THREE RBF CLASSIFIERS CONSTRUCTED WITH DIFFERENT ALGORITHMS.
THE FIRST SYSTEM IS A CLASSICAL ONE, CHOOSING ITS CENTERS BY k-MEANS CLUSTERING. IN THE SECOND SYSTEM, THE

SUPPORTVECTORS WEREUSED AS CENTERS, AND IN THE THIRD ONE, THE ENTIRE NETWORK WAS TRAINED USING THE SV ALGORITHM

Fig. 4. Simple two-class classification problem as solved by the SV algo-
rithm [ci = 1 for all i; cf., (1)]. Note that the RBF centers (indicated by extra
circles) are closest to the decision boundary.

if the regularization operator and the cost function are chosen
appropriately [22].

It is important to stress that the SV machine does not
minimize the empirical risk (misclassification error on the
training set) alone. Instead, it minimizes the sum of an upper
bound on the empirical risk and a penalty term that depends
on the complexity of the classifier used.

III. EXPERIMENTAL RESULTS

A. Toy Examples

What are the support vectors? They are elements of the data
set that are “important” in separating the two classes from each
other. Support vectors with zero slack variables (8) lie on the
boundary of the decision surface, as they precisely satisfy the
inequality (9) in the high-dimensional space. Figs. 4 and 5 il-
lustrate that for the used Gaussian kernel, this is also the case in
input space. This raises an interesting question from the point
of view of interpreting the structure of trained RBF networks.
The traditional view of RBF networks has been one where the
centers were regarded as “templates” or stereotypical patterns.
It is this point of view that leads to the clustering heuristic for
training RBF networks. In contrast, the SV machine posits an
alternate point of view, with the centers being those examples
that are critical for a given classification task.

Fig. 5. Two-class classification problem solved by the SV algorithm [ci = 1

for all i; cf., (1)].

B. United States Postal Service Database

We used the USPS database of 9298 handwritten digits
(7291 for training, 2007 for testing) collected from mail
envelopes in Buffalo, NY (cf., [10]). Each digit is a
image represented as a 256-dimensional vector with entries
between 1 and 1. Preprocessing consisted of smoothing with
a Gaussian kernel of width . The SV machine
results reported in the following were obtained with
and [cf., (10), (17)], where is the
dimensionality of input space.2 In all experiments, we used the
SV algorithm with standard quadratic programming techniques
(conjugate gradient descent).

1) Two-Class Classification:Table I shows the numbers
of support vectors, i.e., RBF centers, extracted by the SV
algorithm. Table II gives the results of binary classifiers
separating single digits from the rest for the systems described
in Sections II-A–C.

2) Ten-Class Classification:For each test pattern, the arbi-
tration procedure in all three systems simply returns the digit
class whose recognizer gives the strongest response.3 Table III

2The SV machine is rather insensitive to different choices ofc. For all
values in0:1; 0:2; � � � ; 1:0, the performance is about the same (in the area
of 4–4.5%).

3In the SV case, we constructed ten two-class classifiers, each trained to
separate a given digit from the other nine. Ten-class classification was done
according to the maximal output before applying the sgn function, among the
two-class classifiers. These outputs can be used for reject decisions.
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shows the ten-class digit recognition error rates for our original
system and the two RBF-based systems.

The fully automatic SV machine exhibits the highest test
accuracy of the three systems.4 Using the SV algorithm to
choose the centers for the RBF network is also better than
the baseline procedure of choosing the centers by a clustering
heuristic. It can be seen that in contrast to the-means cluster
centers, the centers chosen by the SV algorithm allow zero
training error rates.

The considered recognition task is known to be rather
hard—the human error rate is 2.5%, which is almost matched
by a memory-based Tangent-distance classifier (2.6%; see
[21]). Other results on this data base include a Euclidean
distance nearest neighbor classifier (5.9%; see [21]), a two-
layer perceptron (5.9%), and a convolutional neural network
(5.0%; see [10]). By incorporating translational and rotational
invariance using the Virtual SV technique ([19]; cf., our re-
mark at the end of Section II-B3), we were able to improve the
performance of the considered Gaussian kernel SV machine
(same values of and ) from 4.2 to 3.2% error.

IV. SUMMARY AND DISCUSSION

The SV algorithm provides a principled way of choosing
the number and the locations of RBF centers. Our experiments
on a real-world pattern recognition problem have shown that
in contrast to a corresponding number of centers chosen by
-means, the centers chosen by the SV algorithm allowed a

training error of zero, even if the weights were trained by
classical RBF methods. The interpretation of this finding is that
the SV centers are specifically chosen for the classification task
at hand, whereas-means does not care about picking those
centers that will make a problem separable.5

In addition,the SV centers yielded lower test error rates than
-means. It is interesting to note that using SV centers, while

sticking to the classical procedure for training the weights,
improved training and test error rates by approximately the
same margin (2%). In view of the guaranteed risk bound (2),
this can be understood in the following way. The improvement
in test error (risk) was solely due to the lower value of the
training error (empirical risk); the confidence term [the second
term on the right-hand side of (2)], depending on the VC
dimension and, thus, on the norm of the weight vector, did not
change, as we stuck to the classical weight training procedure.
However, when we also trained the weights with the SV
algorithm, we minimized the norm of the weight vector [see
(6) and (10)] in feature space and, thus, the confidence term,
while still keeping the training error zero. Thus, consistent
with (2), the support vector machine achieved the highest test
accuracy of the three systems.

4An analysis of the errors showed that about 85% of the errors committed
by the SV machine were also made by the other systems. This makes the
differences in error rates very reliable.

5As pointed out in Section II-D2, the classical system could be made more
discriminant as well by using different cost functions, e.g., the classification
figure of merit [9], or by using moving centers (e.g., [15]).
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