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Abstract—In this paper we compare two different textural
feature sets for automatic music genre classification. The idea
is to convert the audio signal into spectrograms and then extract
features from this visual representation. Two textural descriptors
are explored in this work: the Gray Level Co-Occurrence Matrix
(GLCM) and Local Binary Patterns (LBP). Besides, two different
strategies of extracting features are considered: a global approach
where the features are extracted from the entire spectrogram
image and then classified by a single classifier; a local approach
where the spectrogram image is split into several zones which
are classified independently and final decision is then obtained
by combining all the partial results.

The database used in our experiments was the Latin Music
Database, which contains music pieces categorized into 10 mu-
sical genres, and has been used for MIREX (Music Information
Retrieval Evaluation eXchange) competitions. After a compre-
hensive series of experiments we show that the SVM classifier
trained with LBP is able to achieve a recognition rate of 80%.
This rate not only outperforms the GLCM by a fair margin but
also is slightly better than the results reported in the literature.

I. INTRODUCTION

From 2002, when Tzanetakis and Cook [1] introduced music

genre classification as a pattern recognition task, many other

works has been developed for this purpose [2], [3], [4], [5], [6],

[7]. According to Lidy et al.[8], most of the works rely on the

content-based approach, which extracts representative features

from the digital audio signal. Among the most common

features used we can mention for example, timbral texture,

beat-related, pitch-related, and rhythm histograms.

In spite of all efforts done so far, the automatic music

genre classification still remains an open problem. McKay and

Fujinaga [9] pointed out some problematic aspects of genre

and refer to some experiments where human beings were not

able to correctly classify more than 76% of the musics. In

spite of the fact that more experimental evidence is needed,

these experiments give some insights about the upper bounds

on software performance. McKay and Fujinaga also suggest

that different approaches should be proposed to achieve further

improvements.

In light of this, Costa et al [10] proposed an alternative

approach for automatic genre classification. It converted the

audio signal into spectrograms [11] (short-time Fourier repre-

sentation) and then extracted textural features from the visual

representation. The experiments reported in [10], using the

Latin Music Database, took into account the Gray Level Co-

Ocurrence Matrix (GLCM) textural descriptors and achieved

similar results to those methods based on traditional fea-

tures. However, the authors have shown that the classifiers

based on textures carry some complementary information

when compared to the traditional ones. When both strategies

were combined, a significant improvement of about 10% was

achieved.

The GLCM and its descriptors were proposed by Haralick

[12] almost 40 years ago. Since then other textural descriptors

have been developed and successfully applied into different

areas, but one of them, the Local Binary Pattern (LBP) has

gained a lot of attention because of its performance and

simplicity of implementation. The concept of LBP was first

proposed by Ojala et al. in [13] as a simple and robust

approach in terms of grayscale variations. It was proved to

discriminate a large range of rotated textures efficiently. Later,

they extend their work [14] to be a gray-scale and rotation

invariant texture operator.

With this in mind, in this work we pursue the investigation

initiated in [10] by comparing both GLCM and LBP as textural

descriptors to perform music genre classification. By analyzing

the spectrogram images one can notice that different patterns

of texture may occur in the same image. To deal with this, two

strategies for feature extraction were considered. The first one

is a local approach where the spectrogram image is divided

into several zones that are independently classified and the

final result is achieved by combining all the partial decisions.

The second strategy, on the other hand, is a holistic one. In

this case the features are extracted from the entire spectrogram

image.

Our experiments were carried out on the Latin Music

Database [15], a very challenging dataset of 900 music pieces
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divided among 10 music genres. The results reported in this

work show that the SVM classifier trained with LBP is able

to achieve a recognition rate of 80%. This rate not only

outperforms the GLCM by a fair margin but also is slightly

better than the results reported in the literature. Taking into

account the best results obtained in MIREX 2009 and MIREX

2010 [16] competitions, the improvement was about six and

one percentage points, respectively.

This paper is organized as follows: Section II describes

some basic aspects about the LMD. Section III describes

details about feature extraction performed in this work. Section

IV introduces the methodology used for classification while

Section V reports the experimental results. Finally, Section VI

concludes this work.

II. LATIN MUSIC DATABASE

Presented by Silla et al. [15], the LMD is a digital mu-

sic database created for support research in music infor-

mation retrieval. This database is composed of 3,227 full-

length music samples in MP3 format originated from music

pieces of 501 artists. The database is uniformly distributed

along 10 music genres: Axé, Bachata, Bolero, Forró, Gaúcha,

Merengue, Pagode, Salsa, Sertaneja, and Tango. One of the

main characteristics of the LMD dataset is the fact of bringing

together many genres with a significant similarity among

themselves with regard to instrumentation, rhythmic structure,

and harmonic content. This happens because many genres

present in the database are from the same country or countries

with strong similarities regarding cultural aspects. Hence, the

attempt to discriminate these genres automatically is particu-

larly challenging.

In this database, music genre assignment was manually

made by a group of human experts, based on the human

perception on how each music is danced. The genre labeling

was performed by two professional teachers with over ten

years of experience in teaching ballroom Latin and Brazilian

dances. The project team did a second verification in order

to avoid mistakes. The professionals classified around 300

music pieces per month, and the development of the complete

database took around one year.

In our experiments we have used 900 music pieces from

the LMD, which are split into 3 folds of equal size (30 music

pieces per class). The splitting is done using an artist filter [17],

which places the music pieces of an specific artist exclusively

in one, and only one, fold of the dataset. The use of the artist

filter does not allow us to employ the whole dataset since the

distribution of music pieces per artist is far from uniform.

Furthermore, in our particular implementation of the artist

filter we added the constraint of the same number of artists per

fold. In order to compare the results obtained with other, the

folds splitting taken was exactly the same used by Lopes et

al. [7] and by Costa et al. [10]. It is worth of mention that the

artist filter makes the classification task much more difficult.

This database and experimental protocol has been used in the

audio genre classification competition organized by the Music

Information Retrieval Evaluation eXchange (MIREX) [16].

III. FEATURE EXTRACTION

Before proceed the generation of the visual representation,

we performed a time decomposition based on the idea pre-

sented by Costa et al. [18] in which an audio signal S is

decomposed into n different sub-signals. Each sub-signal is

simply a projection of S on the interval [p, q] of samples, or

Spq =< sp, . . . , sq >. In the generic case, one may extract

K (overlapping or non-overlapping) sub-signals and obtain

a sequence of spectrograms Υ1,Υ2, . . . ,ΥK . We have used

the strategy proposed by Silla et al. [15] which considers

three 10-second segments from the beginning (Υbeg), middle

(Υmid), and end (Υend) parts of the original music. In order

to avoid segments that do not provide good discrimination

among genres, we decided to ignore the first ten seconds and

the last ten seconds of the music pieces. The rationale behind

this strategy is that some common effects present in these parts

of the music signal, like fade in and fade out, as well as kinds

of noise, like those produced by the audience, could turn these

signal samples less discriminant than the others.

After the signal decomposition, the next step consists in

converting the audio signal into a spectrogram. The spectro-

grams were created using a bit rate = 352kbps, audio sample

size = 16 bits, one channel, and audio sample rate = 22.05

kHz. Figure 1 depicts the signal segmentation and spectrogram

generation.

Figure 1. Creating spectrograms using time decomposition.

Once the spectrograms were generated we proceeded the

texture feature extraction from these images. As stated before,

the approach proposed in this work considers that the main

visual content present in the spectrogram images is the texture.

With this in mind, we used the GLCM and LBP texture

operators, described respectivelly in Sections III-A and III-B,

to get features.

A. Gray Level Co-occurencce Matrix

Among the statistical techniques of texture recognition, the

GLCM has been one of the most used and successful ones.

This technique consists of statistical experiments conducted

on how a certain level of gray occurs on other levels of

gray. It intuitively provides measures of properties such as

smoothness, coarseness, and regularity. By definition, a GLCM

is the joint probability occurrence of gray level i and j within
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a defined spatial relation in an image. That spatial relation

is defined in terms of a distance d and an angle θ. Given a

GLCM, some statistical information can be extracted from it.

Haralick [19], the precursor of this technique, suggested

a set of 14 characteristics, but most of the works in the

literature consider a subset of these descriptors. In our case,

we have used the following seven descriptors, which have pro-

duced interesting results for other texture problems: Entropy,

Correlation, Homogeneity, 3rd Order Momentum, Maximum

Likelihood, Contrast, and Energy. Those readers interested in

the mathematical formulation can refer to [19].

In our experiments we have tried different values for d as

well as different angles. The best setup we have found is d = 1
and θ = [0, 45, 90, 135]. Considering the seven descriptors

aforementioned, in the end we have a feature vector of 28

components for each image zone.

B. Local Binary Pattern

Presented by Ojala et al. [14], LBP is a model that describes

the texture taking into account for each pixel C, a set of

neighbors P, equally spaced at a distance of R, as shown in

Figure 2.

Figure 2. The LBP operator. A pixel C, dark circle in the middle, and its
neighbors Pn, lighter circles.

An histogram h is defined by the texture intensity dif-

ferences of C and its neighbors P. When the neighbors do

not correspond to an image pixel integer value, its value is

obtained by interpolation. An important characteristic of this

descriptor is its invariance to changes in the value of the central

pixels, when comparing with its neighbors.

Considering the resulting sign of the difference between C

and each neighbor P, it is defined that: if the sign is positive

the result is 1, otherwise 0. Thus, it is possible to obtain this

invariance of the intensity value of pixels in gray-scale format.

With this, the LBP value can be obtained by multiplying the

binary elements for a binomial coefficient. So, it is generated

a value 0 ≤ C’ ≤ 2P (corresponding to the vector).

Observing the non-uniformity of the vector obtained, Ojala

et al. [14] introduced a concept based on the transition between

0’s and 1’s in the LBP image. A binary LBP code is considered

uniform if the number of transitions is less than or equal

to 2, also considering that the code is seen as a circular

list. That is, the code 00100100 is not considered uniform,

because it contains four transitions. But the code 00100000 is

characterized as uniform because it has only two transitions.

Figure 3 illustrates this idea.

Figure 3. LBP uniform pattern. (a) the two transitions showed identifies the
pattern as uniform. (b) with four transitions, it is not considered a uniform
pattern.

So, instead of using the whole histogram, which size is

2P , it is possible to use only the uniform values, constituting

a smaller feature vector, with only 59 features. This version

of the descriptor was called “u2”, a label accompanying the

values of the radius R and the neighborhood size P, making

the LBP definition as follows: LBP label
P,R .

During the experiments, we observed that the feature extrac-

tion with LBPu2
8,2 is fast and accurate enough for the proposed

application. Then, we choose to use P=8 and R=2 on the tests

described in this paper.

C. Global and Local Feature Extraction

The global approach is the simplest way to perform feature

extraction of a given spectrogram image. This is a holistic by

nature where the features are extracted from the entire image

and the final decision is produced by a single classifier.

However, by analyzing the spectrogram images one can

notice that different patterns of texture may occur in the same

image. This can be observed in the spectrogram depicted in

Figure 4. To deal with that, in our previous work [10] we

proposed a zoning mechanism to obtain local information

rather than a global one. The idea was to take advantage

of these different texture patterns by processing them in

an independent way. Differently from [10], where only one

classifier was created with feature vectors from all zones, here

we train one classifier for each zone and the final decision is

obtained using traditional combination rules as described in

Section IV.

In order to proceed the local feature extraction, we have

evaluated six different number of linear zones (1, 3, 5, 10, 15,

and 20), which were applied to the spectrogram image before

extracting textural features.

Thus, considering that three spectrogram images were

generated from each music piece, since we extracted three

segments, the number of total zones, and consequently the

number of classifiers is 3n. The rationale behind the zoning

and combining scheme is that music signals may include

similar instruments and similar rhythmic patterns which leads

to similar areas in the spectrogram images. By zoning the

images we can extract local information and try to highlight
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the specificities of each music genre. In some cases we can

notice that at low frequencies the textures are quite similar

but they get different as the frequency increases. The opposite

can happen as well and for this reason the zoning mechanism

becomes an interesting alternative.

Figure 4. Zoning with n = 10.

In the next Section we show some details about the method-

ology used for classification.

IV. METHODOLOGY USED FOR CLASSIFICATION

The classifier used in this work was the Support Vector

Machine (SVM) introduced by Vapnik in [20]. Normalization

was performed by linearly scaling each attribute to the range

[-1,+1]. The Gaussian kernel was used, with parameters C and

γ tuned using a grid search.

The classification process is done as follows: as afore-

mentioned, the three 10-second segments of the music are

converted to the spectrograms (Υbeg , Υmid, and Υend). Each

of them is divided into n zones, according to the values

of n described in subsection III-C. Then, a 28-dimensional

GLCM feature vector and a 59-dimensional LBP feature

vector are extracted from each zone. Next, each one of these

feature vectors is sent to a specific classifier, which assigns a

prediction to each one of the ten possible classes. Training

and classification were carried out using the 3-fold cross-

validation: 1 fold used for training a N-class SVM classifier, 1

fold for testing, 3 permutations of the training fold (i.e. 1×2+3,

2×1+3, 3×1+2). For each specific zoning scheme, we created

3n classifiers with 600 and 300 feature vectors for training

and testing, respectively.

With this amount of classifiers, we used estimation of

probabilities to proceed the combination of outputs in order

to get a final decision. In this situation, is very useful to have

a classifier producing a posterior probability P (class|input).
Here, we are interested in estimation of probabilities because

we want to try different fusion strategies like Max, Min,

Product, and Sum. The following equations, presented by

Kittler et al. [21], describe how the outputs are combined with

these four decision rules in order to get a final decision:

Max Rule(x) =
c

max
k=1

m
max
i=1

P (ωk|yi(x)) (1)

Min Rule(x) =
c

max
k=1

m

min
i=1

P (ωk|yi(x)) (2)

Product Rule(x) =
c

max
k=1

m∏

i=1

P (ωk|yi(x)) (3)

Sum Rule(x) =
c

max
k=1

m∑

i=1

P (ωk|yi(x)) (4)

where x represents the pattern to be classified, m is the number

of classifiers (in this case 3 times n, the number of zones), yi
represents the output label of the i− th classifier in a problem

in which the possible class labels are Ω = ω1, ω2, ..., ωc,

and P (ωk|yi(x)) is the estimation of probability of pattern x

belong to class ωk according to i− th classifier.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The results presented here refer to the average recognition

rate considering the three folds aforementioned. Subsection

V-A presents the results obtained with GLCM features, while

subsection V-B presents the results obtained with LBP fea-

tures. Finally, subsection V-C presents a brief discussion about

all the obtained results.

A. Results with GLCM features

Table I reports the results obtained when GLCM features

were used with four different combination rules and with six

different zoning configurations for each spectrogram generated

from a music piece. The results achieved using the holistic

approach (no zoning) compare to the results reported by Lopes

et al [7]. On the other hand, by increasing the number of zones

up to a certain point we observe an important improvement. In

this experiment, using a local approach with five zones brought

us an improvement of more than five percentage points.

Table I
RECOGNITION RATES (%) OBTAINED WHEN DIFFERENT NUMBER OF

ZONES AND DIFFERENT COMBINATION RULES ARE USED WITH GLCM
FEATURES.

Number of zones Max. rule Min. rule Product rule Sum rule

No zoning 59.56 60.78 64.67 63.44

3 57.56 61.56 69.89 69.22
5 57.11 60.44 70.78 69.33

10 55.56 58.00 69.78 68.22
15 53.22 58.78 69.11 68.22
20 47.22 54.78 41.56 67.22

Table II shows the confusion matrix produced by the by the

combination of classifiers trained with GLCM features using

five zones. The results are very similar to those reported in [7]

where the highest confusions are related to classes Gaúcha (4)

and Sertaneja (8).
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Table II
CONFUSION MATRIX (%) GLCM

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(0) 70.0 0.0 4.4 0.0 6.7 1.1 11.1 1.1 5.6 0.0

(1) 1.1 85.6 4.4 0.0 4.4 1.1 0.0 3.3 0.0 0.0

(2) 0.0 1.1 82.2 3.3 2.2 0.0 3.3 1.1 3.3 3.3

(3) 2.2 1.1 1.1 65.6 8.9 1.1 1.1 3.3 5.6 0.0

(4) 18.9 1.1 1.1 8.9 50.0 2.2 1.1 0.0 5.6 1.1

(5) 0.0 1.1 0.0 2.2 2.2 85.6 2.2 6.7 0.0 0.0

(6) 12.2 0.0 12.2 3.3 6.7 0.0 55.6 5.6 4.4 0.0

(7) 2.2 0.0 2.2 7.8 3.3 8.9 6.7 66.67 2.2 0.0

(8) 20.0 0.0 12.2 7.8 0.0 0.0 4.4 0.00 55.6 0.0

(9) 0.0 0.0 6.7 0.0 1.1 0.0 1.1 0.00 0.00 91.1

(0) Axé,(1) Bachata, (2)Bolero, (3) Forró, (4) Gaúcha, (5) Merengue,
(6) Pagode, (7) Salsa, (8) Sertaneja (9) Tango

B. Results with LBP features

Table III shows the results obtained with LBP features.

Differently from the previous experiments where the local

approach produces a remarkable improvement relative to the

global one, here, of both approaches achieve similar results. Of

course, in this context the global approach is more appealing

since it uses only one classifier. In the top of that, the best

result achieved by the classifier trained with the LBP feature

set is about 10 percentage points better than the best results

achieved with the GLCM features.

Table III
RECOGNITION RATES (%) OBTAINED WHEN DIFFERENT NUMBER OF

ZONES AND DIFFERENT COMBINATION RULES ARE USED WITH LBP
FEATURES.

Number of zones Max. rule Min. rule Product rule Sum rule

No Zoning 76.56 75.67 78.78 79.22

3 73.44 74.56 78.67 79.00
5 72.89 74.78 80.33 80.11

10 72.33 72.11 78.44 78.67
15 70.89 73.89 79.33 77.78
20 69.00 72.67 63.89 76.78

In Table IV we can visualize the confusion matrix produced

by the combination of classifiers trained with LBP features

using a local approach with five zones. It shows that the

classifier trained with LBP is able to reduce several confusions

perceived in Table II, except for class Tango (9) where the

GLCM performs well.

C. Discussion

When comparing the performance of GLCM features with

the LBP features in this application, one can notice that

the classifiers trained with LBP achieved recognition rates

significantly better than that achieved with the GLCM features.

In the best case, the recognition rate with the LBP feature was

about 10 percentage points greater than the recognition rate

achieved with the GLCM features.

Regarding the local and global approaches, it is easy to

observe that the local strategy pays off when dealing with the

GLCM features. This feature set is not able to deal with the

great variability of the spectrogram image, therefore training

different classifiers for specific parts of the image is better

Table IV
CONFUSION MATRIX (%) LBP

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(0) 74.4 0.0 2.2 0.0 0.0 0.0 11.1 3.3 8.9 0.0

(1) 1.1 92.2 2.2 1.1 0.0 1.1 0.0 1.1 1.1 0.0

(2) 0.0 1.1 91.1 0.0 1.1 0.0 1.1 0.0 4.4 1.1

(3) 0.0 1.1 4.4 77.8 5.5 3.3 3.3 2.2 2.2 0.0

(4) 11.1 1.1 5.5 6.7 67.8 0.0 0.0 0.0 7.8 0.0

(5) 1.1 3.3 0.0 1.1 0.0 92.2 0.0 2.2 0.0 0.0

(6) 6.7 0.0 13.3 1.1 1.1 0.0 64.4 7.8 5.6 0.0

(7) 2.2 0.0 2.2 0.0 3.3 1.1 3.3 86.7 1.1 0.0

(8) 11.1 1.1 7.8 2.2 10.0 0.0 2.2 0.0 65.6 0.0

(9) 1.1 0.0 5.6 1.1 1.1 0.0 0.0 0.0 0.0 91.1

(0) Axé,(1) Bachata, (2)Bolero, (3) Forró, (4) Gaúcha, (5) Merengue,
(6) Pagode, (7) Salsa, (8) Sertaneja (9) Tango

than using just one classifier for the whole spectrogram image.

However, the experiments have shown, however, that after

five zones there is no further improvement. In the case of

the LBP features, both local and global approaches perform

almost evenly. The local approach using five zones yields

slightly better results. As explained earlier, the global approach

could be more interesting in this case since it requires a single

classifier.

The relevance of the results achieved by the LBP feature set

is clear when compared with the literature. Table V reports

recent results on the LMD using artist filter. Such results

can be directly compared since all of them use exactly the

same experimental protocol. In addition, we have access to

the performance for each class. Lopes et al. [7] presented

an approach based on an instance selection method, where a

music piece was represented by 646 instances. The instances

consist of feature vectors representing short-term, low-level

characteristics of music audio signal. The classifier used was

an SVM and the final decision was done through majority

voting. Costa et al. [10], presented a classification scheme

similar to some experiments presented in this work, based on

GLCM features extracted from spectrograms, but using only

a single classifier for the feature vectors extracted from all the

zones. The final decision was taken simply through majority

voting.

Table V
COMPARISON OF DIFFERENT STRATEGIES ON LMD WITH ARTIST FILTER.

Genre LBP GLCM GLCM Instance GLCM +Inst.
5 zones 5 zones [10] Selection Selection

[7] [10]

Axé 74.44 70.00 73.33 61.11 76.67

Bachata 92.22 85.56 82.22 91.11 87.78
Bolero 91.11 82.22 64.44 72.22 83.33
Forró 77.78 65.56 65.56 17.76 52.22

Gaúcha 67.78 50.00 35.56 44.00 48.78
Merengue 92.22 85.56 80.00 78.78 87.78

Pagode 64.44 55.56 46.67 61.11 61.11
Salsa 86.67 66.67 42.22 40.00 50.00

Sertaneja 65.56 55.56 17.78 41.11 34.44
Tango 91.11 91.11 93.33 88.89 90.00

Average 80.33 70.78 60.11 59.67 67.20
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From Table V it is easy to see that the LBP-based system

surpasses the others by a large margin. For some classes,

such as Gaúcha and Sertaneja, which are quite difficult to

discriminate, this strategy is able to get recognition rates of

around 65%, while others stay below 50%. Besides, it provides

the best performance for 8 out of 10 classes. In spite of

that, there is room for some improvement. Other strategies

have good results for some classes which could be combined

somehow to improve the classification rates. This will be

subject of future works.

As mentioned before, the Latin Music Database has been

used in the competitions organized by the MIREX (Music

Information Retrieval Evaluation eXchange). From Table VI

we can notice the outstanding improvement over the last few

years. As we can see, our result using the LBP-based system

compares favorably to best results reported in the literature.

Table VI
RECOGNITION RATES (%) OBTAINED IN THIS WORK, BY HUMANS AND IN

THE LAST AUTOMATIC MUSIC GENRE RECOGNITION CONTESTS.

Work reference Recognition rate (%)

MIREX 2008 - LMD [22] 65.1
MIREX 2009 - LMD [23] 74.6
MIREX 2010 - LMD [16] 79.8

This work (GLCM) 70.7
This work (LBP) 80.3

VI. CONCLUSION

In this paper we have compared two different textural

descriptors to perform music genre classification. The idea

was to convert the music signal into a spectrogram image and

them extract textural features from it. Two textural features,

GLCM and LBP, were evaluated in this paper as well as

two different feature extraction approaches to deal with the

intra-class variability of the spectrogram image. The local

approach divided the image into several different zones which

are independently classified by different classifiers. The second

one is holistic by nature since it process the entire spectrogram

image as a whole.

The experimental results have shown that the local approach

performs very well when the classifier is trained with the

GLCM feature set. We have also seen that after a certain

number of zones (five in our experiments) there is no fur-

ther improvements in terms of correct classification. For the

classifier trained with LBP, both local and global approach

achieve similar results. In such a case, the holistic approach

is more attractive because it requires only one classifier.

Our experiments also have shown that the LPB-based

system achieves a overall recognition rate of 80%, which

compares to the best results reported in MIREX 2010 for the

Latin Music Database. In the light of this promising results,

in future work we plan to combine them with other traditional

strategies to enhance the final recognition rates.
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