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ABSTRACT
A rapidly growing literature emphasizes the importance of evaluating the fore-
cast accuracy of empirical models on the basis of density (as opposed to point)
forecasting performance. We propose a test statistic for the null hypothesis that
two competing models have equal density forecast accuracy. Monte Carlo sim-
ulations suggest that the test, which has a known limiting distribution, displays
satisfactory size and power properties. The use of the test is illustrated with an
application to exchange rate forecasting. Copyright © 2004 John Wiley &
Sons, Ltd.
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INTRODUCTION

A large body of literature in econometrics and applied economics has focused on evaluating the fore-
cast accuracy of economic models (e.g. see the survey of Diebold and Lopez, 1996 and references
cited therein). Although this literature has traditionally focused on accuracy evaluations based on
point forecasts, several authors have recently emphasized the importance of evaluating the forecast
accuracy of economic models on the basis of density, as opposed to point, forecasting performance
(see, inter alia, Diebold et al., 1998; Granger and Pesaran, 1999, 2000; Timmermann, 2000; Pesaran
and Skouras, 2001; Wallis, 2003).

In a decision-theoretical context, the need to consider the predictive density of a time series—as
opposed to considering only its conditional mean and variance—seems fairly accepted in the light
of the argument that economic agents may not have loss functions that depend symmetrically on the
realizations of future values of potentially non-Gaussian variables. In this case, agents are interested
in knowing not only the mean and variance of the variables in question, but their full predictive den-
sities. In various contexts in economics and finance—among which the recent boom in financial risk
management represents an obvious case—there is an increasingly strong need to provide and 
evaluate density forecasts.1
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Several researchers have recently proposed methods for evaluating density forecasts. For example,
Diebold et al. (1998) extend previous work—cited in the next section—on the probability integral
transform and show how it is possible to evaluate a model-based predictive density and to test 
formally the hypothesis that the predictive density implied by a particular model corresponds to 
the true predictive density. Similar ideas have been developed in a different fashion by, inter alia,
Anderson et al. (1994), Li (1996), Granger and Pesaran (1999), Berkowitz (2001) and Li and Tkacz
(2001). In general, this line of research has produced several methods either to measure the close-
ness of two density functions or to test the hypothesis that the predictive density generated by a par-
ticular model corresponds to the true predictive density.

However, several gaps still remain in the literature on density forecasting. In particular, one 
would like to have a statistical procedure for comparing the accuracy of density forecasts 
produced by competing models. Econometric methods currently available allow the researcher to
compare a model-based density forecast to the true predictive density, but they do not allow us to
test, for example, the hypothesis that two competing model-based predictive densities are 
equally close to the true predictive density that the researcher wishes to forecast. Put differently, no
testing procedure is available—to the best of our knowledge—that allows the researcher to formally
discriminate between alternative models in terms of density forecasting performance.2 In some 
sense, it would be desirable to have, in the context of density forecasting, an analogous 
procedure to the test developed in the context of point forecasting by Diebold and Mariano 
(1995), who derived a test statistic for the null hypothesis that two models have equal (point) 
forecast accuracy.

This paper contributes to the relevant literature in that we propose a test statistic for the null
hypothesis that two competing models have equal density forecast accuracy. This test statistic, 
which is based on the concept of integrated square difference rather than the probability integral
transform, may be seen as the analogue of the test of Diebold and Mariano (1995) in the context of
density forecasting. The proposed test has several attractive properties. In particular, it has a 
known limiting standard normal distribution and it is easy to implement in practice. Unlike 
most related tests in this context, our proposed test statistic does not involve testing a joint hypothe-
sis of i.i.d. and uniformity (or normality), rendering the interpretation of the test results straightfor-
ward. Also, the test is fairly general and could be applied to density forecasts provided by virtually
any econometric model, regardless of the functional form and of the estimation method employed.
In addition, Monte Carlo simulations, designed to investigate the size and power properties of this
test statistic, suggest that the test has satisfactory empirical size and power properties in a finite
sample.

The remainder of the paper is set out as follows. In the next section, we present our test statistic
and provide a brief discussion of how this test is linked to the literature on density forecasting. The
third section presents the results from carrying out a battery of Monte Carlo simulations designed
to examine the empirical size and power properties of the test. In the fourth section we provide an
illustrative application of the proposed test statistic in the context of exchange rate forecasting. 
A final section briefly summarizes and concludes.

2 To date, researchers have compared model-based density forecasts from competing models without directly testing the
hypothesis of equidistance of the competing density forecasts from the true predictive density, using more informal methods
(e.g. see Clements and Smith, 2000).
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COMPARING THE ACCURACY OF DENSITY FORECASTS FROM COMPETING MODELS

A test statistic
Let f(y), g1(y) and g2(y) be three probability density functions with distribution functions F, G1 and
G2, respectively; F, G1 and G2 are absolutely continuous with respect to the Lesbegue measure in
¬p. Let f(y) be the probability density function of the variable yt over the period t = 1, . . . , T, whereas
g1(y) and g2(y) are the probability density functions implied by two competing forecasting models,
say M1 and M2.

We are interested in testing the null hypothesis of equidistance of the probability densities g1(y)
and g2(y) from f(y), that is

(1)

where the operator dist denotes a generic measure of distance.
A conventional measure of global closeness between two functions is the integrated square dif-

ference (ISD) (e.g. see Pagan and Ullah, 1999):

(2)

where f (·) and g(·) denote probability density functions; given the definition of ISD in equation (2),
ISD ≥ 0, and ISD = 0 only if f (x) = g (x). Using (2) we can rewrite the null hypothesis H0 in (1) as
follows:

(3)

In (3), the null hypothesis of equal density forecast accuracy of models M1 and M2 is written as
the null hypothesis of equality of two integrated square differences or, equivalently, as the null
hypothesis that the difference between two integrated square differences is zero.3
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3 Li and Tkacz (2001) derive a test for evaluating conditional density functions that also uses the notion of integrated square
difference. It is important to note, however, that the null hypothesis tested by the Li–Tkacz (2001) test statistic is different
from the null hypothesis of the test statistic proposed in the present paper. Indeed, Li and Tkacz suggest that their test ‘can
be used to determine whether a sample of random variables originates from a given conditional distribution’ (p. 2), there-
fore allowing us to test the null of equality of the conditional density function implied by a model and a nonparametric esti-
mate of the true conditional density function. Hence, their test statistic focuses on the same null hypothesis studied by the
growing literature in this context (see Diebold et al., 1998) and it is not designed to test the null of equal density forecast
accuracy between competing models.
4 For simplicity and for clarity of exposition, throughout this section, we consider the case where T1 = T2 = T, although the
results derived below can easily be extended to the more general case where T1 π T2.
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(5)

(6)

where K(·) is the kernel function and h is the smoothing parameter.5

Using (4)–(6) we can then obtain a consistent estimate of the integrated square differences ISD1

and ISD2, say 1 and 2. Define d = 1 - 2 as the estimated relative distance between
the probability density functions. In order to test for the statistical significance of d, the next step is
to calculate a confidence interval for d.

In the spirit of the analysis of Hall (1992), define {y j
i}T

i=1, { j
1i}

T
i=1, { j

2i}
T
i=1 as the jth resample of

the original data {yt}T
t=1, { 1t}T

t=1, { 2t}T
t=1, drawn randomly with replacement. From these resamples it

is possible to obtain consistent bootstrap estimates of the density functions j(y), (y), (y) and, 

consequently, of d j = 1
j - 2

j.6

Consider a sample path {dj}B
j=1, where B is the number of bootstrap replications. Under general

conditions,7 we have:

(7)

where

(8)

is the average difference of the estimated relative distances over B bootstrap replications. Because
in large samples the average difference is approximately normally distributed with mean m and
variance s 2/B, the large-sample statistic for testing the null hypothesis that models M1 and M2 have
equal density forecast accuracy is:

(9)

where 2 is a consistent estimate of s 2.8ŝ
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5 In practice, for several econometric models (y) and (y) are known analytically. However, for more complex, nonlinear
models we may not know the probability density function and therefore need to estimate it. In this paper we consider non-
parametric estimation of density functions as a general procedure to implement the test statistic discussed below, but it should
be clear that the test is directly applicable also when the probability density function is known analytically. Nevertheless,
note that the kernel density estimates (4)–(6) will not converge to the true densities unless they are time-invariant, which is
a disadvantage of using kernel estimation in this context relative to analytical forms of the model-based density functions
or testing procedures based on the probability integral transform.
6 Note that the data {y j

i}T
i=1 can only be resampled with replacement if it is independently and identically distributed (i.i.d.).

If there is time dependence, the bootstrap procedure needs to be modified to accommodate it.
7 See Kendall and Stuart (1976, ch. 11).
8 On the consistency of the bootstrap estimates of s2 in this context see Hall (1992) and Mammen (1992).

ĝ2ĝ1
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Discussion
The literature on evaluating density forecasts is largely based on the idea of the probability integral
transform, which goes back at least as far as Rosenblatt (1952). The essence of this methodology is
to calculate the probability integral transform, say zt, of the realizations of the variable of interest
over the forecast period with respect to the density forecast produced by a model. If this density
forecast corresponds to the true predictive density then the sequence {zt}T

t=1 is i.i.d. U[0, 1] (Kendall
et al., 1987, sections 1.27 and 30.36). Diebold et al. (1998) illustrate formally how it is possible to
evaluate the model forecast density by testing whether there is statistically significant evidence that
{zt}T

t=1 does not depart from the i.i.d. uniform assumption. Hence a test of the null hypothesis that
{zt}T

t=1 is i.i.d. U[0, 1] is tantamount to a test that the model density forecast corresponds to the true
predictive density. Obviously, the null of i.i.d. uniformity is a joint hypothesis. Diebold et al. (1998)
argue that tests of i.i.d. uniformity may often be of little practical use since, when the null hypo-
thesis is rejected, it may not be apparent which leg of the joint hypothesis—i.i.d. or uniformity—is
violated. Diebold et al. (1998) therefore propose a more ‘informal’ data analysis. Berkowitz (2001)
suggests that a more powerful test may be obtained by working with the inverse normal cumulative
distribution function transformation of the {zt}T

t=1 sequence, which becomes a standard normal variate
under the null hypothesis that the model density forecast equals the true predictive density. In this
case, one would test whether the transformed realizations are i.i.d. N(0, 1).

Another related paper is due to Wallis (2003), who recasts recently proposed likelihood ratio tests
of goodness-of-fit and independence of interval forecasts in the framework of Pearson chi-squared
statistics, also considering their extensions to density forecasts and giving special attention to the
calculation of small-sample distributions. The proposed test statistics are particularly useful in
macroeconomic applications where researchers do not have a large number of observations. Indeed,
Wallis (2003) illustrates the potential use of these tests in an application to two series of density
forecasts of inflation, namely the US Survey of Professional Forecasters and the Bank of England
fan charts.9

Using this type of test one could, for example, test whether f(y) = g1(y) or f( y) = g2(y), using the
notation of the previous section. However, it would not be possible to test whether g1(y) or g2(y) is
closer to the true predictive density, i.e. it would not be possible to establish whether model M1 or
model M2 performs better in density forecasting.10

In some sense, therefore, the h test statistic fills a gap in the relevant literature in that it is—to
the best of our knowledge—the first test statistic designed for testing the null hypothesis that two
competing model-based predictive densities are equally close to the density that the researcher wishes
to forecast. The h test may also be seen in some ways as a test of relative model adequacy as opposed
to a test designed to evaluate density forecasts, which has been the main focus of the relevant liter-
ature to date (e.g. Wallis, 2003 and references cited therein). Also, the h test has several virtues.
First, under the assumptions described above, the test has a known limiting distribution, which could
be derived from basic results in asymptotic theory. Second, the h test can be applied to density fore-
casts provided by virtually any model, regardless of the functional form and estimation method

9 Other tests focusing on the closeness between two distribution functions include, for example, the tests due to Anderson 
et al. (1994), Li (1996) and Li and Tkacz (2001).
10 Presumably, however, it is possible to extend the ideas underlying the work using the probability integral transform to
derive a test statistic for comparing the predictive ability of competing models, essentially testing the same null hypothesis
tested by the h test statistic in (9). Indeed, this is an immediate avenue for future research. To date, however, researchers
have compared model-based density forecasts without directly testing the hypothesis of equidistance of the competing density
forecasts from the true predictive density (e.g. see Clements and Smith, 2000).
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employed and regardless of whether one is interested in one-step-ahead forecasting or multi-step-
ahead forecasting.11 Third, the h test statistic does not involve testing a joint null hypothesis (i.i.d.
and either U(0, 1) or N(0, 1)) since it is not based on the probability integral transform. Fourth, as
shown in the next section, the h test appears to perform very satisfactorily in terms of size and power
properties. Fifth, as illustrated in the final part of the paper, the h test is quite easy to implement in
practice.12

SIZE AND POWER PROPERTIES OF THE h TEST: MONTE CARLO EVIDENCE

This section reports the results from carrying out Monte Carlo simulations designed to investigate
the empirical size and power properties of the h test.

Size
In order to evaluate the empirical size properties of the h test statistic we set up the following exper-
iment. The data generating process (DGP) consists of three probability density functions f(y), g1(y),
g2(y), each with distribution N(0, 1). We assume that T1 = T2 = T for simplicity and investigate B Œ
{10, 25, 50, 100, 500, 1000} and T Œ {50, 75, 100, 250, 500}.13 In estimation we use the Gaussian
kernel function, and the smoothing parameter is calculated according to Silverman’s (1986, p. 45)
rule: h = 1.06sT -1–5.14 All of the Monte Carlo results discussed in this paper were constructed using
5000 replications in each experiment, with identical random numbers across experiments.15

Table I reports the estimated mean value, the estimated variance and the estimated test sizes at
the 10%, 5% and 1% significance levels respectively for each value of B and T examined. The simu-
lation results suggest satisfactory size properties. As expected, the performance of the test improves
with the number of bootstrap replications; also, the results suggest that with 100 bootstrap replica-
tions the empirical size is quite close to the theoretical value. Note that the size of the test is virtu-
ally independent of the sample size T, so that even for a small sample size (e.g. T = 50) the empirical
size of the h test displays properties that are qualitatively identical to the properties obtained for
large sample sizes (e.g. T = 500). This is not surprising given the definition of the h test statistic (9),
which indicates that T does not affect directly the convergence of the test.16

11 For linear models it is possible to calculate both one- and multi-step-ahead forecasts analytically. For nonlinear models,
while one-step-ahead forecasts can be obtained analytically, multi-step-ahead forecasts usually require bootstrap or Monte
Carlo integration methods—see Granger and Terasvirta (1993, ch. 8), Franses and van Dijk (2000, ch. 3–4) and references
cited therein.
12 However, it should be noted that the h test statistic relies upon somewhat stronger assumptions than the test proposed by,
for example, Diebold et al. (1998) or Berkowitz (2001) using the probability integral transform. See footnotes 5 and 6.
13 At each replication, for each value of T considered, we generated a sample size of T + 100 and discarded the first 100
observations, leaving a sample size T for the analysis; this should reduce the dependence of the results on the initialization.
14 On alternative choices of the smoothing parameter, see, for example, Pagan and Ullah (1999, ch. 2) and references cited
therein.
15 The computation was carried out using the binned kernel density estimator (Silverman, 1982; Scott and Sheater, 1985;
Hardle and Scott, 1992). This procedure allows us to obtain a computationally efficient approximation of the probability
functions (y), (y), (y). The approximation we used has a discrete convolution structure which can be computed using
the fast Fourier transform. The number of grid points used is 25, which should provide an estimate of the probability func-
tions virtually indistinguishable from the exact estimate (see Wand and Jones, 1995, appendix D).
16 In order to assess the robustness of these Monte Carlo results, we performed a number of safeguards. For example, we re-
executed the battery of experiments discussed above using the Epanechnikov kernel instead of the Gaussian kernel. We con-
sidered several alternative different rules governing the smoothing parameter on the basis of the relationship h = cT (-1–5 +k),
which is more general than Silverman’s rule and collapses to Silverman’s rule if c = 1.06s and k = 0. We also investigated  

ĝ2ĝ1f̂
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Power
We investigated the power of the h test against several specific alternatives. In particular, setting the
true predictive density f(y) consistent with a N(0, 1) distribution, we calculated the percentage of
rejections of the (false) null hypothesis of equal density forecast accuracy under six alternatives 
represented by the following DGPs:

the size properties of the h test in the presence of undersmoothing (k < 0) and oversmoothing (k > 0), executing Monte Carlo
experiments for values of c Œ {0.8, 1.0, 1.2} and k = {-0.2, -0.1, 0.1, 0.2}. These Monte Carlo simulations yielded results
that are qualitatively identical to the ones given in Table I. In turn, these results (not reported to conserve space but available
upon request) indicate that our Monte Carlo evidence is not particularly subject to a problem of specificity (Hendry, 1984).

Table I. Empirical size of the h test

Mean Var 10% 5% 1%

T = 50
B = 10 0.012 1.377 0.158 0.093 0.030
B = 25 0.005 1.150 0.121 0.067 0.017
B = 50 0.004 1.054 0.109 0.056 0.014
B = 100 0.003 1.046 0.108 0.054 0.012
B = 500 -0.002 1.031 0.106 0.052 0.011
B = 1000 -0.001 1.025 0.104 0.051 0.011

T = 75
B = 10 -0.022 1.410 0.155 0.091 0.032
B = 25 0.018 1.118 0.113 0.065 0.017
B = 50 -0.016 1.066 0.110 0.058 0.014
B = 100 0.010 1.035 0.104 0.056 0.012
B = 500 0.008 0.979 0.098 0.054 0.009
B = 1000 -0.004 0.985 0.099 0.051 0.009

T = 100
B = 10 0.016 1.371 0.152 0.090 0.029
B = 25 -0.014 1.111 0.118 0.066 0.015
B = 50 -0.012 1.056 0.110 0.056 0.012
B = 100 -0.011 1.024 0.105 0.055 0.012
B = 500 -0.008 0.098 0.096 0.047 0.009
B = 1000 -0.006 1.001 0.103 0.052 0.010

T = 250
B = 10 0.015 1.390 0.155 0.090 0.030
B = 25 0.011 1.103 0.115 0.062 0.016
B = 50 -0.008 1.046 0.109 0.054 0.012
B = 100 0.007 1.030 0.107 0.053 0.009
B = 500 0.003 0.996 0.096 0.047 0.010
B = 1000 -0.002 0.997 0.094 0.049 0.010

T = 500
B = 10 -0.022 1.321 0.149 0.086 0.026
B = 25 -0.018 1.113 0.116 0.066 0.018
B = 50 0.011 1.060 0.111 0.056 0.013
B = 100 -0.009 1.037 0.108 0.053 0.011
B = 500 -0.007 1.012 0.104 0.052 0.010
B = 1000 -0.005 0.986 0.098 0.049 0.010

Notes: Mean and var denote the sample mean and the sample variance of the h test
statistic calculated by Monte Carlo methods, as described in the text. 10%, 5% and
1% are the estimated empirical rejection rates.
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1. g1(y) = N(0, 1), g2(y) = N(2, 10);
2. g1(y) = N(2, 5), g2(y) = N(3, 8);
3. g1(y) = N(0, 1), g2(y) = c2(5);
4. g1(y) = N(0, 1), g2(y) = t(5);
5. g1(y) = t(5), g2(y) = c2(5);
6. g1(y) = N(0, 1), g2(y) = 0.2 ·N(1, 1) + 0.8 ·N(10, 0.01).

Given our results in the previous subsection, we used a fixed value of T = 100 in all experiments,
and considered B = {10, 25, 50, 100}. All other aspects of the DGP design are identical to experi-
ments discussed in the previous subsection. The set of different alternatives and competing densi-
ties considered is fairly broad in order to explore how excess skewness (e.g. the c2 distribution in
DGPs 3 and 5), excess kurtosis (e.g. the t distribution in DGP 4) and the presence of multimodality
(e.g. the mixture of normal distributions in DGP 6) influence the performance of the h test. Also,
the examination of the power properties of the h test under DGPs 1 and 2 is interesting for assess-
ing the power of the test when the competing densities are associated with the same form of distri-
bution but with different moments.

In Figure 1 we have plotted the percentage of rejections of the null hypothesis of equidistance of
g1(y) and g2(y) from f(y) under each of the DGPs 1 to 6. As Figure 1 clearly reveals, the h test is
quite powerful, detecting the false alternatives and rejecting the null of equidistance with a high
probability even when the number of bootstrap replications B is fairly small. In fact, with B = 100
the rejection rate of the h test is very close to unity for all DGPs (departures from the null 

hypothesis) examined.
In order to investigate the robustness of these power results, we then re-executed the same battery

of simulations under several different underlying distributions for the true predictive density f(y).
For example, we set up an experiment where the true predictive density f(y) is set as t(5), all other
settings of the DGP design being the same as in the previous experiments.17 The set of alternative
DGPs investigated is the following:

1. g1(y) = t(5), g2(y) = N(2, 10);
2. g1(y) = t(6), g2(y) = N(2, 10);
3. g1(y) = t(5), g2(y) = c2(5);
4. g1(y) = t(5), g2(y) = N(0, 1);
5. g1(y) = N(0, 1), g2(y) = c2(5);
6. g1(y) = t(5), g2(y) = 0.2 ·N(1, 1) + 0.8 ·N(10, 0.01).

The estimated power functions, plotted in Figure 2, again indicate that the power performance of
the test is satisfactory. However, in this case the number of bootstrap replications appears to play a
somewhat more important role since the performance of the test improves more substantially when
the number of bootstrap replications increases relative to the case where f(y) is N(0, 1).

AN ILLUSTRATIVE EXAMPLE: FORECASTING EXCHANGE RATES

We shall illustrate the practical use of the h test with a simple application to out-of sample exchange
rate forecasting. Consider two multivariate models of nominal exchange rate determination, based

17 We also considered a c2(5) and a N(2, 5), obtaining similar results (not reported but available upon request).
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on the spot–forward relationship (say model M1) and the long-run purchasing power parity (PPP)
hypothesis (say model M2).

Model M1 is related to the literature on foreign exchange market efficiency which tests whether
the forward rate is an optimal predictor of the future spot exchange rate, as it should be under the
risk-neutral efficient market hypothesis (RNEMH) (e.g. see Hodrick, 1987). Although a large empir-
ical literature has provided evidence that rejects the optimality of the forward rate as optimal pre-
dictor of the future spot exchange rate and therefore the validity of the RNEMH, some recent
contributions suggest that (the term structure of) forward premia contain valuable information about
future exchange rate movements that can be exploited for forecasting exchange rates (e.g. Clarida
and Taylor, 1997; Clarida et al., 2003). Our model M1 is a bivariate version of the vector equilib-
rium correction model (VECM) proposed by Clarida and Taylor (1997). Define st and ft as the log-
arithm of the spot nominal bilateral exchange rate and the logarithm of the one-month forward
exchange rate, respectively. Assuming that both the spot exchange rate and the forward rate are non-
stationary and that they have a common stochastic trend (cointegrate), as recorded by a large empir-
ical literature (see Clarida and Taylor, 1997 and references cited therein), then it is possible to
characterize the spot–forward relationship using a VECM representation where the long-run equi-
librium condition is the forward premium st - ft (Engle and Granger, 1987):

(10)

where PM1
= aM1

b¢M1
is the long-run impact matrix whose rank r determines the number of cointe-

grating vectors (e.g. Johansen, 1995) and [e1t e2t]¢ is a vector of disturbances.
Model M2 in this example is based on an international parity condition, the long-run PPP hypo-

thesis, which is often viewed as a long-run equilibrium condition holding through arbitrage in inter-
national goods markets and is assumed in much open-economy modelling (e.g. Rogoff, 1996; Sarno
and Taylor, 2002). PPP states that the nominal bilateral exchange rate is equal to the ratio of the rel-
evant national price levels of the two countries considered. A number of researchers have tested for
cointegration between the nominal spot exchange rate and relative prices as a way of testing the
validity of long-run PPP, with mixed results. However, while very few contemporary economists
would hold that PPP holds continuously in the real world, ‘most instinctively believe in some variant
of purchasing power parity as an anchor for long-run real exchange rates’ (Rogoff, 1996, p. 647),
and indeed the implication or assumption of much reasoning in international macroeconomics is that
some form of PPP holds at least as a long-run relationship.

Define zt ∫ pt - p*t as the relative price, where pt and p*t denote the logarithm of the domestic and
foreign price levels, respectively. If long-run PPP holds, we can express the dynamic relationship
between the nominal spot exchange rate and relative prices in a VECM of the form:

(11)

where the long-run impact matrix PM2
= aM2

b¢M2
and [e1t e2t]¢ is a vector of disturbances.

In order to calculate the h test we first estimated the competing models (10) and (11) using monthly
bilateral dollar exchange rate data (domestic price of the foreign currency) vis-à-vis the Japanese
yen and the UK pound. Time series for bilateral dollar exchange rates and one-month forward rates
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over the sample period from January 1979 to December 2000 were obtained from Datastream,
whereas time series for the consumer price index for Japan, the UK and the USA were obtained from
the International Monetary Fund’s International Financial Statistics CD. We estimated models (10)
and (11) using data from January 1979 to December 1991, leaving the data from January 1992 to
the end of the sample period for calculating out-of-sample dynamic one-step-ahead forecasts.18

The results of the forecasting exercise are given in Table II, where we report both conventional
measures of predictive accuracy, such as the mean absolute error (MAE) and the mean square error
(MSE), as well as the h test statistic. Although for each exchange rate the spot–forward VECM yields
lower MAEs and MSEs than the PPP VECM, the results suggest that the forecasting performance
of the two competing models M1 and M2 is very similar in that the MAEs and MSEs produced by
the two models are very close. This similarity is formally confirmed by carrying out the Diebold and
Mariano (1995) test, which tests the null hypothesis that the competing models perform equally well
in terms of point forecasting performance. In fact, we are unable to reject, at conventional signifi-
cance levels, the null hypothesis of equal predictive accuracy under the Diebold–Mariano test for
both exchange rates considered.19 These results would imply that, under the specific measures of
predictive accuracy examined, the out-of-sample forecasting performances of models based on the

Table II. Forecasting results

MAE MSE

US dollar–Japanese yen
Model M1 0.010863 0.000239
Model M2 0.011742 0.000256

DM test 0.18740 [0.826] 0.0988 [0.922]

h test 6.8669 [0.0]

US dollar–UK sterling
Model M1 0.00778 0.000136
Model M2 0.00843 0.000157

DM test 0.26112 [0.794] 0.16212 [0.838]

h test 4.2032 [2.6 ¥ 10-5]

Notes: Models M1 and M2 denote the VECM based on the spot–forward relation-
ship (10) and the VECM based on purchasing power parity (11), respectively. MAE
and MSE are the mean absolute error and the mean square error respectively, cal-
culated using the one-step-ahead forecast series (108 data points) as described in
the text. DM is the Diebold and Mariano (1995) test statistic for the null hypothe-
sis that models M1 and M2 have equal point forecast accuracy; h test is the test sta-
tistic for the null hypothesis that models M1 and M2 have equal density forecast
accuracy, constructed according to equation (9) using 100 bootstrap replications.
Figures in brackets denote p-values; p-values equal to zero up to the eighth decimal
point are recorded as [0.0].

18 The lag length, p, was set equal to unity for both VECMs, consistent with conventional information criteria. Note, however,
that for each model, we did not employ a general-to-specific procedure to achieve a parsimonious specification of the VECM,
although a more parsimonious specification may lead to better forecasting results for both models (10) and (11). Neverthe-
less, we thought this was unnecessary given the merely illustrative nature of the present empirical exercise.
19 We also calculated Diebold–Mariano tests by bootstrap in order to take into account the impact of smallsample bias and
parameter uncertainty on the distribution of the tests. The results were, however, qualitatively identical to the ones reported
in Table II.
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spot–forward relationship (model M1) and PPP (model M2) are not statistically different at conven-
tional nominal levels of significance. Put differently, given that the two competing models have the
same functional form and lag structure and the only difference between them is the variable used
for forecasting exchange rates (the forward rate in model M1 and the relative price in model M2),
these results may be viewed as implying that the information content of the forward rate is statisti-
cally equivalent to the information content embedded in relative prices for the purpose of forecast-
ing the exchange rate.

However, inspecting Figure 3, which displays the one-step-ahead forecasts and the density fore-
casts from the competing models together with the actual realizations of the corresponding 
series and the true predictive density for each exchange rate examined, a different result arises.
Although none of the forecast densities implied by the competing models M1 and M2 appears 
particularly close to the true predictive density,20 the forecasts produced by the PPP VECM (11) 
are more leptokurtic than the ones obtained from the spot–forward VECM (10). Simple visual inspec-
tion of the graphs in Figure 3 suggests that the distance between the forecast density of the
spot–forward VECM (10) from the true predictive density is shorter than the distance between the
forecast density of the PPP VECM (11) and the true predictive density. This visual evidence is, in
fact, supported by the results of the h test, reported in the last row of Table II. For both exchange
rates examined, the h test, calculated using 100 bootstrap replications, strongly rejects the null
hypothesis of equidistance of the competing predictive densities from the true predictive density. In
turn, these results imply that, in contrast with the implications of the MAEs and MSEs discussed
earlier, the spot–forward model (model M1) is superior to the PPP model (model M2) in terms of out-
of-sample forecasting performance, suggesting that the information content of the forward rate is
more valuable than the information content of relative prices for the purpose of forecasting the
exchange rate.

CONCLUSION

This paper contributes to the recent line of research that emphasizes the need to evaluate the fore-
casting ability of empirical models on the basis of density forecast accuracy. The recent relevant 
literature has proposed several methods either to measure the closeness of two density functions or
to test the hypothesis that the predictive density generated by a particular model corresponds to 
the true predictive density. The specific contribution of this paper is that it provides a test statistic
for comparing the accuracy of density forecasts produced by competing models and formally testing
the hypothesis that two competing model-based density forecasts are equally close to the density
that the researcher wishes to forecast. This test is, in the context of density forecasting, the analogue
of the test statistic developed by Diebold and Mariano (1995) for testing the null hypothesis that two
models have equal forecast accuracy in the context of point forecasting.

Our proposed test statistic displays several attractive properties in that it has a known limiting
standard normal distribution and—unlike available testing procedures—does not involve testing a

20 Note, for example, that the true predictive density has fatter tails than the predictive densities from either model M1 or M2,
suggesting that none of the two simple models considered in this application is particularly good at capturing the higher
moments in the exchange rate data examined. Logical extensions of the linear VECMs used here which might achieve a
more accurate description of these fat tails include VECMs that allow for autoregressive conditional heteroskedasticity or
for regime switching (see Clarida et al., 2003; Sarno and Valente, 2004).
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joint hypothesis. The test is easy to implement in practice, as illustrated in an application to exchange
rate forecasting. Also, the test is found to have satisfactory empirical size and power properties in a
simulation exercise. Nevertheless, this test circumvents the problem of testing a joint hypothesis by
relying on somewhat stronger assumptions than other methods proposed in the literature that are
based on the probability integral transform. Relaxation of these assumptions is an immediate avenue
for future research. In particular, the assumption of time-invariance of the densities over the fore-
cast horizon could be relaxed by using recursive kernel estimation, which would allow us to test the
null hypothesis of equal density forecast accuracy on time-varying densities period by period
(Yamato, 1971; Nobel et al., 1998).
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