Utah State University DigitalCommons@USU

The Instructional Architect Research Group

Research Centers

2012

COMPARING TECHNOLOGY-RELATED TEACHER PROFESSIONAL DEVELOPMENT DESIGNS: A MULTILEVEL STUDY OF TEACHER AND STUDENT IMPACTS

Andrew Walker Utah State University

Mimi Recker Utah State University

Lei Ye Utah State University

Brooke Robertshaw Utah State University

Linda Sellers Follow this and additional works at: https://digitalcommons.usu.edu/iagroup Utan State University Part of the Educational Assessment, Evaluation, and Research Commons, and the Teacher Education Heather Leary and Professional Development Commons University of Colorado Boulder

Recommended Citation

Walker, Andrew; Recker, Mimi; Ye, Lei; Robertshaw, Brooke; Sellers, Linda; and Leary, Heather, "COMPARING TECHNOLOGY-RELATED TEACHER PROFESSIONAL DEVELOPMENT DESIGNS: A MULTILEVEL STUDY OF TEACHER AND STUDENT IMPACTS" (2012). *The Instructional Architect Research Group.* Paper 6.

https://digitalcommons.usu.edu/iagroup/6

This Article is brought to you for free and open access by the Research Centers at DigitalCommons@USU. It has been accepted for inclusion in The Instructional Architect Research Group by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

COMPARING TECHNOLOGY-RELATED TEACHER PROFESSIONAL DEVELOPMENT DESIGNS: A MULTILEVEL STUDY OF TEACHER AND STUDENT IMPACTS

Abstract

This article presents a quasi-experimental study comparing the impact of two technologyrelated teacher professional development (TTPD) designs, aimed at helping junior high school science and mathematics teachers design online activities using the rapidly growing set of online learning resources available on the Internet. The first TTPD design (*tech-only*) focused exclusively on enhancing technology knowledge and skills for finding, selecting, and designing classroom activities with online resources, while the second (*tech+pbl*) coupled technology knowledge with learning to design problem-based learning (PBL) activities for students. Both designs showed large pre-post gains for teacher participants (N=36) in terms of self-reported knowledge, skills, and technology integration. Significant interaction effects show that teachers in the *tech+pbl* group had larger gains for self-reported knowledge and externally rated use of PBL. Three generalized estimating equation (GEE) models were fit to study the impact on students' (N=1,247) self reported gains in behavior, knowledge, and attitudes. In the resulting models, students of *tech+pbl* teachers showed significant increases in gain scores for all three outcomes. By contrast, students of *tech-only* teachers showed improved gains only in attitudes.

Introduction

The rapid growth in the creation and use of open-access *online learning resources and media* in education supports a transformative vision of education, one that can be more engaging and effective than current approaches. Online resources support new visualizations and modeling tools, are more affordable and interactive than textbooks, allow access to and manipulation of real-world datasets, and can be shared and adapted by communities of learners (McArthur & Zia, 2008; Borgman et al., 2008; Patton & Roschelle, 2008). In the hands of teachers, such resources can be tailored for students in increasingly diverse classrooms, and used in educative ways (Davis & Krajcik, 2005). And while they can be used in a variety of educational contexts, online resources are particularly well suited to student centered inquiry oriented activities like problembased learning (Gurell, Kuo, & Walker, 2010).

Yet teachers struggle when incorporating new resources, tools, and instructional approaches (Kramer, Walker, & Brill, 2007; Mardis, 2007; Recker et al., 2005) into their teaching. In particular, teachers vary in their technology integration knowledge, as well as in their ability to design pedagogically sound activities. As such, one documented approach for improving teachers' technology integration skills, knowledge, and attitudes is via teacher professional development (Borko, 2004).

In this article, we describe and compare two technology-related teacher professional development (TTPD) designs. In both cases, the focal point was on helping teachers learn to design activities for students using online learning resources. In the first TTPD, teachers focused on integrating new technology skills with pedagogies already familiar to them. In the second, teachers paired technology skills with a new pedagogy, problem-based learning (PBL; Barrows, 1986). In this way, the article 1) adds to the TTPD literature base, 2) examines TTPD impacts across the levels of teachers and students, and 3) employs statistical techniques to account for nested data, as follows.

First, in addition to being based on best practices in teacher professional development (e.g., Lawless & Pellegrino, 2007; U.S. Department of Education, 2010), the TTPD designs build substantially on prior iterations of our work (Robertshaw, Walker, Recker, Leary, & Sellers, 2010). In this way, by refining, replicating, evaluating, and scaling our TTPD approaches, we contribute to the growing body of literature on TTPD theory, research, and development (Roschelle et al., 2010).

Second, this research addresses the call to examine the links between teacher TTPD experiences, classroom practices, and resulting impacts on students (Lawless & Pellegrino, 2007; Schlager, Farooq, Fusco, Schank, & Dwyer, 2009; Wayne, Yoon, Zhu, Cronen, & Garet, 2008), especially with studies using larger samples, experimental approaches, and longitudinal scales (Lawless & Pellegrino, 2007; Roschelle et al., 2010). As is described below, our study involved 36 mathematics and science junior high school teachers and 1,247 students over a sustained period of three months.

Third, the analysis of these data employed a Generalized Estimation Equation (GEE) (Liang & Zeger, 1986) modeling technique to account for nested nature of the data. GEE models can adjust for an issue common to many educational research designs, in that students within a classroom share a more common experience than students across classrooms. Like prior research using Hierarchical Linear Modeling to examine student learning in problem-based learning environments (Finkelstein, Chun-Wei, & Ravitz, 2011), our work contributes to a small, but growing body of literature using such models to examine the impacts of PBL-oriented teacher professional development on teacher practice as well as on students.

Review of Literature

Prior research has documented that we know little about what teachers learn from engaging in professional development, and how it impacts student learning and engagement (Fishman, Marx, Best, & Tal, 2003; Wayne et al., 2008). Ideally, TTPD should change teachers' knowledge, beliefs, attitudes, and behaviors, because these correlate with classroom practice, thereby influencing student learning (Fishman et al., 2003).

Shulman (1986) proposed that effective teachers' knowledge consisted of *pedagogical* knowledge (PK), content knowledge (CK), as well as their important intersection, pedagogical content knowledge (PCK). More recent work posits additional important categories of teacher knowledge in a 21st century world, called technological knowledge (TK), as well as their intersection, technological pedagogical content knowledge (TPCK) (Mishra & Koehler, 2006; Niess, 2005). While the TPCK construct does have its detractors (e.g., Maddux, 2009), TPCK and its constituent constructs have recently undergone closer scrutiny (Archambault & Barnett, 2010; Archambault & Crippen, 2009; Graham et al., 2009). Based in part on those measurement studies, we focused on valid and reliable factors in order to characterize and refer to what teachers may know and learn as a result of engaging in TTPD. For the purposes of this work, those include teachers' self report of knowledge and use of technology (TK), designing effective lessons and customizing them for student needs (PCK), and using technology to create online lessons and utilize them in the classroom (TPCK). Although there is some debate about whether or not it is meaningful (or even possible) to assess TPCK elements in isolation (Angeli & Valanides, 2009), there is general agreement that TPCK goes beyond its constituent parts in defining teacher practice through the meaningful integration of skills and knowledge in each area (Angeli & Valanides, 2005; Koehler & Mishra, 2008). For our purposes, TK, PK and CK are all important, and a separate measure for TPCK is needed over a simple sum of its parts.

To support the development of these skills and knowledge, the TTPD model used in the present research is design-oriented in that participating teachers learn to design instructional activities for their students. Proponents of a design-oriented approach argue that it enables teachers to learn new technology skills within an authentic instructional context. This helps them take ownership of new skills, making them more likely to integrate these into future teaching (Lawless & Pellegrino, 2007). This perspective also fits with a more contemporary view of teaching as a kind of design task, in which teacher adaptation and use of materials is seen as a critical step in curriculum design (Brown & Edelsen, 2003; Remillard, 2005). Moreover, several interventions designed to increase TPCK focus on having teachers design curriculum (Angeli & Valanides, 2009; Koehler & Mishra, 2005a).

As noted above, the design of the current TTPD was informed by existing literature (Desimone, 2009; Garet, Porter, Desimone, Birman, & Yoon, 2001; Wayne et al., 2008) as well as our own previous iterations (Robertshaw, Walker, Recker, Leary, & Sellers, 2010). As explained below, both TTPD designs incorporate seven characteristics of effective TTPD distilled from a working group of practitioners and educational researchers (U.S. Department of Education, 2010). These are: (1) relates to the teachers' content area, (2) is collaborative, (3) is consistent with the technology goals in the district, (4) allows for active engagement with content, (5) is tailored to different levels of teachers' knowledge, skills and interest, (6) is sustained, and (7) includes follow-up activities.

As described below, two TTPD designs were contrasted, one focusing solely on technology skills to design student activities using online resources, while the other coupled technology skills with learning to design *inquiry-oriented* activities for their students using online resources. The particular inquiry approach employed was *problem-based learning* (PBL), wherein students acquire knowledge through engaging with authentic problems (Barrows, 1986; Barrows & Tamblyn, 1980; Savery, 2006). In PBL, problems are presented first and learners take on more autonomy, operating in small groups, and utilizing resources made available to them. Rather than lecture, the instructor facilitates by scaffolding learners' meta-cognition, coaching, and modeling problem-solving behavior (Hmelo-Silver & Barrows, 2008). Content knowledge is acquired as needed in an effort to find a problem solution. Each problem cycle concludes with a reflection phase. PBL was selected as the TTPD approach with teachers in part because prior meta-analyses have shown effectiveness in both teacher education (d = 0.64), and when participants are engaged in design problems (d = 0.74) (Walker & Leary, 2009).

Technology Context

The technology context for the TTPD is the Instructional Architect (IA.usu.edu), a lightweight, free web-based tool, designed for authoring simple instructional activities using online learning resources from the National Science Digital Library (NSDL.org) and the Web (Recker, 2006; Recker et al., 2005). The IA allows teachers search for, collect, annotate, store, and reuse online learning resources, then create instructional web pages, called IA projects. These IA projects can be kept private (private-view), or made available to only their students (student-view), or to anyone (public-view). Additionally, the IA allows for teachers to collaborate, by sharing projects with and copying projects from other IA users.

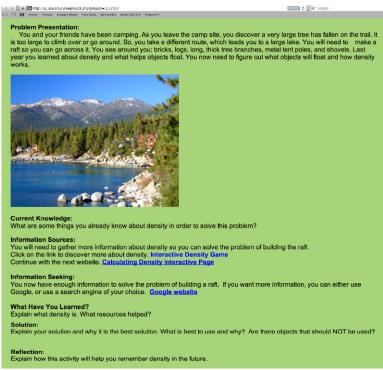


Figure 1. A screenshot of a teacher-created IA project.

To create an IA project, teachers need to register for a free account. Once logged in, teachers can use the IA in several ways. The '*My Resources*' area allows teachers to search for and save online resources from the NSDL, from any resource with a valid Internet address, such as other web pages, .pdf documents, or other IA projects. Finally, Web 2.0 technologies like RSS feeds and podcasts can be incorporated. All of these resources become the teachers' personal instructional collection. In the '*My Projects*' area, teachers can select online resources and annotate them with text to create IA projects. A webpage is generated systematically from what the teacher has selected which then can be used for instructional purposes. Finally, teachers can '*Publish*' IA projects using the private, student, or public options listed above.

Since 2005, the IA has over 6,100 registered users who have gathered over 70,000 online resources and created over 13,600 IA projects. Since August 2006, public projects have been

viewed over 1.5 million times.**Error! Reference source not found.** shows an IA project created by a participant, which exhibits several elements of problem-based learning.

Methods

This article reports results from a quasi-experimental study of TTPD impact that took place within a large suburban school district (75,000 students) in the U.S. West. The district proved an ideal testing ground in that all teachers were expected to teach to common math and science standards, had a rich culture of TTPD opportunities, and was engaged in concerted technology integration initiatives, including launching a laptop-only junior high school.

Table 1 shows the study's research questions, data sources, and analyses. As discussed

below, research question 4 is more complex in that several candidate teacher and student

variables were considered before their inclusion in the final model.

Table 1

Research Questions, Data Sources, and Analyses

Research Question	Data Sources	Analyses
1. What is the impact of the two TTPD designs on teachers' knowledge?	Teacher pre/post survey	Descriptives Factorial Repeated
on teachers knowledge:		Measures ANOVA
2. What is the impact of the two TTPD designs on teachers' usage of the IA?	Web usage data	Descriptives
3. What is the impact of the two TTPD designs on design choices made by teachers in their IA projects?	PBL alignment score	Descriptives Factorial Repeated Measures ANOVA
4. What combination of teacher variables and student variables significantly predict student outcomes?	All of above, and student pre/post questionnaire	Descriptives GEE

Professional Development Designs

Key activities for the two TTPD designs, tech-only and tech+pbl, as well as data

collection points are shown in Figure 2. In this section, we describe the TTPD designs following

the four PD dimensions identified by Fishman et al. (2003): 1) content, 2) strategies, 3) site, and 4) media. The figure, (using number) and the associated discussion (using italics), also identifies how our designs align with the seven elements of effective TTPD designs previously described.

Content. Both TTPD designs focused on the following technology skills: 1) finding online resources, 2) designing activities for students using the IA, and 3) implementing these IA projects in the classroom. In the *tech-only* TTPD design, additional technology content included learning search strategies for online resources, methods for evaluating online resource quality, and advanced IA design skills. In the *tech+pbl* TTPD design, the additional focus was on learning to design inquiry-oriented activities, specifically PBL, using the IA. Both TPPD designs aimed to improve teachers' TK, PCK, and TPCK. In the case of the tech-only group, pedagogical knowledge was emergent and based on teachers incorporating instructional practices relevant to their particular classroom needs in order to design IA projects for their students. This emergent characteristic is a feature common to other implementations of learning by design (Koehler & Mishra, 2005a). In the case of the *tech+pbl* group, the pedagogy consisted of problem-based learning. However, teachers in this group were asked to design IA projects incorporating PBL only if they felt it aligned with their self-selected design problem, student needs, and their own educational philosophy. In addition, teachers in both groups selected the design problems for their classroom, assuring a strong connection to their own content area and promoting active engagement.

Strategies and Site. The two TTPD designs were implemented as a series of three face-toface workshops with in-between classroom implementation and *follow-up activities*, *sustained* over three months. Each design had a different facilitator, both of whom helped develop the

workshops and both of whom are also authors. Following design-oriented approaches in technology integration professional development (Lawless & Pellegrino, 2007), the teachers *actively engaged* with authentic and complex problems in their own teaching, designed solutions, and reflected with their peers on classroom implementation *collaboratively* discussing barriers, ways to overcome barriers, best practices, and potential uses of the technology. Both workshops took place in the same district computer lab.

Media. Each teacher had hands-on access to the Internet, a TTPD curriculum guide, the IA (described above), search engines, and online resources. In conjunction with an ongoing *district technology integration effort*, teachers became media producers as well as media consumers, publishing their finished IA projects on a district website.

Tech-only TTPD	Tech+pbl TTPD	Data Collected
	Vorkshop 1: 3 hours (6)	
1. Take pre-survey	1. Take pre-survey	• Pre-survey
2. View example IA projects	2. View example PBL IA projects	-
3.Select a teaching need (1; 4)	3. Select a teaching need (1; 4)	
4. Intro to online resources	4. Intro to online resources	
5. Intro to IA: Walk through project creation	5. Intro to IA: Walk through project creation	
6.Discuss selection of quality of online	6. Individuals design IA projects	
resources (2)	7. Review IA functionality (3; 4)	
7. Individuals design IA project(s)	8. Large and small-group discussion on	
8.Review IA functionality (3; 4)	inquiry learning and designing inquiry	
Class	problems (2)	
	room Implementation #1 (7)	G: 1 -
1. Design IA project(s)	1. Design IA project(s)	• Student
2. Classroom implementation of IA project	2. Classroom implementation of IA project	pre/post
 Administer student questionnaire Write reflection paper on barriers and 	3. Administer student questionnaire	questionnaire
	4. Write reflection paper on barriers and	• PBL
successes in classroom implementation	successes on classroom implementation	alignment of
	5. Devise potential inquiry problems suitable to context	IA project
-		• Web usage
	Workshop 2: 3 hours (6)	
1.Small then large group discussion of	1.Small then large group discussion of	
implementation experiences (2)	implementation experiences (2)	
2.Review use of the IA, including advanced	2.Review use of the IA (3; 4)	
tech features (3; 4)	3.Engage in inquiry-oriented activity using	
3.Small group discussion on existing and	"World of Goo" (2)	
potential new IA projects (1)	4.Large group discussion of inquiry and PBL	
4.Design a new IA learning activity	(2)	
5.Large group discussion on IA and project	5.Design own PBL learning activity	
design (2)	6.Share ideas in small then large groups (2)	
	room Implementation #2 (7)	1
1.Design new IA project(s) with students	1.Design and implement new IA project(s)	• Student
2. Classroom implementation of IA project	with students, encouraging use of PBL.	pre/post
3. Administer student questionnaire	2. Classroom implementation of IA project	questionnaire
4. Write reflection paper on barriers and	3. Administer student questionnaire	• PBL
successes in classroom implementation	4. Write reflection paper on barriers and	alignment of
	successes on classroom implementation	IA Project
		• Web usage
	Workshop 3: 3 hours (6)	
1.Small then large group discussion of	1. Individual reflection on IA project and	• Post survey
implementation experiences (2)	PBL implementation	
2. Review technical use of the IA, including	2. Small then large group discussion of IA	
advanced features	project and PBL implementation (2)	
3. Take post survey	3. Review technical use of the IA	
	4. Take post survey	

Figure 2. Key activities for the two TTPD designs and data collection points. Numbers show the seven characteristics of effective TTPD design: 1 = relates to content area; 2 = collaborative; 3 = consistent with district goals; 4 = active engagement; 5 = tailored to different levels of knowledge; 6 = sustained with 3 contacts over 3 months with in-between activities; 7 = follow-up activities. Tailoring and district goals are discussed below.

Participants

A total of 51 mathematics and science teachers (grades 7-9) from 15 junior high schools in one school district initially signed up to participate. Participating teachers were assigned (based on scheduling preference but blind to condition) to one of two TTPD designs. Eighteen participants (71%) from each TTPD group completed all requirements and received a stipend and one university course credit. **Table 2** summarizes participating teacher characteristics. 1,247 students (age 12-15) in these teachers' classes completed pre/post questionnaires.

Table 2

Teacher Demographics

Teacher Demographics	Tech-only TTPD	Tech+pbl TTPD
N Teachers (% Female)	18 (72%)	18 (61%)
Mean (SD) # of years in current position	9.0 (6.38)	12.8 (9.35)
% Math teachers	44%	22%
% Science teachers	56%	78%

Data sources

Although several different measures are utilized, two of them rely on self-report data from teachers and from students. Past research has shown congruence between student-self report and performance based measures of problem solving (Reeves & Laffey, 1999). Teacher self-report data has been used in several prior research efforts specific to technology integration (Brush, 2003; Dick, Carey, & Carey, 2001; Fletcher, 2006). Self-report does carry the risk of self-report bias (Kopcha & Sullivan, 2007) but represents a feasible means of data collection especially for the multi-level context of this research.

Teacher survey. We collected pre/post data on teachers' experiences in the TTPD through an online survey administered at the before and after the TTPD. The survey consisted of eighteen Likert scale items addressing teacher self-reported knowledge aligned to sub-scales for TK, PCK, TPCK, and PBL. Likert scales ranged from 0 ("strongly disagree") to 4 ("strongly agree"). Items were drawn from several sources (Becker, 2000; Archambault & Barnett, 2010; Archambault & Crippen, 2009), as well as our previous research (Robertshaw, Walker, Recker, Leary, & Sellers, 2010). We also examined knowledge of search strategies, as well as teachers' future intentions to use PBL. Example items include "I can use technology to adapt my lessons to the needs of my students" (TPCK), "I am confident I can help students make connections between various concepts in a curriculum" (PCK), "I can troubleshoot technical problems associated with hardware" (TK), and "I know how to teach using problem-based learning" (PBL).

Responses on items for each sub-scale were summed. A *t*-test of pretest scores showed no significant differences between groups (p > .05). Overall survey reliability was high ($\alpha = .88$) and the Cronbach's alpha for each sub-scale was also high, ranging from .78 to .97. All teachers except one completed the post-survey. For this teacher, missing data were imputed.

Web usage data. The IA system automatically collects data about teachers' use of the IA (Khoo et al., 2008), and was used as a proxy for behavior. Data for each teacher included number of logins, IA projects created, online resources used, and student visits to each IA project.

PBL Alignment of IA projects. Using items based previous research (Walker & Shelton, 2008; Walker et al., 2011), we refined a rubric to score alignment with PBL (see Appendix A). The rubric consisted of 11 elements in four categories (Authentic Problem, Learning Processes, Facilitator, and Group Work). While each element in isolation (for example group work) does not itself constitute PBL instruction, it is closer to PBL than an intervention that does not involve

group work. PBL is a term that "can have many different meanings depending on the design of the educational method employed" (Barrows, 1986 p. 481). The rubric borrows heavily from that perspective and the associated assumption that designs that more closely adhere to the central tenets of PBL will result in improved student outcomes. Finally, by separating constructs like group work from authentic problems, the rubric avoids double-barreled features while maintaining sensitivity to variations between teacher designs. Note that Barrows later (1996) lamented that the wide variation in PBL interventions led to a lack of precision about what PBL means. We argue that PBL informed our TTPD design for teachers and that we attempt to assess the degree to which teachers implemented PBL in their classrooms. We would only label a handful of their implementations as PBL.

Three raters, randomly selected from a pool of five and blind to TTPD condition, independently scored teachers' IA projects. Each element's score ranged from 0-2 (0="not present"; 2= "present"), for a maximum possible score of 22 points. For reliability, overall average one-way random effects intra-class correlation (ICC) (Shrout & Fleiss, 1979) was .86. Interpreted like a kappa statistic (Fleiss & Cohen, 1973), this particular score indicates almost perfect agreement (Sim & Wright, 2005).

Student questionnaire. Teachers in the study administered paper-based pre/post questionnaires to their students before and after each of the two classroom implementations of IA projects. Since teachers taught different courses, an achievement test of student knowledge was not feasible. Instead, the student questionnaire contained seven self-report Likert scale items, with scales ranging from 1= "strongly disagree" to 5= "strongly agree." Two items addressed student behavior (e.g., "I will spend time learning about this topic on my own"; reliability α =

.78), three addressed knowledge (e.g., "I know enough to teach my friends about this topic", reliability α = .81), and two addressed attitude (e.g., "After this activity, I like this topic very much", reliability α = .77).

Teachers selected one of their classes in which to administer the student questionnaire. Responses on items for each sub-scale were summed. Enrollments at the class level are unknown but based on district averages we estimate a 67.7% student response rate. As with each of the sub-scales, overall questionnaire reliability was high (α = .79). For the purposes of validity, a confirmatory factor analysis showed three total factors. All were precisely aligned to the subscales as planned. One loading was at .68, the rest were at or above .85. Given the combination of a large sample size (N = 1,247), and strength of factor loadings (Stevens, 1999) these data appear to be valid measures of student self-reports for behavior, knowledge, and attitude.

Results

Results are organized by research questions below. All inferential statistical tests used an alpha level of .05. Where appropriate, effect sizes are calculated, including Cohen's *d* (1988), for mean differences and eta-squared (η^2) (Ferguson, 2009) for ANOVA.

Research Question #1: Impact on Teachers

A two-way factorial ANOVA with repeated measures was conducted to determine whether there was a statistical difference between the two different TTPD designs on each of the five sub-scale scores. The independent variables were a between-subjects variable with two levels (*tech-only, tech+pbl*), and a within-subject variable, repeated measures of pre-survey and post-survey scores on each of the sub-scales. Table 3 shows results for each of the five subscales. The analyses revealed significant main effects of pre/post-survey on *all* sub-scales, showing that teachers' scores increased. Following Ferguson's (2009) guidelines, there were *small* effect sizes for PCK and PBL subscale scores, *moderate* effect sizes for the TPCK and TK sub-scale scores, and *strong* effect sizes for the Search sub-scale scores.

The analyses also revealed a significant TTPD design X PBL sub-scale interaction, F(1, 34)=4.79, p<.05, $\eta^2=.05$. As shown in *Figure 3*, the interaction indicated that the *tech+pbl* teachers had larger gains in self-reported PBL knowledge than the *tech-only* teachers. While both Table 3

Descriptives and Main Effects of the Factorial Repeated Measures ANOVA

	Pre-s	urvey	Post-s	urvey		
Sub-scale	M	SD	M	SD	F(1,34)	$\eta 2$
PCK (0-16)	11.58	2.66	12.98	2.43	6.58*	0.16
TPCK (0-24)	12.97	4.54	19.09	2.99	50.71**	0.60
PBL (0-8)	4.83	1.84	5.94	1.72	10.12*	0.22
TK (0-12)	5.22	3.94	7.35	2.74	17.55**	0.34
Search (0-12)	6.92	2.47	10.10	1.91	60.08**	0.64

Note: *p < .05. **p < .01. Eta squared cut-offs: small = .04, moderate = .25, strong = .64

groups experienced gains, they did so at much different rates. In addition, the means on the postsurvey for the *tech+pbl* teachers were closer to the top of the scale. There were no other interaction effects observed.

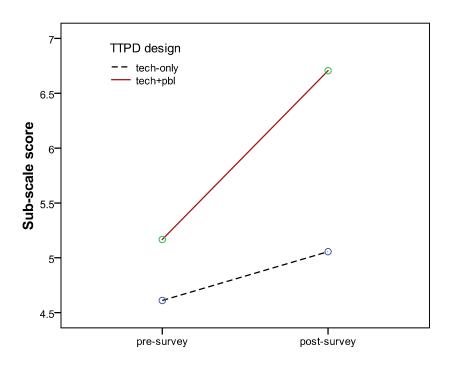


Figure 3. Estimated marginal means of teacher PBL knowledge for each TTPD design.

To further explore the differences between the two TTPD designs, descriptive statistics for each TTPD design and effect sizes of group gains are shown below in Table 4. As can be seen, the *tech+pbl* group is higher on all effect sizes except on TK. The latter construct, of course, was emphasized for the *tech-only* teachers. Differences in gains between groups (including TK) were fairly small, with the exception of PBL where *tech-only* gains were medium in size and *tech+pbl* gains were large.

Finally, a post-test only question asked teachers to indicate the degree they would use PBL in the future. An independent-sample *t*-test comparing teachers' responses showed a significant difference between the scores in the two TTPD designs, t(34)=-2.54, p<.05,

indicating a greater intention by teachers in the *tech+pbl* group. An effect size comparison of

these means suggests a substantial difference between the groups (d = 0.84).

Table 4

	Pre-survey		P	ost-survey	/
	М	SD	М	SD	d
Tech-only TTPD (range per sub-	scale)				
PCK (0-16)	11.89	2.14	12.78	1.35	.48
TPCK (0-24)	13.22	4.89	19.00	2.63	1.45
PBL (0-8)	4.61	1.75	5.17	1.72	.32
TK (0-12)	4.44	4.02	6.94	3.02	.69
Search (0-12)	6.50	2.62	9.50	1.89	1.32
Use PBL in the future? (0-4)	n/a	n/a	2.61	.98	n/a
Tech+pbl TTPD (range per sub-s	cale)				
PCK (0-16)	11.28	3.12	13.18	3.20	.60
TPCK (0-24)	12.72	4.30	19.18	3.38	1.63
PBL (0-8)	5.06	1.96	6.71	1.36	.96
TK (0-12)	6.00	3.82	7.76	2.44	.54
Search (0-12)	7.33	2.30	10.71	1.77	1.61
Use PBL in the future? (0-4)	n/a	n/a	3.35	.76	n/a

Teacher knowledge for PCK, TPCK, PBL, TK, and Search sub-scales

Note: Possible minimum is 0.

Research Question #2: Impact on IA Usage

One teacher's usage data in the *tech-only* group was an outlier. Rather than lose her completely, her usage data were trimmed to 3 SD over the mean (Lipsey & Wilson, 2001). As seen in **Table 5**, overall usage is high. Teachers on average each logged in about ten times more (M = 30.11) than the three logins required as part of the face-to-face workshop contacts. Teachers averaged more than 800 student visits to their projects. In terms of long-term impact, over half of the teachers logged into the IA 6 months after the conclusion of the TTPD. In sum, both TTPD designs appeared to have high usage by both teachers and students.

Table 5

	М	SD	Max
# of teacher logins to the IA	30.11	14.59	80
# of IA projects created	8.64	5.42	30
# of collected online resources used	32.14	26.52	138
# of collected resources used per IA project	3.80	2.00	11.83
# of student visits to the IA projects	859.92	760.67	2766

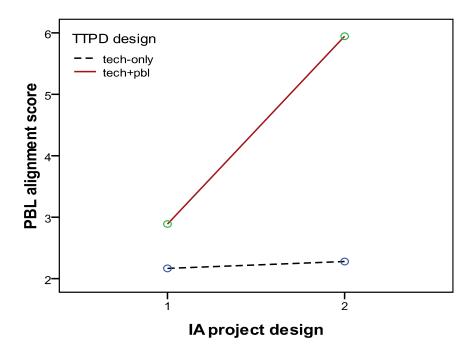
IA Usage Data for All Teachers (Measured 9 Months After Start of TTPD)

Research Question #3: Impact on Teacher Designs

This research question examined teachers' IA projects in terms of their alignment with PBL. The median rating from three raters was used as the IA project's PBL alignment score. Given the use of three raters and the proximity of rating decisions, this is a reliable approach for arriving at an operational score (Johnson, Penny, & Gordon, 2010). Results discussed below report the mean of these median scores for a particular group or design time point.

A two-way factorial ANOVA with repeated measures was conducted to determine whether there was a statistical difference between the two different TTPD designs in terms of the PBL alignment scores. The independent variables were a between-subjects variable with two levels (*tech-only, tech+pbl*), and a within-subject variable, repeated measures of PBL alignment scores from the first and second IA project design (see Table 6). The analysis revealed a significant main effect of design time, showing that PBL alignment scores increased between teachers' first and second design.

Table 6


Descriptives and Main Effect of the Factorial Repeated Measures ANOVA

	IA pı	IA project design #1		IA pi	roject de	sign #2		
	М	SD	MAX	М	SD	MAX	F(1,34)	$\eta 2$
PBL alignment score	2.53	2.10	9	4.11	4.29	17	5.27	.12

Note: Possible values range from 0 = low to 22 = high, *p < .05 **p < .01

The analysis also revealed a significant TTPD design X PBL alignment score interaction, F(1,34)=4.55, p<.05, $\eta^2=.10$. As shown in *Figure 4* and Table 7, the interaction indicated that teachers in the *tech+pbl* design had significantly larger gains in PBL alignment scores than the *tech-only* teachers. Recall that *tech+pbl* teachers also had significantly larger gains in selfreported PBL knowledge than the *tech-only* teachers. These two results provide converging evidence about the positive impact of the *tech+pbl* TTPD design on teachers' knowledge and design skills.

Note, however, that these scores are likely an under-estimate of what happened in the classroom. Teachers may have asked students to work in groups, as one example, even though the IA project did not make that clear. In addition, the means for all PBL scores were quite low, which may be the result of this underestimation, an overly strict measure, or may suggest that the PBL portion of the TTPD was not effective.

Figure 4. Estimated marginal means of teachers' PBL alignment scores for IA projects designed by each group at each time point

Table 7

	Mean	SD	Max
Tech-only TTPD (N=18)			
PBL alignment score in first design of IA project	2.17	1.95	9
PBL alignment score in second design of IA project	2.28	2.14	10
Tech+pbl TTPD (N=18)			
PBL alignment score in first design of IA project	2.89	2.25	9
PBL alignment score in second design of IA project	5.94	5.12	17

Note: Possible values range from 0 = low to 22 = high

Research Question #4: Predicting Student Outcomes

We analyzed student data using the Generalized Estimating Equation (GEE) (Liang &

Zeger, 1986) to account for the nested nature of the research design. While other models, such as

Hierarchical Linear Modeling (HLM) are also appropriate, GEE is well suited for this purpose in

that it handles data which violates distributional assumptions and is robust for a variety of data types. Moreover, GEE provides population-averaged estimates, while HLM provides the subject-specific estimates of the mixed-effects regression models (Hedecker & Gibbons, 2006). In the current study, we are more interested in predicting the population-averaged outcomes, rather than classroom level effects.

Model fitting was done using STATA 11 statistical software. To select the best working correlation structure (Horton & Lipsitz, 1999; Ballinger, 2004) and to aid in selection of predictors for the GEE model, the QIC score was calculated for each model. The QIC score is commonly used as a statistical basis for comparing model fit. In general, the smaller the value, the better the fit of the predictor combinations (Pan, 2001; Cui, 2007). Three variables (TTPD design, classroom implementation, and PBL alignment score) were included irrespective of QIC because they were considered important to the study. To statistically test whether each coefficient (estimated in the tables that follow) was substantially greater than zero, we followed the recommendations of Rotnitzky & Jewell (1990) in relying on the Wald chi-square statistic. A total of three separate GEE models were selected, to reflect the three student level dependent variables: behavior, knowledge, and attitudes. Each variable reflects a gain score on a pre-post measure administered just before and just after a teacher's classroom implementation of the IA project design at two different time points: one after the first TTPD workshop, and one after the second. Table 8 shows the descriptive statistics for each subscale, at each time point, for both TTPD designs.

Table 8

	Imple	ementati	ion 1	Imple	ementati	on 2		Total	
Student behavior gains	Mean	SD	Ν	Mean	SD	Ν	Mean	SD	Ν
Tech-only TTPD	1.42	2.25	264	1.58	2.10	280	1.50	2.17	544
<i>Tech+pbl</i> TTPD	.96	2.02	345	1.30	2.00	358	1.13	2.01	703
Total	1.16	2.13	609	1.43	2.05	638	1.30	2.09	1247
Student knowledge gains	Mean	SD	N	Mean	SD	N	Mean	SD	N
Tech-only TTPD	.75	1.81	264	1.46	1.96	280	1.11	1.92	544
<i>Tech+pbl</i> TTPD	.95	1.93	345	1.36	2.05	358	1.16	2.00	703
Total	.86	1.88	609	1.40	2.01	638	1.14	1.97	1247
Student attitude gains	Mean	SD	N	Mean	SD	N	Mean	SD	N
Tech-only TTPD	15	1.63	264	.29	1.48	280	.07	1.57	544
<i>Tech+pbl</i> TTPD	19	1.54	345	.11	1.61	358	04	1.58	703
Total	18	1.58	609	.19	1.56	638	.01	1.58	1247

Gain Scores for Students' Self-Reported Behavior, Knowledge, and Attitudes

Note: Student knowledge and attitudes subscales range from -8 to 8. The student behavior subscale ranges from -12 to 12.

All three models used teacher as the cluster variable and included both teacher level and student level predictors. Both the estimate and the *p*-value are important to consider when examining parameters for the model. The estimate indicates the level of contribution each independent variable has to the model, and the *p*-value indicates if it is statistically significant. *Student Self-Reported Behavior Gains*. For student behavior gains, there were four statistically significant independent variables (see

Table 9). The larger factors were TTPD design and classroom implementation. While

they might be statistically significant, the positive relationship with the number of teacher IA logins (e.g., the more logins the greater the gain in student behavior) and the inverse relationship with the number of IA projects created (e.g. the fewer the projects the greater the gain in student behavior) did not make an important contribution to the model.

Table 9

Estimated Coefficients, SEs and p-values: The GEE Model for Student Behavior Gains

		Final model	
	Estimate	SE	<i>p</i> -Value
Intercept	2.08	.77	.01
TTPD design	61	.14	.01
Classroom implementation	.25	.13	.05
PBL alignment score	.02	.01	.21
Teacher PCK	01	.03	.08
Teacher TPCK	03	.03	.23
Teacher PBL knowledge	.06	.04	.07
Teacher TK	.03	.02	.21
Teacher Search	.04	.04	.37
# of teacher IA logins	.02	.01	.01
# of IA projects created	05	.02	.01
# of collected resources used	05	.03	.08
School	.03	.02	.26
Teaching experiences	01	.01	.32
QIC score		5268.06	

Table 10

Post-estimation of the Student Behavior Gains between TTPD Designs

TTPD design		Final model	
111D design	LS Means	95% CI	Z
Classroom implementation 1 (N=609)			
Tech-only TTPD (N=264)	1.39	(1.16, 1.61)	2.84**
Tech+pbl TTPD (N=345)	.99	(.83, 1.15)	2.04
Classroom implementation 2 (N=638)			
Tech-only TTPD (N=280)	1.62	(1.38, 1.87)	2.37*
Tech+pbl TTPD (N=358)	1.28	(1.12, 1.43)	2.37**
Total (N=1,247)			
<i>Tech-only</i> TTPD (N=544)	1.51	(1.31, 1.71)	2 25**
<i>Tech+pbl</i> TTPD (N=703)	1.13	(1.03, 1.24)	3.25**
M * 05 ** 01			

Note: *p < .05 **p < .01

Since the TTPD design represents categorical data, the coefficient is best interpreted through post-estimation. Post-estimation of TTPD design (see

Table 10) initially suggests that students of tech-only teachers consistently showed

greater behavior gains. However, when looking at changes over time, the picture changes.

For the classroom implementation, the post-estimation analysis (see Table 11) showed no statistically significant change in student gain scores from the first to second classroom implementation for students of *tech-only* teachers. The same was not true for students of *tech+pbl* teachers who did show improved behavior gain scores at the second classroom implementation. Taken in combination, this suggests pre-existing differences favoring students of *tech-only* teachers. Although students of *tech+pbl* teachers showed gains, they were not at a level that overcame those prior differences.

Table 11

Post-estimation of t	he Student	Behavior	<i>Gains between</i>	Classroom In	<i>volumentations</i>
----------------------	------------	-----------------	----------------------	--------------	-----------------------

Classroom implementation	Final model		
	LS Means	95% CI	Ζ
Tech-only TTPD (N=544)			
Classroom implementation 1 (N=264)	1.39	(1.16, 1.61)	1.25
Classroom implementation 2 (N=280)	1.62	(1.38, 1.87)	1.35 ns
Tech+pbl TTPD (N=703)			
Classroom implementation 1 (N=345)	.99	(.83, 1.15)	2.26*
Classroom implementation 2 (N=358)	1.28	(1.12, 1.43)	2.26*
Total (N=1,247)			
Classroom implementation 1 (N=609)	1.16	(1.01, 1.32)	2 20*
Classroom implementation 2 (N=638)	1.43	(1.27, 1.59)	2.39*

Note: **p* < .05 ***p* < .01

Student Self-Reported Knowledge Gains. For student's self reported knowledge gains

(see Table 12), the single largest and only statistically significant contributor to the model was the classroom implementation. This suggests an improvement from the first to the second classroom implementations of IA projects.

Table 12

		Final model	
	Estimate	SE	<i>p</i> -Value
Intercept	79	1.09	.47
TTPD design	.01	.32	.99
Classroom implementation	.48	.18	.01
PBL alignment score	.06	.05	.19
# of teacher IA logins	.01	.01	.08
# of student visits to the IA projects	01	.01	.18
Teaching experiences	02	.02	.39
Grade	.12	.13	.35
QIC score		4675.04	

Estimated Coefficients, SEs and p-values: The GEE Model for Student Knowledge Gains

Post-estimation (see Table 13) suggests that the student knowledge gains were about the same for the *tech-only* group at both time points. For the *tech+pbl* group, the gains were similar to the *tech-only* group at the first classroom implementation but significantly larger at the second. The significant classroom implementation coefficient is based on group differences at both times.

Table 13

Final model Classroom implementation LS Means 95% CI Z *Tech-only* TTPD (N=544) Classroom implementation 1 (N=264) .86 (.44, 1.29)1.67 ns Classroom implementation 2 (N=280) 1.35 (.96, 1.75) Tech+pbl TTPD (N=703) Classroom implementation 1 (N=345) .86 (.48, 1.24)2.25* Classroom implementation 2 (N=358) 1.44 (1.11, 1.78)Total (N=1,247) Classroom implementation 1 (N=609) .86 (.56, 1.16)2.56* Classroom implementation 2 (N=638) 1.40 (1.11, 1.69)

Post-estimation of the Student Knowledge Gains between Classroom Implementations

Note: **p* < .05 ***p* < .01

Student Self-Reported Attitude Gains. Similar results are found in the model for student attitudes (see Table 14). Once again, classroom implementation was the key predictor variable.

Table 14

		Final model	
	Estimate	SE	<i>p</i> -Value
Intercept	.19	.64	.77
TTPD design	20	.15	.18
Classroom implementation	.32	.13	.01
PBL alignment score	.03	.03	.33
Teacher PCK	03	.02	.19
# of IA projects created	.02	.01	.12
# of Student visits to the IA projects	01	.01	.31
School	02	.02	.19
QIC score		3039.32	

Estimated Coefficients, SEs and p-values: The GEE Model for Student Attitude Gains

Table 15

Post-estimation of the Student Attitude Gains between Classroom Implementations

Final model		
LS Means	95% CI	Z
11	(33, .12)	3.03**
.24	(.05, .44)	
23	(41,05)	2.57*
.15	(08, .37)	2.37*
18	(33,02)	3 07**
.19	(.02, .36)	3.07***
	11 .24 23 .15 18	LS Means 95% CI 11 (33, .12) .24 (.05, .44) 23 (41,05) .15 (08, .37) 18 (33,02)

Note: *p < .05 **p < .01

Post-estimation (see Table 15), however, suggests a slightly different picture. Unlike behavior and knowledge gains, for student attitudes, gains occurred from the first to the second classroom implementation across both TTPD designs.

Discussion and Conclusion

In this article, we traced a path between two TTPD designs, teachers' experiences, usage

of the IA, self-reported knowledge and externally rated usage of PBL, and corresponding

impacts on student's perceptions of their own engagement and learning. As noted above, the work reported in the article built substantially on our prior efforts by improving TTPD materials and research instruments. The research design was also more rigorous and used a larger teacher and student sample. In this way, the current study contributes to TTPD theory, research, and development, as well as evaluation and scaling approaches.

The first focus of the study was to investigate the overall impact of the TTPD designs on teachers' knowledge and behaviors. Results showed that teachers in both TTPD designs benefited, with large self-reported gains in the five knowledge constructs measured. These results support the literature arguing that professional development can have positive influences on teacher's knowledge and skills (Borko, 2004). Moreover, teachers' technological knowledge as well as integrated forms of pedagogical content knowledge and technological-pedagogical content knowledge also showed gains. The different rates in the gains lend support for claims that it is important to measure TPCK as a separate construct from its constituent parts (Angeli & Valanides, 2005; Koehler & Mishra, 2008). Teacher TPCK gains (see Table 4) were dramatically larger than TK and PCK gains in both TTPD designs. Usage of the IA by both teachers and students was high, aligning with results from our prior work (Walker et al., 2011). Specifically, teachers in both TTPD designs made use of the IA and online resources, with more than half logging in six months after the conclusion of their TTPD.

Comparison between TTPD designs was the second focus of the study, in particular teachers' self-reported knowledge and externally rated use of PBL. Results revealed interaction effects, showing that *tech+pbl* teachers had larger gains in PBL knowledge than the *tech-only* teachers. They also showed larger gains in their use of PBL elements than the *tech-only* teachers.

This suggests two important things. First, teachers' self-reported knowledge of PBL appears to coincide with their observed usage, at least within this context. Second, the *tech+pbl* TTPD design effectively promoted knowledge gains and increased use of PBL. These shifts are non-trivial since they require a shift in teaching practices to be more student-centered. Despite any institutional barriers and despite existing beliefs of the teachers themselves (Ertmer, 2005), teachers expressed more knowledge of and were willing to utilize more elements of a student-centered approach like PBL.

The third focus of the study was to link teacher practice with student learning and engagement, while accounting for variations due to individual teachers. When combined, students of teachers in both TTPD designs had better self-reported gains across all outcomes after the second classroom implementation. However, this was not the case for student level gains when students were separated into TTPD groups. Only the students of *tech+pbl* teachers showed statistically significant gains across all three student outcomes. Students of *tech-only* teachers showed improved gains exclusively on attitudes. It appears that a participant driven exploration of pedagogies aligned to teacher and classroom needs, as advocated by learning by design (Koehler & Mishra, 2005b), may not be as effective as exploring a specific pedagogy (in this case, PBL). This does not challenge TPCK on a theoretical basis since the recommendation is to integrate pedagogy with technology and content. The finding, however, is at odds with many of the TPCK based interventions, and learning by design in particular.

Limitations

Limitations of the study include threats to internal validity through the use of intact groups randomly assigned to TTPD condition and the relatively small teacher sample. Other

threats include differences in the skill of the workshop leaders and that the workshops were developed and led by study authors. In addition, teachers selected the class to which they administered the student questionnaire, teachers from different groups may have worked collaboratively during and after workshops, and teachers and students may have provided socially desirable responses on the questionnaires. Teachers, in particular, may have provided socially desirable responses since they volunteered to participate. In the case of students, the anonymity of the surveys should help minimize the threat and for teachers, at least on the PBL knowledge items, the parallel PBL alignment scores provide some support for the veracity of their responses. Finally, there may have been pre-existing differences between treatment groups, such as prior exposure to PBL.

Implications for Future work

As discussed above, the means for the PBL alignment scores were low. Future work is needed to clarify if this is due to a lack of instrument sensitivity or to the difficulty teachers experienced in designing PBL activities. A focus on clarifying how teachers implement PBL in their classrooms as well as how this impacts student learning outcomes could help in confirming the sensitivity of the PBL rubric. Assuming a better range can be observed, future research might be better positioned to find a predictive link between PBL alignment and student outcomes. The data in this study with a nested structure could also be analyzed with a multilevel modeling technique that uses different estimation algorithms. Finally, future work might explore alternative pedagogical frameworks to PBL, determining if presenting PBL to teachers is an important factor in student outcomes, or if other specific pedagogies can show similar impacts. Practitioners engaged in TTPD might consider integrating specific pedagogical interventions

alongside technology skills training but caution and replication work is needed. They should, with confidence, consider interventions that are sustained over time. The sole consistent predictor of student gains was having the second implementation of an IA project, a recommendation already well established in the literature.

Acknowledgements

This material is based upon work supported by the National Science Foundation under (grant # 0937630). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. We thank the district science coordinator, participating teachers, and students in our study.

References

- Angeli, C., & Valanides, N. (2005). Preservice teachers as ICT designers: An instructional systems design model based on an expanded view of pedagogical content knowledge. *Journal of Computer Assisted Learning*, 21(4), 292-302.
- Angeli, C., & Valanides, N. (2009). Epistemological and methodological issues for the conceptualization, development, and assessment of ICT–TPCK: Advances in technological pedagogical content knowledge (TPCK). *Computers & Education*, 52, 154-168.
- Archambault, L., & Barnett, J. (2010). Exploring the nature of technological pedagogical content knowledge using factor analysis. Paper presented at the American Educational Research Association Annual Conference, Denver, CO.

- Archambault, L., & Crippen, K. (2009). Examining TPACK among K-12 online distance educators in the United States. *Contemporary Issues in Technology and Teacher Education*, 9(1), 71-88.
- Ballinger, G. A. (2004). Using generalized estimating equations for longitudinal data analysis. *Organizational Research Methods*, 7(2), 127-150.
- Barrows, H. S. (1986). A taxonomy of problem-based learning methods. *Medical Education*, 20(6), 481-486.
- Barrows, H. S. (1996). Problem-based learning in medicine and beyond: A brief overview. *New Directions for Teaching and Learning*, 68, 3-16.
- Barrows, H. S., & Tamblyn, R. M. (1980). Problem-based learning: An approach to medical education. Springer Series on Medical Education. New York: Springer Publishing Company.
- Becker, H. J. (2000). Findings from the teaching, learning, and computing survey: Is Larry Cuban right? *Education Policy Analysis Archives*, 8(51). Retrieved from http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ622351
- Borgman, C., Abelson, H., Dirks, L., Johnson, R., Koedinger, K., Linn, M., ... & Szalay, A.
 (2008). Fostering learning in the networked world: The cyberlearning opportunity and challenge, a 21st century agenda for the national science foundation (pp. 62). Arlington, VA: National Science Foundation, *Report of the NSF Task Force on Cyberlearning*.
 Retrieved from http://www.nsf.gov/pubs/2008/nsf08204/nsf08204.pdf
- Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. *Educational Researcher*, *33*(8), 3-15.

Brown, M., & Edelsen, D. (2003). Teaching as design (LETUS).

- Brush, T. (2003). Introduction to the speical issue on Preparing Tomorrow's Teachers To Use Technology (PT3). Educational Technology Research and Development, 51(1), 57-72.
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.
- Cui, J. (2007). QIC program and model selection in GEE analyses. *The Stata Journal*, 7(2), 209-220.
- Davis, E. A., & Krajcik, J. S. (2005). Designing educative curriculum materials to promote teacher learning. *Educational Researcher*, *34*(3), 3 -14.
- Desimone, L. M. (2009). Improving impact studies of teachers' professional development: Toward better conceptualizations and measures. *Educational Researcher*, *38*(3), 181 - 199.
- Dick, W., Carey, L., & Carey, J. O. (2001) *The systematic design of instruction* (5th ed.). New York: Addison-Wesley Educational Publishers Inc.
- Ertmer, P. A. (2005). Teacher pedagogical beliefs: The final frontier in our quest for technology integration? *Educational Technology Research and Development*, 53(4), 25-39.
- Ferguson, C. J. (2009). An effect size primer: A guide for clinicians and researchers. *Professional Psychology: Research and Practice*, 40(5), 532-538.
- Finkelstein, N., Chun-Wei, K., & Ravitz, J. (2011). Effects of problem-based economics on high school economics instruction. Paper presented at the Annual Meeting of the American Education Research Association, New Orleans.

- Fishman, B. J., Marx, R. W., Best, S., & Tal, R. T. (2003). Linking teacher and student learning to improve professional development in systemic reform. *Teaching and teacher education*, 19(6), 643–658.
- Fletcher, D. (2006). Technology integration: Do they or don't they? A self-report survey from PreK through 5th grade professional educators. *AACE Journal*, 14(3), 207-219.
- Fleiss, J, & Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. *Educational and Psychological Measurement*, 33(3), 613-619.
- Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., & Yoon, K. S. (2001). What makes professional development effective? Results from a national sample of teachers. *American Educational Research Journal*, 38(4), 915 -945.
- Graham, C., Burgoyne, N., Cantrell, P., Smith, L., Clair, L. S., & Harris, R. (2009). TPACK development in science teaching: Measuring the TPACK confidence of inservice science teachers. *Tech Trends*, 53(5), 70-79.
- Gurell, S., Kuo, Y.-C., & Walker, A. (2010). The pedagogical enhancement of open education:
 An examination of problem-based learning. *The International Review of Review of Research in Open and Distance Learning*, 11(3), 95-105.
- Hedeker, D., & Gibbons, R. D. (2006). *Longitudinal data analysis*. Hoboken, NJ: John Wiley & Sons.
- Hmelo-Silver, C. E., & Barrows, H. S. (2008). Facilitating collaborative knowledge building. *Cognition and Instruction*, 26(1), 48-94.

- Horton, N. J., & Lipsitz, J. H. (1999). Review of software to fit generalized estimating equation regression models. *The American Statistician*, 53, 160-169.
- Johnson, R. L., Penny, J., & Gordon, B. (2010). The relation between score resolution methods and interrater reliability: An empirical study of an analytic scoring rubric. *Applied Measurement in Education*, 13(2), 121-138.
- Khoo, M., Pagano, J., Washington, A. L., Recker, M., Palmer, B., & Donahue, R. A. (2008).
 Using web metrics to analyze digital libraries. *Proceedings of the 8th ACM/IEEE-CS joint conference on Digital libraries*, JCDL '08 (pp. 375–384). New York, NY: ACM.
- Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent tutoring goes to school in the big city. *International Journal of Artificial Intelligence in Education*, 8(1), 30-43.
- Koehler, M., & Mishra, P. (2005a). Teachers learning technology by design. *Journal of Computing in Teacher Education*, 21(3), 94-102.
- Koehler, M., & Mishra, P. (2005b). What happens when teachers design educational technology?
 The development of technological pedagogical content knowledge. *Journal of Educational Computing Research*, 32(2), 131-152.
- Koehler, M., & Mishra, P. (2008). Introducing TPCK. *Handbook of Technological Pedagogical Content Knowledge (TPCK) for Educators* (pp. 3-30). New York: Routledge.
- Kopcha, T. J., & Sullivan, H. (2007). Self-presentation bias in surveys of teachers' educational technology practices. *Educational Technology Research and Development* 55(6), 627-626.

- Lawless, K. A., & Pellegrino, J. W. (2007). Professional development in integrating technology into teaching and learning: Knowns, unknowns, and ways to pursue better questions and answers. *Review of Educational Research*, 77(4), 575-614.
- Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. *Biometrika*, 73(1), 13 -22.

Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Thousand Oaks, CA: Sage.

Maddux, C. D. (2009). Information technology in education: The need for skepticism. *International Journal of Technology in Teaching and Learning* (5)2, 182-190.

- Mardis, M. A. (2007). From one-to-one to one-to-many: A study of the practicum in the transition from teacher to school library media specialist. *Journal of Education for Library and Information Science*, 48(3), 218-235.
- McArthur, D., & Zia, L. (2008). From NSDL 1.0 to NSDL 2.0: Towards a comprehensive cyberinfrastructure for teaching and learning (pp. 66-69). Paper presented at the International Conference on Digital Libraries, Pittsburgh, PA: ACM.
- Mishra, P., & Koehler, M. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. *The Teachers College Record*, *108*(6), 1017-1054.
- Niess, M. L. (2005). Preparing teachers to teach science and mathematics with technology: Developing a technology pedagogical content knowledge. *Teaching and Teacher Education*, 21(5), 509–523.
- Pan, W. (2001). Akaike's Information criterion in Generalized Estimating Equations. *Biometrics*, 57(1), 120-125.

Patton, C., & Roschelle, J. (2008). Why the best math curriculum won't be a textbook.

Educational Week. Retrieved from http://www.edweek.org/ew/articles/2008/05/ 07/36 patton.h27.html

- Recker, M., Dorward, J., Dawson, D., Halioris, S., Liu, Y., Mao, X., Palmer, B., & Park, J. (2005). You can lead a horse to water: Teacher development and use of digital library resources. *Proceedings of the Joint Conference on Digital Libraries*. New York, NY: ACM.
- Recker, M. (2006). Perspectives on teachers as digital library users: Consumers, contributors, and designers. *D-Lib Magazine*, *12*(9).
- Reeves, T. C. & Laffey, J. M. (1999). Design, assessment and evaluation of a problem-based learning environment in undergraduate engineering. *Higher Education Research & Development*, 18(2), 219-232.
- Remillard, J. (2005). Examining key concepts in research on teachers' use of mathematics curricula. *Review of Educational Research*, 75(2), 211-246.
- Robertshaw, M. B., Walker, A., Recker, M., Leary, H., & Sellers, L. (2010). Experiences in the field: The evolution of a technology-oriented teacher professional development model. In *New Science of Learning: Computers, Cognition and Collaboration in Education,* Myint Swe Khine and Issa M. Saleh, Eds. New York: Springer.
- Roschelle, J., Shechtman, N., Tatar, D., Hegedus, S., Hopkins, B., Empson, S., ... Gallagher, L.
 P. (2010). Integration of technology, curriculum, and professional development for advancing middle school mathematics. *American Educational Research Journal*, 47(4), 833 -878.

- Rotnitzky, A., & Jewell, N. P. (1990). Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. *Biometrika*, 77(3), 485 -497.
- Savery, J. R. (2006). Overview of problem-based learning: Definitions and distinctions. *The interdisciplinary Journal of Problem-based Learning*, *1*(1), 9-20.
- Schlager, M. S., Farooq, U., Fusco, J., Schank, P., & Dwyer, N. (2009). Analyzing online teacher networks: Cyber networks require cyber research tools. *Journal of Teacher Education*, 60(1), 86 -100.
- Shrout, P., & Fleiss, Joseph. (1979). Intraclass correlations: Uses in assessing rater reliability. *Psychological Bulletin*, 86(2), 420-428.
- Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. *Educational Researcher*, *15*(2), 4-14.
- Sim, J., & Wright, C. C. (2005). The Kappa statistic in reliability studies: Use, interpretation, and sample size requirements. *Physical Therapy*, 85(3), 257 -268.
- Stevens, J. (1999). Intermediate statistics: A modern approach. Mahwah, NJ: Lawrence Erlbaum.
- U.S. Department of Education. (2010). National educational technology plan 2010 -Transforming American education: Learning powered by technology. Retrieved from http://www.ed.gov/technology/netp-2010
- Walker, A., & Shelton, B. (2008). Problem-based learning informed educational game design. Journal of Interactive Learning Research, 19(4), 663-684.

- Walker, A., & Leary, H. (2009). A problem-based learning meta analysis: Differences across problem types, implementation types, disciplines, and assessment levels.
 Interdisciplinary Journal of Problem-based Learning, 3(1), 12-43.
- Walker, A., Recker, M., Robertshaw, M. B., Olsen, J., Sellers, L., Leary, H., Kuo, Y.-C., & Ye,
 L. (2011). Designing For problem based learning: A comparative study of technology
 professional development. Presented at the American Educational Research Association
 Conference, New Orleans, LA.
- Wayne, A. J., Yoon, K. S., Zhu, P., Cronen, S., & Garet, M. S. (2008). Experimenting with teacher professional development: Motives and methods. *Educational Researcher*, 37(8), 469 -479.

APPENDIX A

Criteria	Not Present (0)	Emerging (1)	Present (2)		
Authentic Problem					
Cross-disciplinary	Content draws from a single discipline (e.g. statistics)	Content draws from two closely related disciplines (e.g. statistics and algebra)	Content draws from a diverse set of disciplines, reflecting the kind of complexity found in real life settings (e.g. statistics, and rhetoric)		
Ill-structured	Learners are provided with clear directions	Learners are provided with parameters but need to make some decisions about how to proceed	Learners need to act within parameters and are faced with competing constraints, forcing a "satisficing" solution (e.g. students are asked to pick food that is cheap as well as healthy)		
Real Life	No ties to real life practice	Attempted ties to real life practice. Something done by professionals, or authentic for students.	Learning is clearly tied to real life practice. For example, the problem is phrased in the first person for students, they are given artifacts associated with the problem		
Begins with a problem	No contextual problem is presented to learners	Learners are asked to solve a contextual problem (content first)	Learners are asked to solve a contextual problem (problem first then content)		
		Learning Processes			
Learning Goals	Students play no role in deciding what to learn.	Students have limited choice about what to learn.	Students choose the majority of what they learn.		
Resource Utilization	Learners are not prompted to locate/use any resources	Learners are asked to search for resources or utilize provided resources	Learners are asked to search for resources or utilize provided resources. Additionally they are encouraged to pay attention to the quality of resources they find or use.		
Reflection	Learners are not asked to reflect.	Learners are asked to discuss what they have found or judge the merits of their own actions or the actions of their peers.	Learners are asked to discuss what they found and judge the merits of their own actions or the actions of their peers.		
		Facilitator			
Metacognition	Unclear exactly what facilitators do during the activity.	As part of the activity, facilitators engage in some meta-cognitive prompts	As part of the activity, facilitators focus their efforts on providing meta-cognitive prompts (e.g. How helpful is your current line of reasoning? What do you need to do next? Can you summarize our discussion to this point?)		
Information Source	Facilitators are primary source of info. This either comes directly from the instructor or a mandated set of materials.	Information comes partly from facilitators and is partly found by learners	Information is found primarily by learners. Sources include searching, or distilling relevant information from a larger set of provided materials.		
		Group Work			
Learners interact in groups	The learning experience is done individually	Parts of the learning done individually parts are done as a group.	The majority of the learning is done in groups		