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ABSTRACT In recent years, there has been growing interest in studying the complexity of resting-state

functional magnetic resonance imaging (rs-fMRI) brain signals. As one of the most commonly used

complexity methods, entropy measures have been used to quantitatively characterize abnormal brain activity

in aged individuals and patients with psychopathic and neurological disorders, and most studies have

analyzed brain signals from a single channel. The widely used entropy methods include approximate entropy

(AE), sample entropy (SE), permutation entropy (PE), and fuzzy entropy (FE). However, the test-retest

reliability of different entropy methods remains to be explored. In this study, we investigated the distribution

and test-retest reliability of four entropy measures and a new entropy algorithm we proposed, permutation

fuzzy entropy (PFE), in three independent data sets at three levels, i.e., based on voxels, brain regions, and

functional networks. Our results showed that analyzing fMRI signals with entropy showed strong tissue

sensitivity. The highest reliability was achieved with PFE, and PE and FE were superior to AE and SE at

all three levels. The percentage of nodes with good to excellent reliability in PFE, PE, FE, SE and AE was

94.31%, 52.65%, 18.56%, 11.36% and 0.76%, respectively. PFE and PE showed fair to good reliability in

the visual network, auditory network, default-mode network, etc. In conclusion, characterizing brain entropy

may provide an informative tool to assess the complexity of brain functions. Our results suggested that PFE

and PE had better reliability and reflected more topological information related to normal and disordered

functioning of the human brain.

INDEX TERMS Functional magnetic resonance imaging (fMRI), test-retest reliability, permutation fuzzy

entropy (PFE), permutation entropy (PE).

I. INTRODUCTION

The human brain is a nonlinear and complex system. There

has been increasing interest in analyzing the complexity of

brain signals with technologies such as electroencephalo-

gram (EEG) [1], magnetoencephalogram (MEG) [2], and

functional magnetic resonance imaging (fMRI) [3]. Blood
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oxygenation level-dependent (BOLD) fMRI is a powerful

noninvasive tool for whole-brain imaging [4].

Resting-state fMRI (rs-fMRI) can reflect the spontaneous

neural activity of the human brain and can be used to study

the intrinsic function of the human brain. In recent years,

there has been growing interest in studying the complexity

of rs-fMRI brain signals [5].

There are numerous complexity methods, such as the

Lyapunov exponent, correlation dimension, Lempel-Ziv
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complexity, Hurst exponent, and entropy [6], [7]. Thesemeth-

ods use the time series of brain signals to construct a multidi-

mensional state space to reflect different complex states of the

brain [8]. In addition, these methods evaluate the complexity

of the signal based on its unpredictability: irregular signals are

more complex than regular signals. Among these methods,

due to its simple algorithm, the small amount of data required

and the strong antinoise ability in calculation, entropy is one

of the most widely used complexity methods for evaluating

the dynamic characteristics of brain signals [9]. The lower

the entropy value is, the lower the complexity of the signal.

This method is robust to noise and artifacts and can be used to

analyze biological data. Entropy methods have been widely

used in physiological signal analysis, including approximate

entropy (AE) [10], sample entropy (SE) [11], fuzzy entropy

(FE) [12], and permutation entropy (PE) [13].

SE, as proposed by Richman andMoorman, is an improved

version of Pincus’s AE and aimed to overcome the limitations

of AE and reduce statistical bias [14]. FE is an improvement

over the AE and SE algorithms. PE, another widely used

entropy measure, is a novel method developed by Bandt to

characterize the complexity of time series [13]. PE is suitable

for capturing the complex dynamics and rich time struc-

ture embedded in biological systems. Considering that brain

signals are very susceptible to noise during the acquisition

process, the antinoise performance of entropy is significant.

Permutation fuzzy entropy (PFE), a new index we proposed,

had better antinoise performance and detection performance

than PE and FE [15].

In recent years, entropy has been widely used on EEG

and MEG signals, but relatively few studies have employed

this approach for fMRI. Moses O. Sokunbi et al. conducted

multiple fMRI signal studies using different measures of

entropy: using AE to study individual differences in cognitive

performance in an elderly population, the results showed that

higher regional signal entropy was associated with better cog-

nitive performance [16]; SE was used to study the complexity

of fMRI signals in the brain of schizophrenia patients, and

it was found that the complexity in the signals from these

patients was higher than that of healthy controls at the global

and local levels [17]; they also used SE to analyze the fMRI

signals from patients with attention-deficit/hyperactivity dis-

order and found that the entropy values of the fMRI signal

from the whole brain of these patients were lower than those

of the controls [18]; furthermore, the analysis of the com-

plexity of fMRI signals from 41 healthy adults (41 males, 19

to 85 years old) showed that brain entropy values at the global

and local levels were negatively correlated with age [19]. Lin

et al. used SE to explore changes in the entropy of fMRI

signals from the brains of patients with depression and found

that compared with normal controls, patients with depression

showed reduced entropy in the medial orbitofrontal cortex

and cingulate cortex but increased brain signal complexity

in the motor cortex, which revealed the intrinsic network

dynamics that have been widely used in the study of the

mechanisms underlying mental disorders [20]. These studies

showed that entropy measures can both analyze the temporal

changes in fMRI signals and locate the relevant brain space.

Studies on fMRI showed that the change in entropy value

is related to disease states and can also be used to study the

internal mechanism of the normal human brain. However,

to determine the entropy method that most reliably reflects

the complexity of biological systems, few studies have sys-

tematically analyzed the test-retest reliability of these entropy

methods applied to fMRI signals.

In this study, the distribution and test-retest performance of

five entropy methods (AE, SE, PE, FE and PFE) were com-

pared. We performed complexity analysis at three levels—

based on voxels, brain regions, and brain networks—using

three rs-fMRI data sets from healthy young people. Our

research aims to provide a reference for researchers who use

entropy to explore the complexity of fMRI signals.

II. MATERIALS AND METHODS

A. SUBJECTS

In this experiment, three published rs-fMRI test-retest

data sets were used. The first data set is from IPCAS

(http://dx.doi.org/10.15387/fcp_indi.corr.ipcas1), which con-

tains data from 30 right-handed healthy college students

(average age: 20.93 ± 1.72; 9 males). One subject lacked

information on three rs-fMRI scans, so we selected 29 sub-

jects for the test-retest study (8 males).

The second set of experimental data was from the NITRC

public database (http://www.nitrc.org/projects /nyu_trt/),

in particular, the NYU data set, which includes 25 right-

handed volunteers (average age: 30.7 ± 8.8; 9 males), and

each subject was scanned three times.

The third set of data, IBA (http://dx.doi.org/10.15387

/fcp_indi.corr.ibatrt1), contains 36 subjects (mean age:

27.3 ± 7.75; 18 males), and each subject underwent two

rs-fMRI scans.

B. EXPERIMENTAL PROCEDURE AND DATA ACQUISITION

The experimental procedure is shown in Fig. 1. During the

resting-state scan, a fixation cross was presented to the first

group of 29 subjects, and the subjects were instructed to

rest while focusing on the fixation cross. Three resting-state

scans were obtained for each subject using a Siemens 3T

scanner. The researchers acquired echo-planar imaging (EPI)

functional volumes of each scan (repetition time (TR)= 2500

ms; echo time (TE) = 30 ms; flip angle (FA) = 90◦, number

of slices = 32, matrix = 64 × 64; field of view (FOV) =

256 mm, acquisition voxel size = 3 × 3 × 3 mm3) and

structuralMRI data using sagittal T1-weightedmagnetization

prepared rapid gradient echo (MPRAGE) sequences (TR =

2530 ms; TE= 2.51 ms; inversion time= 1100 ms; FA= 7◦;

number of slices = 128; FOV = 256 mm). The mean interval

between scans 1 and 2 was 29 minutes, and the mean interval

to scan 3 was 5-24 days.

The second group of 25 subjects were asked to relax and

keep their eyes open during the scan. Each subject underwent
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FIGURE 1. The total experimental procedure.

three resting-state scans using the Siemens Allegra 3T scan-

ner. Each scan consisted of 197 contiguous EPI functional

volumes (scanning parameters: TR = 2000 ms; TE = 25 ms;

FA = 90◦; number of slices = 39; matrix = 64 × 64; FOV

= 192 mm) and the high-resolution T1-weighted MPRAGE

sequence (TR = 2500 ms; TE = 4.35 ms; inversion time =

900 ms; FA = 8◦; number of layers = 176; FOV = 256 mm).

Scans 2 and 3 were performed 5-16 months after scan 1

(average 11± 4 months), and the interval between the second

scan and the third scan was 45 minutes.

The 36 subjects in the third group were asked to relax and

open their eyes during the scanning process. Using a Siemens

3T scanner and EPI technology, each participant was scanned

in the resting state (scanning parameters: TR = 1750 ms; TE

= 30 ms; FA = 90◦; number of layers = 29 layers; matrix =

64 × 64; FOV = 220 mm; data collected at 343 time points)

and with a high-resolution T1-weighted MPRAGE sequence

(TR = 2600 ms; TE = 3.02 ms; inversion time = 900 ms;

FA = 8◦; number of layers = 176; FOV = 256 mm). Each of

these scans was performed at an interval of 51-183 days.

C. SIGNAL PREPROCESSING

The Data Processing Assistant for Resting-State fMRI

(DPARSF v2.3) software package was used, which is based

on two software packages—Statistical Parametric Mapping 8

(SPM 8) and RS-fMRI Data Analysis Toolkit 1.8 (REST 1.8)

[21]—and the images were analyzed on the MATLAB 2014a

platform [22]. The preprocessing process for each subject was

as follows: removal of the first 10 time points; slice-timing

correction; head movement correction; spatial normalization

based on EPI template; resampling of voxel size to 3 mm ×

3 mm × 3 mm; bandpass filtering to reduce the impact of

low-frequency drift and high-frequency physiological noise;

detrending; removal of linear drift; removal of the effect of

nuisance covariates including head motion parameters, white

matter signal and cerebrospinal fluid signal.

D. ENTROPY ALGORITHMS

To compare the test-retest reliability of entropy methods,

we applied entropy to investigate the complexity of rs-fMRI

signals. Entropy is defined as the rate of new information gen-

eration, which measures the probability of generating a new

pattern in the signal. The greater the probability of generating

a new pattern that there is, the greater the signal complexity.

This value was calculated with the following formula:

H = −

n
∑

i=1

pi log pi (1)

In the formula, Pi represents the probability of the i-th discrete

state.

Here, five entropy algorithms were applied as complexity

estimators of rs-fMRI signals: (1) Approximate entropy (AE)

is roughly equivalent to the mean value of the logarithmic

conditional probability of the new state appearing when the

dimension changes, and it has certain value in measuring the

complexity of the time series. (2) Sample entropy (SE) is an

improvement relative to the AE algorithm in that SE calcu-

lates the logarithm of the sum and aims to reduce the error

of the AE, which is more closely consistent with the known

random part. (3) Fuzzy entropy (FE) adds a fuzzy function to

the comparison of continuous point vectors and generalizes

these vectors to reduce the impact of measurement drift.

(4) Permutation entropy (PE) uses the shape of neighboring

points to evaluate complexity based on permutation patterns,

and it has good computing performance for analyses of any

real-world data. (5) Permutation fuzzy entropy (PFE) is cal-

culated by first conducting permutations based on the original

time series. After data preprocessing, entropy was computed

based on the time course of every voxel in the brain.

1) APPROXIMATE ENTROPY

Step 1: Given a time series of N lengths:

X = {x(1), x(2), · · · x(N)} (2)

Step 2: Reconstructed vector with m dimensions represents

the value of m continuous x starting at point i:

Xi = {x(i),x(i + 1), · · · x(i + m − 1)} , 1 ≤ i ≤ N − m + 1

(3)
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Step 3: The distance dmij between vectors Xmi and

Xj(j = 1, 2 · · ·N − m + 1,j 6= i) is defined as the largest dif-

ference between corresponding elements and the maximum

absolute difference as its corresponding scalar component:

dij = max |x(i + j) − x(j + k)| , k = 0,1, · · ·m − 1 (4)

Step 4: Given threshold r, count the number of distances

between the vector Xi and all vectors that are less than the

threshold for any given vector dij ≤ r×SD(SD is the standard

deviation of the original one-dimensional time series), and

calculate its vector and total n-m+ 1 ratio, recorded as Cm
i (i);

take the logarithm; and then find its average value, recorded

as φm(r). The calculation formula is as follows:

φm(r) =
1

N − m + 1

N−m+1
∑

i=1

lnCm
i (r) (5)

Step 5: Increase the reconstruction dimension from m to m

+ 1, and calculate φm(t). For finite time series, approximate

entropy is obtained:

AE(N,m, r) = φm(r) − φm+1(r) (6)

Among the parameters in the algorithm, N represents the

length of time series, m is phase space dimension, and r is

similar tolerance.

2) SAMPLE ENTROPY

Step 1: Given a time series of N lengths:

X = {x(1), x(2), · · · x(N)} (7)

Step 2: Reconstructed vector with m dimensions:

Xm
i = {x(i), x(i + 1), · · · x(i + m − 1)} , 1 ≤ i ≤ N− m + 1

(8)

Step 3: The distance dmij between vectors Xm
i and Xm

j

is defined as the largest difference between corresponding

elements.

dmij = d[Xm
i ,Xm

j ] = max |x(i + k) − x(j + k)| ,

k = 0, 1, · · ·m − 1 (9)

Step 4: Given the value r similar tolerance, the distance

between vectors is calculated as the maximum absolute dis-

tance between their corresponding scalar elements. Count the

number of distances less than r and normalize them as Bm
r (i):

Bmr (i) =
1

N − m− 1

N−m
∑

j=1,j 6=i

2(dmij − r), 2(z) =

{

0, z < 0

1, z ≥ 0

(10)

Step 5: Average all i:

Bm
r =

1

N − m

N−m
∑

i=1

Bm
r (i) (11)

Step 6: Increase the reconstruction dimension from m to

m + 1, and calculate Bm+1
r . When the length N of series

U is finite, the estimated value of the corresponding sample

entropy is shown as

SE(N,m, r) = − ln(Bm+1
r /Bm

r ) (12)

Among the parameters in the algorithm, N represents the

time series length, m is the phase space dimension, and r

is similar tolerance. The more complex the time series, the

greater the corresponding sample entropy.

3) FUZZY ENTROPY

Step 1: Given a time series of N lengths:

X = {x(1), x(2), · · · x(N)} (13)

Step 2: Phase space reconstruction:

Xm
i = {x(i), x(i + 1), · · · x(i + m − 1)} − x0(i),

1 ≤ i ≤ N − m + 1 (14)

x0(i) =
1

m

m−1
∑

j=0

u(i + j) (15)

Step 3: The distance dmij between vectors Xm
i and Xm

j

is defined as the largest difference between corresponding

elements.

dmij = d
[

Xm
i ,Ym

j

]

= max
k=1,2,··· ,m

(|x(i + k − 1) − x0(i)|

− |x(j + k − 1) − x0(j)|)

i, j = 1, 2, · · ·N − m + 1, j 6= i (16)

Step 4: The distance Dm
ij between vectors Xm

i and Xm
j is

defined using a fuzzy membership function µ(dmij , n, r):

Dm
ij = µ(dmij , n, r) = exp

(

−(dmij )
n

r

)

(17)

In this expression, the fuzzy function µ(dmij , n, r) is an

exponential function. Respectively, n and r are the width and

gradient of the exponential function.

Step 5: Define function φm(r):

φm(r) =
1

N − m + 1

N−m+1
∑

i=1





1

N − m

N−m+1
∑

j=1,j 6=i

Dm
ij



 (18)

Step 6: Increase the reconstruction dimension from m to m

+ 1, and calculate φm+1(r). When the length N of series U is

finite, the estimated value of the corresponding fuzzy entropy

is shown:

FE(N,m, r) = lnφm(r) − lnφm+1(r) (19)

Among the parameters in the algorithm, N represents the

time series length, m is the phase space dimension, and r is

similar tolerance. Fuzzy entropy also measures the probabil-

ity of the new model. The greater the probability, the greater

the complexity.
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4) PERMUTATION ENTROPY

Step 1: Given a time series of N lengths:

X = {x(1), x(2), · · · x(N)} (20)

Step 2: The pm dimensional phase space reconstruction of

raw data by serial number:

X(i) =
[

x(i), x(i + τ ), · · · , x(i + (pm − 1)τ )
]

,

i = 1, 2, · · ·N − (pm − 1)τ (21)

where pm is the embedding dimension and τ is the delay time.

Step 3: Each reconstructed component is rearranged in

ascending numerical order:

x(i + (j1 − 1)τ ) ≤ x(i + (j2 − 1)τ ) ≤ · · · ≤ x(i + (jpm − 1))

(22)

j1, j2, · · · , jpm represent an index of the columns of each

element in the reconstructed component.

If two values are equal, for example,

x(i + (j1 − 1)τ ) = x(i + (j2 − 1)τ ) (23)

They are ordered according to the size of the j1, j2 value,

and when j1 < j2:

x(i + (j1 − 1)τ ) < x(i + (j2 − 1)τ ) (24)

Step 4: We can obtain a set of symbol sequences according

to the raw data from the reconstructed matrix of any time

series, where the symbol sequences is as follows:

s(g) = (j1, j2, · · · , jpm), g = 1, 2, · · · , k, k ≤ pm! (25)

Step 5: There are pm! possible scenarios for different

symbol sequences obtained by pm dimension mapping, and

s (g) is only one of them. Calculating the probability of

occurrence of various permutations P1,P2, · · · ,Pk, the per-

mutation entropy is defined as

PE(N, pm, τ ) = −

k
∑

j=1

Pj ln Pj (26)

Three parameter values must be considered and set when

calculating PE: length of time series N, embedding dimension

pm, and time delay τ . PE size represents the random degree

of the time series, and a smaller value indicates that the time

series is more regular; otherwise, the time series is more

random.

5) PERMUTATION FUZZY ENTROPY

The permutation fuzzy entropy is first sorted and symbolized

for the original time series; then, the fuzzy entropy of the

signed sequence is calculated. The permutation fuzzy entropy

algorithm is as follows:

Step 1: Given a time series of N lengths:

X = {x(1), x(2), · · · x(N)} (27)

Step 2: The pm dimensional phase space reconstruction of

raw data by serial number:

X(i) =
[

x(i), x(i + τ ), · · · , x(i + (pm − 1)τ )
]

,

i = 1, 2, · · ·N − (pm − 1)τ (28)

where τ and pm are the embedding time delay and the per-

muted dimension (the number of samples included in each

motif), respectively.

Step 3: The N − (pm − 1)τ reconstruction components

can be obtained by Step 2. Rearrange all of the elements in

each of the reconstruction components in ascending order

according to their numerical values. If two elements are

equal, the numerical values of the next elements from their

corresponding reconstruction components are used as the

current comparison results for rearrangement to reflect the

instant trend of the time series. If the numerical values of

the next elements are still equal, the index values are used

for the ascending order rearrangement. A different symbolic

sequence can be obtained by extracting the indexes of all

elements in their original reconstruction components. Each

instance of pm! in the symbolic sequence corresponds to a

value between 1 and pm!. Therefore, the original time series

is converted to a new series with each element having a value

between 1 and pm!:

Y(i), 1 ≤ i ≤ N − (pm − 1)τ (29)

Step 4: For the new sequence, the fuzzy entropy is cal-

culated according to Formula (13) to Formula (18), and the

permutation fuzzy entropy of the original sequence x (i) is

obtained:

PFE(N, pm, τ,m, r) = lnφm(r) − lnφm+1(r) (30)

The parameter N represents the time series length, pm is

the embedding dimension, τ is the delay time, m is the phase

space dimension, and r is the similar tolerance.

E. PARAMETER SELECTION

This study uses three data sets to compare the test-retest

performance of the five entropy methods. AE, SE, and FE

need to set three parameters: N, m, and r. N is the number

of time points, m specifies the dimension of the phase space,

and r is the similarity tolerance. Many studies have discussed

the setting of these parameters [23], [24]. The parameter m is

taken as 2, and the similarity tolerance r is taken as 0.25 times

the standard deviation of the original data.

The PE algorithm also involves the setting of 3 parameters:

N, pm, and τ , where N is the time series, pm is the embedding

dimension, and τ is the delay time. The pm value setting is

based on the following considerations: when pm< 3, the pro-

cess is meaningless because there are too few permutations

and combinations; the larger the pm is, themore the algorithm

time complexity will increase as a larger m corresponds

to more permutations. Bandt and Pompesuggested that pm

should be 3 ∼ 7 [13]; Li et al., to ensure sensitivity to the

transient characteristics of the system, suggested that the pm

VOLUME 8, 2020 124441
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should be a small value to reduce the time complexity of the

algorithm [25]. In this study, pm was set as 4. For the time

delay in the sorting and symbolization process, the value used

in this study was 1. In this setting, more information can be

captured in brain signals.

The PFE algorithm involves the setting of 5 parameters:

N, m, r, pm, and τ . N is the original time series, m was

set to 2, the similarity tolerance r was set as 0.25 times the

standard derivation of the original time series, the embedding

dimension pm was set as 4, and the delay time τ was set to 1.

In addition, this study involved the comparison of different

entropymethods. To avoid the influence of parameter settings

on the results, at the end of the experiment, we compared the

test-retest performance of different entropy measures using

parameters across the entire possible range.

F. TEST-RETEST RELIABILITY

The test-retest reliability evaluates the statistical stability of

the index at different measurement times [26]. It comprehen-

sively considers the changes within the individual and among

different individuals, reflecting the stability and consistency

of the index across time [27]. Test-retest reliability is a

very important concept in various fields, including sociology,

behavior, physics, biology and medicine [28]. Due to the

interference of various factors on the actual measurement, it is

critical to choose a reliable index. The intraclass correlation

coefficient (ICC) is a commonly used reliability coefficient

index to measure test-retest reliability [26]. The ICC value

can be calculated according to the following formula:

ICC =
MSR − MSE

MSR + (k − 1)MSE
(31)

MSR represents the mean square between subjects, MSE
represents the residual mean square, and k is the number of

repeated measurements.

In this study, ICC values were usually divided into five

common intervals: 0 < ICC ≤ 0.25 indicated poor reliability;

0.25 < ICC ≤ 0.4 indicated low reliability; 0.4 < ICC ≤

0.6 indicated fair reliability; 0.6 < ICC ≤ 0.75 showed that

reliability was good; and 0.75 < ICC ≤ 1.0 meant that relia-

bility was very good, close to perfect. In practice, we usually

expect to have a fair to almost perfect reliability index (ICC>

0.4). In this study, we used the IPCAS and NYU data sets to

define intra- (short-term) and inter-session (long-term) test-

retest reliability, where scans with short intervals are used to

calculate short-term reliability, and scans with long intervals

are used to calculate long-term reliability. In addition, since

IBA contained only two scans, the two scans were used to

calculate intersession reliability.

G. NODE DEFINITION

In this study, a widely used functional parcellation (POWER

atlas) was used [29]. The POWER atlas is composed of

a set of 264 functional nodes that span the cerebral cor-

tex and subcortical structures. In addition, this atlas divides

the 264 subregions into 10 intrinsic connectivity networks

(ICNs). The names of the 10 ICNs are indicated in Table 1.

TABLE 1. Definitions of ICNS.

III. RESULTS

A. THE DISTRIBUTION OF AE, SE, PE, FE AND PFE

After calculating the entropy of each voxel in the brain,

we compared the distribution of the outcomes from the five

entropy methods. The two-tailed one-sample T test was per-

formed using entropymaps of the first scan, and the statistical

threshold was p < 0.05 and cluster size >30 (false discovery

rate (FDR) correction). The results are shown in Fig. 2,

in which (a), (b), and (c) represent the three data sets. For

AE, after correction, the differences among the three data

sets were not significant. The other entropy methods showed

significant differences.

Next, we extracted the average value of different tissues

(gray matter (GM), white matter (WM), and cerebrospinal

fluid (CSF)), and one-way ANOVA was performed. Fig. 2

shows the results. As shown in Fig. 3, the five entropy mea-

sures were significantly different in different tissues. The AE

results showed that the complexity of the WM was signifi-

cantly higher than that of the GM, and the complexity of the

CSF was significantly higher than that of the GM. However,

no difference was found between the WM and CSF. The

SE was significantly different among the three groups: the

complexity of the WM was significantly higher than that of

the CSF, and complexity of the CSF was significantly higher

than that of theGM. PE showed significant differences among

the three groups on the other two data sets; however, there was

no difference in the WM and CSF measures found in the IBA

data set. For FE, the CSF entropy values were significantly

higher than those of the GM and WM, and the GM and WM

behaved differently across the different data sets. PFE showed

significant differences among the three measures from the

three data sets: the complexity of the WM was significantly

higher than that of the GM and CSF; the complexity of the

GM was significantly higher than that of the CSF.

B. VOXEL-BASED RELIABILITY OF THE FIVE ENTROPY

METHODS

Fig. 4 shows the voxel-based test-retest reliability of the five

entropy methods on the three data sets. In the figure, the areas

where the test-retest reliability was above fair (ICC≥ 0.4) are

displayed. Compared with AE, SE had more voxels with fair

to good retest reliability, while PE and FE had better test-

retest reliability than SE; the reliability of PFE was better

than those of the other four entropy methods. In addition,
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FIGURE 2. One-sample T test results with different entropy methods (FDR correction: p < 0.05, cluster size > 30). A, B, and
C represent the results from the IPCAS, NYU and IBA data sets, respectively.

FIGURE 3. Mean entropy values in different tissues. Significant differences between pairs of measures after Bonferroni
correction (p < 0.05) are indicated. The error bars represent the standard error of entropy values within the group. ∗

indicates p < 0.05. ∗∗ indicates p < 0.01. ∗∗∗ indicates p < 0.001.

Fig. 4(a) and Fig. 4(b) show that for the five entropy methods,

intra-ICC was better than inter-ICC. Table 2 lists the average

ICC of the whole brain for different entropy methods. The

three data sets all showed the same trend across the different

tissues: AE < SE < FE < PE < PFE.

C. REGION-BASED RELIABILITY OF THE FIVE ENTROPY

METHODS

To further study the test-retest reliability of the entropy

methods, we extracted the average ICC values of 264 brain

regions based on POWER atlas. The results are shown in
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FIGURE 4. Voxel-based test-retest reliability for the five entropy methods with the three data sets. The
test-retest reliability that is above fair (ICC ≥ 0.4) is displayed.

TABLE 2. The average ICC of the whole brain for different entropy
methods.

Fig. 5. We divided the ICC values into 3 intervals: ICC <

0.4 indicates low reliability; 0.4 ≤ ICC < 0.6 indicates fair

reliability; and ICC ≥ 0.6 indicates good reliability. The

results showed that, overall, both in short (intra) and long

term (inter), AE and SE showed poor to fair reliability, but

FE, PE and PFE showed fair to good reliability. PFE in

almost all regions presented fair to perfect reliability (ICC

≥ 0.4). PE and FE had more brain regions with fair to perfect

reliability than AE and SE. It can be seen from the results

of Fig. 5(a) and Fig. 5(b) that the test-retest reliability of

the intra-session was higher than that of the inter-session

analyses.

Fig. 6 shows the percentage of regions under different

ICC intervals of the five entropy methods for the three data

sets. For the IPCAS data set, the percentage of regions with

long-term good to excellent reliability with PFE, PE, FE,

SE and AE was 25.38%, 11.36%, 5.31%, 0.38% and 0%,

respectively. The percentages of nodes with short-term good

to excellent reliability in PFE, FE, PE, SE and AE were

28.78%, 8.33%, 16.67%, 1.52% and 0%, respectively. AE had

no brain nodes with inter- or intra-session good to excellent

reliability. In addition, better results were obtained with the

IBA dataset than with the other two data sets across the five

entropy methods, especially for PFE, and the percentage of

nodes with fair to excellent reliability was 98.48%.

D. NETWORK-BASED RELIABILITY OF THE FIVE ENTROPY

METHODS

Ten functional networks were selected to evaluate the relia-

bility of AE, SE, FE, PE and PFE. The results are shown in

Fig. 7. With almost all functional networks, for both intra-

session and inter-session analyses, the average ICC values of

PFE were higher than those of the other four methods and

showed fair to good reliability. PE and FE showed higher

reliability than AE and SE. Nevertheless, AE and SE exhib-

ited mean low reliability (mean ICC < 0.3) in all functional

networks. In addition, PFE and PE showed fair to good
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FIGURE 5. Region-based test-retest reliability for the five entropy methods across the three data sets. Nodes with fair to
excellent reliability are mapped in yellow (0.40 ≤ ICC < 0.6) or red (ICC ≥ 0.6), and those with low reliability (ICC < 0.4)
are mapped in blue.

FIGURE 6. Percentage of nodes with different ICC intervals for the five entropy methods across the three
data sets.

reliability in the visual network, auditory network, frontopari-

etal network, default-mode network and ventral attention

network.

Finally, we ranked the ICC values of the 264 brain regions

from highest to lowest. Table 3 lists the top 10 ranking

ICC regions with different entropy methods on the IBA
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FIGURE 7. Test-retest reliability for the five entropy methods with ten functional networks across the three data sets.

FIGURE 8. Percentage of regions in different ICC intervals for the five
entropy methods across all parameter settings.

dataset. Among the top 10 brain regions with high reliabil-

ity, we found that more than half of the regions were in

the default network. The regions identified for the different

entropy methods were highly consistent.

E. RELIABILITY OF THE FIVE ENTROPY METHODS WITH

DIFFERENT PARAMETERS

We performed the calculations with all possible parameters

and compared the test-retest performance of the different

entropy methods with these parameter settings. The results

are shown in Fig. 8. The results for the five entropy methods

are presented as the percentage of nodes in different ICC

intervals for the NYU inter-session scans. For AE, SE, FE and

PFE, the similarity tolerance r ranged from 0.1 to 1. For

PE and PFE, the permuted dimension ranged from 3 to 7.

Fig. 8 shows that the different parameters had little effect

on the conclusion, and the test-retest reliability of PFE was

significantly higher than that of other entropy methods.

IV. DISCUSSION

In this study, three sets of rs-fMRI data were used to map the

brain entropy measures using five entropy methods. The tis-

sue distributions and test-retest reliability were studied. The

results showed that the entropy measures were very sensitive

to the different tissues in the brain. PFE and PE presented fair

to perfect test-retest reliability (ICC≥ 0.4) in most regions of

the brain; after dividing the brain into 10 functional networks,

PFE and PE showed fair to good reliability in the visual

network, auditory network, frontoparietal network, default-

mode network and ventral attention network. The reliability

of entropy methods across the three data sets showed a con-

sistent trend—AE < SE < FE < PE < PFE—and short-term

reliability tended to be more stable than long-term reliability.

A. SIGNIFICANT DIFFERENCES IN COMPLEXITY IN THE

DIFFERENT BRAIN TISSUES

We mapped whole-brain entropy using rs-fMRI from three

data sets. Our data demonstrated that entropy was a sensi-

tive measure for differentiating brain tissues. We performed

one-sample T tests with the different brain entropy maps,

as shown in Figure 1, and after correction, the difference

was not significant for AE. In a previous study, Wang et al.
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TABLE 3. The top 10 ranking ICC regions with different entropy methods.

calculated the SE map of the whole brain, and consistent with

our results, the WM was significantly higher than the mean

of the whole brain, and the GM was lower than the mean

of the whole brain [30]. Our research results showed that

entropy measures applied to fMRI signal complexity analysis

had strong tissue sensitivity.

B. COMPARISON OF THE DIFFERENT ENTROPY METHODS

Overall, we found that PFE, PE and FE showed greater

reliability with higher ICC values than AE and SE. It can be

seen from the calculation formula that both AE and SE can be

expressed by the Heaviside function, and the contribution of

the Heaviside function depends entirely on the tolerance r and

exhibits high sensitivity to changes in r or data point position.

Therefore, both AE and SE may significantly change with

small changes in the parameter r and may be discontinuous

[14], [31]. Regarding FE, after the concept of ‘‘fuzzy set’’

was proposed, many studies used ‘‘fuzzy sets’’ to measure the

similarity of two vectors and used an exponential function as

a fuzzy function of FE [32], [33]. According to the rules given

by the exponential function, small changes in r do not have

much effect on the results. Furthermore, there are no rigid

boundaries in the exponential function, and all data points

are treated as members. Hence, these factors also mean that

the contribution of the exponential function is less sensitive

to changes in r and data point position, FE is continuous

compared to AE and SE, and FE does not change abruptly

when r is slightly changed. These results explain why changes

in data point position may have little effect on FE across

multiple resting-state scans, thereby producing more reliable

results.

In addition, with both AE and SE, vectors are directly

formed from the original m consecutive values. Nevertheless,

unlike AE and SE, FE uses an m-dimensional vector con-

structed from a one-dimensional time series [34]. To avoid

a short-term physiological change in the time series causing

fluctuations in vector coordinates and hiding the similarity

between certain vectors, FE promoted the vectors by remov-

ing the baseline. Thus, FE can obtain robust estimates with

short-term data [35], [36].

PE is different from FE, SE and AE, as it estimates

the complexity of a time series through the comparison of

neighboring values [37]. In addition, the calculation of PE

produces demonstrable time savings [38], and the PE method

involves more simplicity and lower complexity in computa-

tion without further model assumptions [36], [37], [39], [40].

More notably, all biological systems exhibit linear and non-

linear dynamics, which are subject to interference from exter-

nal and observational noise [41]. However, compared to other

entropy methods, some studies have shown that PE is more

robust to existing dynamic and observed noise [42]. Most

clinical applications require reliable algorithms over rela-

tively short and noisy time series or over long periods with

static- and noise-free data. PE is very reliable for this type of

time series, and no further steps are required to preprocess and

adjust the parameters [43]. Hence, PE may be more reliable

for multiple scans than AE and SE and exhibited higher test-

retest reliability.

PFE improved on the antinoise ability of FE by using

permutation-based signifying time series. This adaptation

enables PFE to effectively restrain the influence caused by

noise and is more suitable for capturing information from

biological signals. In a previous study, PFE was proven to

have better antinoise performance than PE and FE [15]. In this

study, our experiments found that PFE had better test-retest

reliability than PE and FE.

C. TEST-RETEST RELIABILITY OF THE ENTROPY METHODS

To our knowledge, few studies have focused on analyz-

ing the test-retest reliability of entropy methods based on

single-channel time series. One study investigated the ICC

of network-wise entropy and found that network-wise com-

plexity for default-mode network exhibited fair reliability

(ICC < 0.5) based on eyes-closed sessions [44]. Wang et al.

calculated SE of fMRI data to evaluate the test-retest stability

of SE in normal brain, and the results showed nearly all ICC

≥ 0.5 of intracranial voxels [30]. This finding shows the high

reliability of the SE. On the IPCAS and NYU data sets, the

reliability of the SE is low to fair, and the fair reliability is

presented on the IBA data set (ICC≥ 0.4). This may be due to

different scanning machines and different parameter settings

of the machine. This study focuses on the comparison of dif-

ferent entropymethods. On the same data set, the reliability of
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PFE is the best, and other entropy methods are still effective

indicators.

D. TEST-RETEST RELIABILITY OF INTER-SESSION AND

INTRA-SESSION ANALYSES

Many studies have reported the inter-session and intra-

session reliability of rs-fMRI signals [44], [45]. In this paper,

we observed that intra-session analyses showed higher test-

retest reliability than inter-session analyses with the five

entropy methods. This finding was consistent with previous

findings that the spatial patterns of functional networks had

higher reliability in short-term scans [45]. Wang et al. also

found that the ICC values with the default-mode network

in intra-session scans were higher than those in intersession

scans based on network-wise entropy [44]. This finding may

suggest that short-term scans may have reduced internal noise

with improved reliability estimates and that short-term scan-

ning intervals can result in more stable and accurate entropy

values [46].

E. FUNCTIONAL NETWORK RELIABILITY IN THE RESTING

STATE

Our research results showed that the test-retest reliability

of PFE and PE was fair to good on almost all functional

networks. As seen in Fig.7., across both intra-session and

inter-session analyses, the reliability values for the ventral

attention, visual, auditory and frontoparietal networks were

relatively stable and relatively higher than in other networks.

The ventral attention network is composed of the right

lateral temporoparietal junction (TPJ) and the ventral frontal

cortex (VFC) and participates in the bottom-up processing

of attentional reorientation [47]. This network shows activity

increases upon detection of salient targets, especially when

they appear in unexpected locations [48]. Of note, the most

important factor in the visual network is sensing the physical

metrics of the spatial layout [49], and the auditory network

is primarily active when external stimuli are received [50].

In addition, the frontoparietal network can maintain control

signals online in working memory from one or a small num-

ber of trials to the next, enabling it to implement task control

on a faster trial-to-trial basis [51]. Nevertheless, in the resting

state, the subjects were not disturbed by the outside world,

and therefore, few stimuli were present during the resting

state regarding the construction of these networks. Hence,

these networks may not be active, which corresponded to

fewer changes in complexity. In other words, due to less

activity, these networks were relatively stable and robust in

the resting state.

The regions with perfect reliability were predominantly

distributed in the default-mode network. Usually, when the

individual is not focused on the outside world in the rest-

ing state, the default-mode network will be very active

[52]. The default-mode network has been suggested to be

responsible for mind wandering during the resting state. The

default-mode network was reported as a main functional sys-

tem in the human brain [53]. Especially for the intra-session

scans, the default-mode network is synchronously activated,

which could result in some brain regions in the default net-

work showing high test-retest reliability.

V. CONCLUSION

In summary, we studied the distribution and test-retest reli-

ability of the measures from five entropy methods derived

from rs-fMRI data. Specifically, our research found that

entropy has strong tissue sensitivity, and all entropy meth-

ods showed significant differences in different brain tissues

(GM, WM and CSF). We used 3 data sets and found that

the reliability of PFE was optimal, followed by PE and FE,

at three levels (i.e., based on voxels, brain regions, and func-

tional networks). The results showed overall fair to perfect

reliability for PFE and FE. Our results demonstrated that

PFE and PE were more reliable and stable for complexity

analyses of fMRI signals, providingmethodological guidance

for exploring brain activity by fMRI signals.

VI. LIMITATIONS

There are still some limitations in our research. First, we stud-

ied some commonly used entropy measures; however, many

improvements in these methods have not yet been explored.

We propose further studies on the test-retest reliability of

complexity methods. Second, in this study, wemainly studied

the test-retest reliability of different entropy methods and

chose the widely used POWER atlas; however, other atlases

can also be considered.
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