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Abstract

Background Economic modeling is widely used in estimating cost-effectiveness in type 2 diabetes mellitus. Because type 2
diabetes is complex and patients are heterogenous, the cohort modeling approach may generate biased estimates of costef-
fectiveness. The IHE Diabetes Cohort Model (IHE-DCM) was constructed using the cohort approach as an alternative for
stakeholders with limited resources, some of whom have voiced reasonable concerns about a lack of transparency with type
2 diabetes micro-simulation models and long run times.

Objectives The objective of this study was to inform decision makers by investigating the direction and magnitude of bias
of IHE-DCM cost-effectiveness estimates that can be attributed to the cohort modeling approach.

Methods Simulation scenarios inspired by the 9th Mount Hood Diabetes Challenge were simulated with IHE-DCM and with
a micro-simulation model, the Economic and Health Outcomes Model of T2DM (ECHO-T2DM), and key metrics (absolute
and incremental costs and quality-adjusted life-years, event rates, and cost-effectiveness) were compared for evidence of
systematic differences. The models were harmonized to the extent possible to ensure that differences were driven primarily
by the unit of observation and not by other model differences.

Results THE-DCM run times were faster and IHE-DCM produced uniformly larger estimates of absolute life-years, quality-
adjusted life-years, and costs than ECHO-T2DM but smaller between-arm (incremental) differences. Estimated incremental
cost-effectiveness ratios and net monetary benefits varied similarly and predictably across the scenarios. On average, IHE-
DCM estimates of incremental cost-effectiveness ratios and net monetary benefits were CAN$269 (3%) and CAN$2935
(10%) smaller, respectively, than ECHO-T2DM.

Conclusions There was little evidence that estimated cost-effectiveness metrics, the outcomes that matter most to stakehold-
ers, differed systematically.

1 Introduction such as obesity, hypertension, and dyslipidemia, is asso-

ciated with high risks for serious micro- and macro-

Type 2 diabetes mellitus (T2DM) is a chronic and pro-
gressive disease hallmarked by hyperglycemia. Chronic
hyperglycemia, together with common co-morbidities
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vascular complications and premature mortality [1, 2].
Currently, T2DM cannot be cured and treatment consists
primarily of managing blood glucose and cardiovascular
risk factors (e.g., blood pressure and serum lipids) to
postpone or prevent the development of disease compli-
cations [3].

The economic burden of T2DM is substantial [4-6],
cost-effectively allocating scarce resources among com-
peting resources is challenged not only by the limited
time and resources available to economic stakeholders in
general but also by an unusual degree of decision-making
uncertainty (e.g., clinical and economic implications that
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Efficiently allocating scarce resources for chronic and
progressive diseases such as type 2 diabetes mellitus
(T2DM) is challenged by limited time and resources
and an unusual degree of decision-making uncertainty
(e.g., clinical and economic implications that extend
far beyond trial durations, patient heterogeneity, evolv-
ing practice patterns, and practice patterns that differ
between trials and ordinary use).

To extrapolate trial data to longer decision-making

time horizons, economic modeling is routinely used.
While economic models of T2DM would ideally be user
friendly, transparent, fast, and accurate (i.e., good exter-
nal validity), the complexity of T2DM generally requires
comprehensive (including parallel sets of complications
and sophisticated treatment-switching algorithms) to
ensure good predictive accuracy. Established T2DM
models are generally slow and relatively opaque, which
imposes an additional demand on economic stakeholders
for case-specific expertise to evaluate the suitability of
manufacturer-submitted models and in some cases to run
the models with tight deadlines.

To address a need that some economic stakeholders

have for greater user friendliness and faster run times,
the IHE Diabetes Cohort Model was constructed using
the cohort rather than the micro-simulation approach. A
well-known limitation of cohort modeling, however, is
an inability to adequately model patient heterogeneity (at
least not without a health state explosion) and a potential
for biased cost-effectiveness estimates.

In exercises designed to evaluate the potential magnitude
of bias of the IHE Diabetes Cohort Model, we com-
pared results generated for a set of simulation scenarios
with those of a micro-simulation model (Economic and
Health Outcomes Model of T2DM), chosen because the
structures are otherwise generally similar and because

it was possible to harmonize the models even more to
minimize between-model simulation differences. We
found systematic differences in simulated costs and qual-
ity-adjusted life-years, but little evidence of systematic
differences in the incremental costs and quality-adjusted
life-years that underlie cost-effectiveness metrics or in
incremental cost-effectiveness ratios and net monetary
benefits themselves.

extend far beyond trial durations, large number of inter-
dependent micro- and macrovascular complications with
multiple treatment targets, patient heterogeneity, evolving
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practice patterns, and practice patterns that can differ
widely between trials and ordinary use) [7].

The evidence used by economic stakeholders to make
decisions is routinely generated using economic models
that support extrapolation of trial data to time horizons
sufficient to capture the full costs and benefits of interven-
tion (often lifetime). A large number of economic models
of T2DM are available [8]. Ideally, these models would
be user friendly, transparent, fast, and accurate (i.e., good
external validity). To obtain good predictive accuracy
given the complexity of T2DM, however, these models
must include a large set of interdependent micro- and
macrovascular complications and sophisticated long-term
treatment managers that challenge these goals.

Economic simulation models can generally be divided
according to whether they represent the hypothetical
patients as unique individuals (micro-simulation) or as
average members of a representative cohort (cohort mod-
eling) [9, 10]. Both approaches have well-known advan-
tages and disadvantages. Micro-simulation models can
accommodate patient heterogeneity and interdependent
health states while maintaining a compact form because
individual hypothetical patients can be assigned and carry
with them a large amount of personal information, which
enables simulation of personalized treatment pathways
and event risks and realistic patient histories [9, 10]. The
primary disadvantages of the micro-simulation approach
in T2DM are a lengthy model code (often in high-level
programming language rather than the more accessible
Microsoft Excel® [Microsoft, Seattle, WA, USA]), com-
putational intensiveness [9, 11], and an additional demand
on the economic stakeholder for case-specific disease and
programming expertise to evaluate the suitability of man-
ufacturer-submitted models. Indeed, the code underlying
most current models of T2DM is generally impenetrable
to most non-programmers and run times (numbering in
hours and sometimes days) can be limiting. The Canadian
Agency for Drugs and Technologies in Health (CADTH),
for example, has announced pending updates to its Cat-
egory 1 Requirements that include model run times for the
base-case analysis and key scenario analyses of less than 1
business day and programming in Microsoft Excel® [12].

Cohort models can approximate a micro-simulation
model if the disease is discretized into enough health states,
but “state explosion” and the paradoxical possibility the
model is less manageable and transparent than a correspond-
ing micro-simulation model [10], thus the micro-simulation
approach has been widely used for T2DM [8, 13, 14]. Prag-
matic cohort models can be constructed without a “state
explosion”, however, even for complicated diseases with-
out a complete sacrifice of predictive accuracy. The THE
Diabetes Cohort Model (IHE-DCM) [15] was designed and
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constructed in Microsoft Excel® (Microsoft) with this in
mind to address reasonable concern about a lack of trans-
parency in micro-simulation models and has demonstrated
external validity on par with other micro-simulation mod-
els of T2DM [15]. The benefits include fewer parameters,
faster run times, and convenient use of Microsoft Excel®,
all of which can be appealing to stakeholders tasked with
understanding (and potentially running) the models under
time pressure [16]. The primary disadvantage of the cohort
modeling approach is the potential for biased estimates of
the incremental cost-effectiveness ratio (ICER), which arises
when there is “uncaptured” patient heterogeneity that forces
the cohort approach to simulate non-linear relationships with
average patient characteristics [16]. To manage the large
number of parallel health states, Visual Basic for Applica-
tions was used to program key model functions as macros,
thus sacrificing some of the potential gains in transparency.

The IHE-DCM has been used to estimate long-term cost
consequences of T2DM in Sweden [17], to estimate the cost-
effectiveness of anti-hyperglycemic treatments [18-22], and
to support HTA submissions in Sweden, Norway, and Can-
ada [23-25]. Given the possibility that the cohort modeling
approach produces biased estimates for complex diseases
like T2DM, stakeholders can benefit from an empirical
investigation of the likely magnitude and direction (i.e., the
potential penalty to be traded against the other benefits).
Indeed, CADTH conjectured that “there may be a significant
degree of bias ...” involved in a recent application using
IHE-DCM, owing in part to the model design (including
absence of patient variability and the non-linear relationship
between biomarkers and outcomes) [25]. The Norwegian
Medicines Agency had similar reservations about the cohort
approach, though they concluded that IHE-DCM was appro-
priate given shorter run times and greater transparency [23].

2 Objective

The objective of this study was to inform decision makers
by investigating the direction and magnitude of bias of IHE-
DCM cost-effectiveness estimates attributable to using the
cohort modeling approach.

3 Methods

We borrowed well-established cross-validation tools [11,
13, 26] to examine whether cost-effectiveness estimates
generated by IHE-DCM are tangibly biased by comparing
IHE-DCM results from a set of scenarios inspired by the 9th
Mount Hood Diabetes Challenge with corresponding results
produced by an otherwise similar micro-simulation model—
the Economic and Health Outcomes Model of T2DM

(ECHO-T2DM). Similar analyses have been performed pre-
viously for other diseases, including chronic obstructive pul-
monary disease [27], human immunodeficiency virus [28],
and hepatitis C [29]. While such an exercise cannot provide a
definitive (and universal) answer to concerns about possible
bias, and it does not address the academic discussion of how
much accuracy is reasonable to swap for increased transpar-
ency [30], it can provide a careful examination of how two
otherwise similar models respond to the same stimuli (both
absolutely and incrementally) and thus inform stakeholders
charged with interpreting evidence generated by IHE-DCM.

3.1 The Models

IHE-DCM uses the cohort approach to model the cost-effec-
tiveness of competing treatment alternatives for representa-
tive hypothetical patients with T2DM [18-22]. It is con-
structed with Markov health states representing important
microvascular complications (retinopathy, neuropathy, and
nephropathy) and macrovascular complications (myocardial
infarction, ischemic heart disease, heart failure, and stroke)
and dead, updated in annual cycles. Microvascular event
risks are sourced primarily from the National Institutes of
Health model [31] and Bagust et al. [32]. Multiple sets of
macrovascular and mortality event risks are supported in
the model [33-36], of which the UK Prospective Diabe-
tes Study Outcomes Model 2 equations [36] were used in
this exercise. Treatment effects are applied as changes in
biomarkers (applied during the first year of treatment) and
biomarker evolution is simulated until the predefined time
horizon is reached. Treatment algorithms allow for treatment
intensification when glycemic goals are not met. Unit costs
and quality-adjusted life-year (QALY) disutility weights are
applied based on health outcomes. The simulation time hori-
zon is user defined and the probabilistic sensitivity analysis
(PSA) is supported for treatment effects, risk coefficients,
biomarker drifts, adverse event rates, unit costs, and QALYs.
A more complete description can be found in the Electronic
Supplementary Material (ESM). IHE-DCM performed in
line with other micro-simulation models in internal and
external validation exercises covering 12 long-term clini-
cal studies, though there was a tendency to overestimate
the macrovascular outcomes [15]. Model validity has been
described formally using the Assessment of the Validation
Status of Health-Economic decision modeling tool [37] (see
the ESM).

ECHO-T2DM was chosen as the micro-simulation model
because it has a similar (albeit not identical) structure (e.g.,
health states, biomarkers, risk predictions, as well as out-
comes) and model features (e.g., treatment intensification
following poor glycemic control), an ability to simulate com-
mon risk equations (both models support multiple sets), and
flexibility. Furthermore, as both models were available to
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the study authors, the models could be modified to further
improve standardization and reduce noise attributable to
factors other than the modeling approach (something not
possible when cross-validating against previously published
results in the literature). ECHO-T2DM is validated [38, 39]
and has participated in the 5th through 9th Mount Hood Dia-
betes Network Challenges [8, 13, 26]. A full description can
be found in the ESM and tests of its validity are described
using the Assessment of the Validation Status of Health-
Economic decision modeling tool [37] (see the ESM).

The main differences in the models and the steps taken
to harmonize them are presented in Table 1.! Briefly, we
harmonized the model structures used in this exercise by:
(1) selecting the same sets of macrovascular and mortality
risk prediction equations (UKPDS 82) [36], (2) simplifying
the ECHO-T2DM insulin treatment algorithm to duplicate
the simpler regimen supported by IHE-DCM, and (3) align-
ing diverse inputs such as microvascular risk elasticities
with glycosylated hemoglobin (HbA ) and systolic blood
pressure and drifts of clinical biomarkers. However, the
models simulate end-stage renal disease risk and estimated
glomerular filtration rate (eGFR) progression differently,
which could not be resolved directly, thus eGFR progression
in IHE-DCM was loaded as closely as possible to ECHO-
T2DM. Health states for kidney disease and foot ulcer also
differed, which was handled by disabling the cost and QALY
consequences for micro-and macroalbuminuria in IHE-DCM
and for chronic kidney disease (CKD) stages as well as foot
ulcer in ECHO-T2DM. Because these standardizations entail
that the simulated versions of the models are somewhat arti-
ficial, a sensitivity analysis was performed using the models
“as intended” (i.e., not harmonized).

3.2 Reference Case

A set of simulation scenarios was designed with inspira-
tion from the “Reference Case” simulation developed for
the 9th Mount Hood Diabetes Challenge Network (convened
in Dusseldorf, Germany in 2018) [40] and based loosely
on the Action in Diabetes and Vascular Disease: Preterax
and Diamicron Modified Release Controlled Evaluation
(ADVANCE) trial [41]. The Mount Hood Diabetes Chal-
lenge Network Reference Case was chosen as it is well
known in diabetes modeling circles and permits compari-
son with publicly available results for 11 other models of
diabetes [8]. In a first step, the Reference Case was simu-
lated exactly as per the Challenge instructions [42], which

! This differs from a conventional cross-validation analysis, in which
the models are applied without adjustment to the same decision-
making problem. In this exercise, the models were adjusted to remove
structural differences to better isolate differences attributable to the
unit of representation (i.e., cohort vs patient).
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importantly extends the reach of this analysis by support-
ing comparison with 11 different diabetes models that have
uploaded results to the online Mount Hood Diabetes Net-
work Registry [8] (because of the harmonization, the results
reported here for ECHO-T2DM differ slightly from those
online).

Baseline patient characteristics were sourced from the
Challenge instructions and, as necessary, from ADVANCE
trial publications (see Table 2). Quality-adjusted life-year
disutility weights were sourced entirely from the Challenge
instructions (see Table 1 of the ESM). The Mount Hood
Challenge simulation consisted of a control arm compared
with five hypothetical treatment profiles, the first four of
which considered changes in individual biomarkers one at
a time and the last of which included the combined set of
biomarker changes. For this application, we simulated the
combined set of biomarker changes (see Table 3). As per
the Challenge instructions, male and female individuals
are simulated separately (though baseline characteristics
were otherwise identical), biomarkers were kept constant
over time, and the simulation time horizon was 40 years.
We supplemented the Reference Case by including a vec-
tor of unit costs reflecting the Canadian treatment setting
(see Table 1 in the ESM), which enabled consideration of
cost-effectiveness metrics. Fictional, but not unreasonable,
annual costs were applied for the control and intervention
arms (CAN$1000 vs CAN$2500). A porobabilistic sensi-
tivity analysis was used in the base case for both models,
which is consistent both with micro-simulation modeling
and with ordinary use of IHE-DCM (though it may differ
from common practice with cohort modeling in general).
Preliminary simulations found that cost-effectiveness met-
rics stabilized at or well before 500 cohorts (with 1000 indi-
viduals per cohort for ECHO-T2DM), ICER for IHE-DCM,
and net monetary benefits (NMB) for ECHO-T2DM based
on model functionalities. Conservatively, 1000 cohorts (and
2000 individuals per cohort for ECHO-T2DM) were chosen
(see Fig. 7 in the ESM).

3.3 Expanded Reference Case

The restriction of homogeneous patients at baseline (and
the absence of biomarker evolution and rescue medication)
in the Reference Case artificially limits a key difference
between cohort and micro-simulation modeling and lim-
its generalizability of the exercise. Inspired by the Mount
Hood Reference Case, we created a more realistic simula-
tion scenario that captures patient heterogeneity, natural
evolution of biomarkers, and treatment intensification.
We also added biomarker treatment effects for HbA, and
eGFR to the control arm (see Table 3). Because cost-effec-
tiveness is rarely estimated separately for male and female
individuals in T2DM, the sexes were pooled. Treatment



957

Comparing the Cohort and Micro-Simulation Modeling Approaches in Cost-Effectiveness Modeling of T2DM

INAZI-OHDH Ul 9n0SaI UI[nSul 9s0p Paxy as()

VIN

PIR[O1I00UN 9Q 0) PAWNSSE dIOM SISNILW
-01q duI[Pseq INq NAZL-OHOA Ul papnjdul 4s

s[opowr y1oq 10§ pasn [9€] 78 SAdMN

INACI-OHDH Ul aur[aap YO0 arewrxordde
01 [Lp] 19pow (@3ID DAD Y} WO PAILWSD
INDA-HHI Ul Y409 jo aurfoap reaur] A[ddy

NACL-OHOH
ur Ydd pue JgS Ueam1aq UI[ 9y 91eAndBaJ

VIN

uoneoridde sty ur pasn st [9¢] 78 SAAMN

G—1 saSe)s (O 0] SE [[oM St eLINuIungeol
-OBW PUB-0IOTW JOJ S X TV PUE SIS00 9pN[oXH

10942 pajsnipe yim 2sop 9[qrxay syod

-dng “10jeIRdWOD puE UOT)ULAISIUT JO] S[yoId

JUSWIEAT) ) St Aem Je[IWIs & ul Surpiom
9SOp Paxy B YIIM 9ndsal urnsut syroddng

911 JUaA9 [enuue ue se pardde Jsu gy
SIOYIBWOIq JO 93ULI OPIM JOJ JUSUBAT)

ay) jo uonentur Je pardde o3ueyo ek I1sI1
SIOYIBWION] UdoM)q UONE[al
-100 apnyout 0) uondo ue M syndur £103STY
[eo1uT[d pue ‘siavrewolq ‘soryderSowap jo

93uer op1m e 10 sonyea (S) ueawW sopnjouf

OAVYd
‘[9€] 28 Sadin pue [Se] 89 SAMN

[L¥] 1opowr @31D
DAD Y3 YIM SUI[ UL PI[IPOW UIIP YJDI
MM PIYUI] APOAIIP QYSH ToA] JID? 10§
v1ep SHNVHN Y pajsnlpe ermurunqe
-oxo1w Jo ysry ~°l'yqy Joy uonouny 1mod
e M (9] 9 SAJDIN WO BLINUIUNGROI
-0BW pue-0IdTW 10§ SanI[iqeqolid uonisuely,
dgs
pue °lyqy Joj uonouny somod & YIm [1¢]
‘Te 32 ueunsey woij saniqeqoxd uonIsuei],
[1€] ‘Te 30 ueunseq woijy uonouny ramod
TyvqH s [zg] Te 10 1snSeg pue [1¢]
‘[e 30 ueunsey woij saniiqeqoid uonisuel],
A[uO uone[NWIS UIY)IM pajen[eAd [9¢]
78 SAJSIN Ul S300s pue JIA 0] JUSAS PUOISS
[s¥] IONVAQVY
‘(Lpp] Te 10 snrEyIoZ pue [H¢] ‘e 30 |
-epery]) YAN ‘[9€] 78 Pue [€] 89 SALMN

QASH ‘G- $98eIs AMD

juowearn Jojeredwoo
pue UOTIUSAIIUI Sk Aem awres ur parddy
QeI JU9AL Tenuue ue se pardde ysu gy
SIOYTewolq Jo oSuer apIm JO Jusiedn
) Jo uoneniut je parjdde aueyo reak 1511,y

sindur K103
-ST [BOTUI[O puUR ‘sioyrewolq ‘sorgdei3owop
Jo o3ueI OpIM B JOJ SAN[BA UBIW SIPN[OU]

[9¢€] 28 sad™n pue (€] 89 SAdNMN

°lyqH 103 uonouny 1omod e yam [1¢]
‘e 10 uewysey woiy sani[iqeqoid uonisuely,

[1€] °'vaqH 10y uonouny somod & yym [1¢]
‘Te 12 ueunsey woij saniIqeqoid uonIsueI],
[1€] ‘Te 30 ueunseq woiy uonouny ramod

'vQH yna [g¢] '[e 10 1snseg pue [1¢]
‘Te 30 ueunsey woij saniiqeqoid uonisuely,

[eel sad “(yel e
Lpepery) YAN ‘[9€] 28 pue [¢€] 89 SALNMN

@YSH ‘eLNUING[BOIOBW PUB -OIJIA

UOTIEOIPAW 9NJSAI UI[NSU]

Joyeredwod
puE UONUSAIIUL 0] STV pue elep Aoeoyjq

sonstIejoeIeyd Jusned ouraseg

KyreyIoN

aseasIp Kaupry|

Aqredounoy

AyredonoN

JB[NOSBAOIORIA

suonorpaid ysry

aseasIp Aoupry|

ssaupulq ‘AN “Ydd Ydd ssaupulq ‘AN “Ydd Ydd Aypedounay
VAT
190[n 100§ 10} S X TV PUE SI1S00 9pn[OXH 190[n 100} ‘gAd ‘Ayredonou onewodwAs VAT ‘dAd ‘Ayredonou opewoydwAg Ayredoinan
VIN JHD “9401s ‘TN ‘dHI JHO ‘94018 ‘TIN ‘dHI Je[NOSBAOISIN
SOJBIS YI[BOH
S9[0Ad A[qruow
VIN ur sajerado o[npowqns j0oj Inq ‘Teak | Ieok | 3uQ[ 9[9KD
V/IN UOTJR[NWISOIITA] [opowt 11040 UOTJBAIISQO JO JIUN)
uonezipIepuels Jo poyoN INAZL-OHDd INDOd-dHI odAT,

(uonezipIepue:s Jo poyow pue [INAZL-OHIA] INAZL JO [9POIN SSW0InQ YieaH pue dIWouodd sa [NDA-AHI] [9POI 040D sa3oqel( FHI) S90UIIRIp [opowr £y | 3|qe]

A\ Adis



M. Willis et al.

958

Apmg s9oqeI(] 9A109101J SARqRI(] 3] SAJY /] ‘UONEBIASD PIepue)s (7S ‘oImssaid poo[q oI0ISAs Jg§ SII dATIe[aI Y “OfI] Jo Atenb 700 ‘sreak-oj1] paysnlpe-Kyenb {7y ‘0seasIp Ie[nosea [e1d
-ydurad g4 ‘Ayredounar onoqerp aaneajijoid y g ‘ANsi3oy sa1oqel( [euoneN yJN ‘9qedridde jou y/n ‘uonorejur [BIpIeooAW Jpy ‘BWop Je[noew 7y ‘uoneindwe AJIUQIIX J9MO] V77 9sed
-SIp 1B OIWAYDSI (FH] ‘ApmS $910qRI(J SPUBWAAL] §(7. ‘OSLasIp [BUAI 95BIS-PUd (7S ‘28l UONRN[Y JB[NISWO[S PAIRWINSI Y,/H2 ‘SBISIP ASUPD] JIUOIYD (7)) ‘@In[Ie] 11eay dANSIZU0d JH)
‘Jonuo)) 9seasI(] JO IUD) DD ‘Sewodino 3unepifea pue 3uissasse Sunear Jup[ing OAVY S ‘Ayredounar onoqerp punoIdyoeq g ‘SIUSA ISIAPE STV ‘QWAZUS SUNISAUOI-UISUSJOISUR TV

Jo1s pue JA J0J SJUdA? juonb

[9A9] A)I[NN 9seq WOIJ PaoNpap -asqns pue 3s1y 10y Annsip 11oddng ‘[oA9]

soryder3owop pue (S)2Je3s YI[eay Jualmnd  AJnn aseq woly pajonpap sorydeiSowap pue
103 Ajrnnsip ym parpdde yoeordde Armnsig (s)arels yireay Juarmd oy pardde Armnsig

VAT Pue “ous ‘TN

K[oreedas $1s00 JUAS [BIR] pUR [BIR)-UOU PUO0D3S pue ISIY I0J $1S0D JUAAS K[ojeredas

ugisse 0) Aqiqissod 11oddng 1s00 dn-moq[oj  uSISse 03 9[qQISSOJ “JUIAD (OB JOJ }S0D [enuue
[enuue juanbasqns pue 1500 1L-151y A[ddy UB PUEB JUAD ) JO JeaK UI 3509 JudAd A[ddy

INDQ-HHI Ul $1uaAd
PU0d3s pue sI J0J AIMNSIP owres uSIssy

SJUGAQ PUODDS pue
JSIYJ ‘TeIBJ-UOU ‘[BIeJ JOJ $)SOO JIUN SWes uSIssy

VIN suLre judwiean [[e 10y pardde 1500 [enuuy suLre juounean [e Joj parjdde 1500 [enuuy
sune)s pue sI0)IqIUuI OV JO ash yIIm
PAIRIOOSSE (OMS “*T'9) SIUSAQ 10J SYY pare
papnjour -100sSe )M S3nIp juowegeurw JYSrom pue s3nIp juowoFeuew JyIom pue
ST JUAWIASRURW 9SBISIP JOYJO J0J Juaunjean o  ‘erwaprdisAp-nue ‘aarsuayredAy-nue syoddng  ‘erwopidisAp-nue ‘oarsuairodAy-nue syroddng
[epow @D

DD 9Y} U0 PaIseq snJe)s eLnununge pue

[0A9] Y D9 1u21IMd uo Judpuadop uI[oop

AAD2? ‘89 SAJSIN WOy padInos dFueyd

[L#] Topowr (31D DAD °Iy7qH 103 suoryenba UONN[OAS TeQUI[-UOU

) uo paseq IND-HHI 10J SUI[o9p Jeaul| © 9y suroddns A[feuonippe ‘sioyIeworq

ewnsa pue °lyqy oy aSueyd reaury A[ddy ITe 105 payioddns aFueyo Ieaur| [enuuy Jueyd Ieour| [ENUUY

100

suonear[dwod Jof §350 JTun
$1S0D JUSUIIBAL],

SXTVO Pue $150D

(suness
‘S10IqIUI DY) JUSWISRURUL 3SBISIP IYI0

uorssar3oid onfea royreworg

UONRZIPIEPUL]S JO POYISIA INAZL-OHDA INOJ-dHI

adA7,

(ponunuoo) | sjqey

I\ Adis



Comparing the Cohort and Micro-Simulation Modeling Approaches in Cost-Effectiveness Modeling of T2DM 959
Table 2 Baseline patient characteristics
Parameter Reference case (male and Expanded Reference Early disease (hypotheti- Late disease (hypo-
female individuals separately) case cal) thetical)
Mean/% Mean/% SD Mean/% SD Mean/% SD
Demographics
Age (years) 66.00 66.00 6.00 50.00 6.00 75.00 6.00
Male (%) - 50.0 - 50.0 - 50.0 -
Disease duration (years)* 8.00 8.00 - 2.50 - 15.00 -
Ethnicity/race (%)
African Americans 1.9 1.9 - 1.9 - 1.9 -
Caucasian 98.1 0.0 - 0.0 - 0.0 -
Clinical indicators
Atrial fibrillation (%) 0.0 0.0 - 0.0 - 0.0 -
Smokers (%) 0.0 0.0 - 0.0 - 0.0 -
HbA,. (%) 7.50 8.00 1.50 8.00 1.50 8.00 1.50
SBP (mmHg) 145.00 145.00 22.00 135.00 22.00 155.00 22.00
BMI (kg/m?) 28.00 28.00 5.00 27.00 5.00 30.00 5.00
WBC (*¥10°) 7.00 7.00 1.90 7.00 1.90 7.00 1.90
HR (beat/minute) 79.00 79.00 12.00 79.00 12.00 79.00 12.00
Total cholesterol (mg/dL)P 200.77 200.77 1.20 190.00 46.33 210.00 46.33
LDL cholesterol (mg/dL)° 115.83 115.83 39.77 110.00 39.77 130.00 39.77
HDL cholesterol (mg/dL)® 50.19 50.19 15.44 50.19 15.44 50.19 15.44
Triglycerides (mg/dL)° 176.99 176.99 1.50 176.99 132.74 176.99 132.74
eGFR (mL/min/1.73 m?) 70.00 70.00 15.00 80.00 15.00 60.00 15.00
Co-morbidities (%)
Microalbuminuria - 25.6 - 10.3 - 30.0 -
Macroalbuminuria - 3.6 - 1.9 - 20.0 -
IHD (not including MI) - 6.1 - 0.0 - 12.0 -
MI - 12.0 - 2.0 - 25.0 -
CHF - 6.1 - 0.0 - 10.0 -
Stroke - 9.2 - 1.4 - 20.0 -

Bolded values for early disease and late disease cohorts indicate changes from expanded reference case

BM1I body mass index, CHF congestive heart failure, eGFR estimated glomerular filtration rate, HbA,. glycosylated hemoglobin, HDL high-den-
sity lipoprotein, HR heart rate, /JHD ischemic heart disease, LDL low-density lipoprotein, MI myocardial infarction, SBP systolic blood pressure,
SD standard deviation, WBC white blood cell
“Entered as minimum/maximum in the Economic and Health Outcomes Model of T2DM

"Entered as mmol/L in the ITHE Diabetes Cohort Model

intensification starting with basal insulin and followed by
a basal and bolus insulin regimen was applied when HbA
was > 8% (see Table 2 in the ESM). Note: these results are
not comparable to those stored in the Mount Hood Diabe-
tes Network Registry [8].

In addition to the base case, 18 additional scenarios were
created and simulated to evaluate whether systematic differ-
ences between the models (and modeling approaches) could
be identified and, if so, which model features drive them.
The scenarios are presented in Table 4 and can broadly be
sub-divided into tests of the treatment algorithm, the impor-
tance of PSA, economic parameters (i.e., costs of treatment
and QALY disutility weights), different patient sub-groups

(male vs. female individuals, early disease, and late disease),
and differences in the CKD sub-model. Baseline patient
characteristics for early and late disease are presented in
Table 2. As these scenarios are each based on model har-
monization to minimize between-model differences unre-
lated to the cohort vs micro-simulation approaches, we also
simulated a less artificial scenario in which the models were
simulated as intended.

3.4 Analysis

We compared estimated model outcomes (including costs,
QALYs, and ICERs and NMBs defined based on QALY's
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Table 3 Treatment profiles

Reference Case

Expanded Reference Case

Treatment Intervention Control Intervention Control
Mean (SE) change from baseline Mean Mean Mean SE Mean SE
HbA ., % -1 0 -1 0.05 -05 0.05
SBP, mmHg -10 0 -10 1.5 0 0
LDL cholesterol, mg/dL —19.305 0 —19.305 1.5 0 0
BMI, kg/m> -1 0 -1 0.05 0 0
eGFR 0 0 0 0 -5 1.000
Rates of adverse events (per P-Y of

exposure):
Non-severe hypoglycemia 0 0 0.5 0 1 0
Severe hypoglycemia 0 0 0
Corresponding® HbA ., % 7.5 7.5 7.5 0 7.5 0
Drifts
HbA,, % 0 0 0.14 0 0.14 0
SBP, mmHg 0 0 0.3 0 0.3 0
Total cholesterol, mg/dL 0 0 0 0 0 0
LDL cholesterol, mg/dL. 0 0 0 0 0 0
HDL cholesterol, mg/dL 0 0 0 0 0 0
Triglycerides, mg/dL 0 0 0 0 0 0
BMI, kg/m? 0 0 0 0 0 0
eGFR (ECHO-T2DM) 0 0 Estimated from CDC-CKD model Estimated from CDC model

(47, 481 (47, 481°

eGFR (IHE-DCM) 0 0 —2.43 0 —-243 0
Treatment costs (CAN$)
Drug 2500 1000 2500 0 1000 0

BM1I body mass index, CDC Center of Disease Control, CHF congestive heart failure, CKD chronic kidney disease, ECHO-T2DM Economic and
Health Outcomes Model of T2DM, eGFR estimated glomerular filtration rate, HbA . glycosylated hemoglobin, HDL high-density lipoprotein,
IHD ischemic heart disease, IHE-DCM THE Diabetes Cohort Model, LDL low-density lipoprotein, MI myocardial infarction, P-Y patient-year,

SBP systolic blood pressure, SE standard error

*Hypoglycemic event rates increase or decrease inversely with HbA,, thus hypoglycemic event rates are adjusted from mean HbA in the trial
from which event rates are sourced to match the HbA, of the patients being simulated in both models. See also the ESM

®Annual decline for patients with eGFR>60 mL/min/1.73 m*> — 1.1, patients with eGFR>60 and macroalbuminuria — 4.1, patients with

eGFR <60 — 2.8, patients with eGFR < 60 and macroalbuminuria — 5.2

gained) under the maintained assumption that systematic dif-
ferences can largely be attributed to the modeling approach
(cohort vs micro-simulation) given our attempts to otherwise
harmonize the models and input parameters. Numerical dif-
ferences between models were calculated and assessed, for
costs and QALY at both the absolute and incremental lev-
els. Mean differences were calculated across the base case
and all scenarios in the Expanded Reference Case. Because
harmonization was incomplete, however, some noise will
inevitably enter, thus we assessed concordance statistically
using three different methods (for the Reference Case, only
visual assessment was performed):

1. We plotted the mean and 95% confidence intervals for

incremental costs, incremental QALY's, and NMB esti-
mated for both models for the base case and for the 18

I\ Adis

scenario analyses. The proportion of point estimates for
each model falling within the 95% confidence interval
produced by the other model was generated for each out-
come (ICERs were excluded because more than 2.5% of
replications produced negative values). Ninety percent
was considered a threshold for concordance.

2. At an anonymous reviewer’s suggestion, we conducted
a formal hypothesis test for costs, QALYs, and NMB
using the paired ¢ test with a null hypothesis of con-
cordance (significance level of 5%). We performed the
test for ICERs as well because they are of considerable
interest to decision makers, but one of the scenarios
had to be omitted because it produced cost savings and
QALY gains (i.e., a negative ICER). To ensure that vio-
lation of normality does not invalidate the results, the
non-parametric Wilcoxon Signed Rank Test was also
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performed. Because the results of modeling different
simulation scenarios are not akin to independent draws
from a population (i.e., there is considerable depend-
ence), this test is over-powered and thus too likely to
reject the null hypothesis of concordance.

3. At the same reviewer’s suggestion, we also performed a
test loosely based on methods proposed by Corro Ramos
and colleagues [43] in which we calculated the number
of PSA iterations for each model for which the estimated
NMB falls within the 95% confidence interval produced
by the other model for the base case scenario (ICERs
were excluded because 95% confidence intervals could
not be generated). Note, the Corro Ramos et al. approach
is designed to assess the validity of model estimates by
comparing with clinical data rather than predictions
from a different model.

Because important differences can be masked when looking
only at the aggregate level, we also compared cumulative event
incidences in the Expanded Reference Case for IHE-DCM and
ECHO-T2DM (95% confidence intervals are not generated by
[HE-DCM). Specifically, the proportion of the 14 IHE-DCM-
predicted cumulative event incidence rates in the base case
falling within the 95% confidence intervals for the correspond-
ing ECHO-T2DM micro-simulation estimates was calculated.
Ninety percent was considered a threshold for concordance.
Biomarker evolution curves were examined to ensure that the
simulations were properly implemented.

4 Results
4.1 Comparison of Model Implementation

Run times differed substantially by model. On a personal
computer with a 16-GB random access memory and an
I7-processor, run times for the base case analysis were
approximately 45 min for IHE-DCM and 30 h for ECHO-
T2DM. For the scenario analysis without PSA (i.e., run-
ning only one cohort), run times were less than 1 min for
IHE-DCM and between 2 and 3 min for ECHO-T2DM. In
part because there are more parameters in micro-simulation
though also because ECHO-T2DM has more model features,
the analysts (authors AN and AL) noted that loading and
double checking ECHO-T2DM took longer than IHE-DCM.

4.2 Reference Case

Key results for the Reference Case are presented in Tables 3
and 4 of the ESM for male and female individuals, respec-
tively. Estimated life-years predicted by IHE-DCM were
approximately 1 year longer for male individuals and
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0.6 years longer for female individuals for both treatment
arms than for ECHO-T2DM, which is consistent with the
larger predicted QALY's and total costs. The between-model
differences were smaller at the incremental level. Incremen-
tal predicted life-years were 0.61 and 0.47 years for IHE-
DCM vs 0.71 and 0.55 years for ECHO-T2DM, for male
and female individuals, respectively. The between-model
differences in incremental predicted QALY's were smaller
by about half. Incremental predicted total costs differed by
CAN$294 for male and CAN$462 for female individuals,
which yielded ICERs (per QALY gained) of CAN$29,309
for IHE-DCM vs CAN$27,654 for ECHO-T2DM for male
individuals and CAN$38,680 for IHE-DCM vs CAN$37,109
for ECHO-T2DM for female individuals. At a willingness-
to-pay threshold of CAN$50,000, NMBs (based on QALYs
gained) were $13,293 for IHE-DCM vs CAN$15,452 for
ECHO-T2DM for male individuals and CAN$6,199 for IHE-
DCM vs CAN$7518 for ECHO-T2DM for female individu-
als. The cumulative incidences for micro- and macrovascular
complications are presented in Figs. 3 and 4 of the ESM.
With the exception of kidney complications, IHE-DCM pre-
dictions fell well within the 95% confidence intervals.

4.3 Expanded Reference Case

Key results for the Expanded Reference Case are presented
in Table 5. Predicted absolute life-years, QALYs, and total
costs were (as with the Reference Case) larger for IHE-DCM
for both treatment arms. Incremental (between-arm) differ-
ences were again smaller, though the between-model gap
differences were larger than in the Reference Case (0.46 vs
0.60 life-years gained, 0.67 vs 0.72 QALY gained, and net
cost increases of CAN$3719 vs CAN$5098 for IHE-DCM
and ECHO-T2DM, respectively). Uncertainty as indicated
by 95% confidence intervals was similar for the two models
for costs, but about twice as high for IHE-DCM for QALY's
(with the difference largely attributable to hypoglycemia
event rates). Estimated ICERs were CAN$5542 for IHE-
DCM and CAN$7059 for ECHO-T2DM and NMBs were
CAN$28,834 and CAN$31,009, respectively. While 95%
confidence intervals could not be calculated for ICERs, the
95% confidence intervals for NMBs were also about twice
as wide for [HE-DCM and the lower bound was below 0
(CANS$-5833).

Estimated survival curves were visually similar, though
slightly higher for IHE-DCM (see Fig. 1). Estimated 40-year
cumulative incidence rates for [HE-DCM fell within the 95%
confidence intervals for ECHO-T2DM predictions for each
outcome, though IHE-DCM generated generally lower esti-
mates than ECHO-T2DM (see Fig. 2). These cumulative
incidences are also presented in a scatterplot in Fig. 6 of the
ESM, with the values for IHE-DCM on the horizonal axis
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Table 5 Detailed cost-effectiveness estimates for the Expanded Reference Case, by model

IHE-DCM ECHO-T2DM

Intervention  Control  Difference Intervention  Control  Difference
Cost drivers
Treatment 31,473 24,186 7287 29,372 21,674 7698
Non-insulin AHA - - - 15,040 4666 10,375
Insulin AHA - - - 14,332 17,009  -2677
Ml 12,384 13,152 —-768 12,828 13,540 712
IHD 7391 7830 —439 5524 5685 —161
CHF 9228 9659 —431 7343 7282 62
Stroke 14,349 16,454  —-2105 9391 10,025 —-634
PVD - - - 183 165 18
Retinopathy 247 286 -40 250 264 -14
CKD 4051 4007 44 6890 8199 - 1309
Neuropathy - - - 310 319 -8
Amputation 3716 3449 267
Lower extremity disease® 5142 4972 171 4209 3932 277
Hypoglycemia 483 655 —-171 602 711 -109
Total costs (95% CI) 84,266 80,547 3719 (—2807; 10,245) 76,410 71,312 5098 (—3162; 9694)
Disutility drivers
MI 0.097 0.099 —0.002 0.089 0.089 0.000
IHD 0.081 0.086 —0.004 0.059 0.060 —0.001
CHF 0.094 0.097 —-0.003 0.071 0.069 0.002
Stroke 0.086 0.095 —0.009 0.077 0.078 —0.001
PVD - - - 0.090 0.081 0.009
Retinopathy 0.033 0.038 —0.005 0.034 0.037 —0.002
CKD 0.040 0.040 0.000 0.083 0.098 -0.015
Neuropathy - - - 0.025 0.025 —0.001
Amputation event - - - 0.050 0.046 0.004
Lower extremity disease 0.201 0.192 0.009 - - -
Hypoglycemia 0.642 0.807 —0.165 0.598 0.740 —0.142
Excess weight 0.202 0.268 —0.066 0.266 0.283 —-0.017
Survival® 0.471 -0.558
Total 0.671 0.722
Health outcomes (discounted)
LYs (95% CI) 13.169 12.710  0.459 (0.096; 0.822) 11.150 10.546  0.604 (0.180; 1.033)
QALYs (95% CI) 10.966 10.295  0.671 (-0.029; 1.371) 8.978 8.256 0.722 (0.359; 1.205)
Survival at end of year 40 0.8% 0.7% 0.2% 0.3% 0.2% 0.1%

Net monetary benefits

Incremental cost per QALY gained

29,834 (—5833; 65,501)
5542

31,009 (14,562; 55,026)
7059

AE adverse event, AHA anti-hyperglycemic agent, CHF congestive heart failure, CI confidence interval, CKD chronic kidney disease, ECHO-
T2DM Economic and Health Outcomes Model of T2DM, [HD ischemic heart disease, [HE-DCM THE Diabetes Cohort Model, LY life-year, M1
myocardial infarction, PVD peripheral vascular disease, QALY quality-adjusted life-year

“Note: this is the outcome measure for [HE-DCM. Individual components are calculated separately for ECHO-T2DM, but we calculated this ex

post as PVD +amputation + neuropathy for comparison purposes

For consistency with the other disutility measures, only the disutility associated with survival differences is reported (with the value of one

intervention normalized to 0)

and for ECHO-T2DM on the vertical axis. Points along the
45-degree line indicate equality and the dotted lines plot the

best-fitting linear regression lines.

A cost-effectiveness scatterplot plane is presented in
Fig. 3, with each point representing incremental QALY

and costs for one of the 1000 cohort replicates for the two
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100% are largely similar as well (see Fig. 5 in the ESM). Both
90% HE-DCM models predict a low probability of cost savings, but the
o ECHO-T2DM predicted probabilities that the intervention is cost-effective

30%

Survival of Initial Cohort
3
=

20%
10%
®o
0 k] 10 15 20 25 30 35 40
Years
—Intervention - = Comparator

Fig. 1 Forty-year intervention and comparator survival for Expanded
Reference Case, by model. ECHO-T2DM Economic and Health Out-
comes Model of T2DM, IHE-DCM THE Diabetes Cohort Model

models (IHE-DCM in black and ECHO-T2DM in red).
Though uncertainty is larger for IHE-DCM, the scatterplots
largely coincide. Cost-effectiveness acceptability curves

T0%

are about 70% at a willingness-to-pay of CAN$10,000 per
QALY gained rising to 96% for IHE-DCM and 100% for
ECHO-T2DM at a willingness-to-pay of CAN$50,000 per
QALY gained. The modified Corro Ramos et al. test found
that estimated NMB for THE-DCM fell within the 95%
confidence interval generated by ECHO-T2DM for 72% of
the PSA iterations. For ECHO-T2DM, estimated NMB fell
within the 95% confidence interval generated by IHE-DCM
for 98% of the replications.

Similarities at the aggregate level may mask some differ-
ences at the granular level. For example, IHE-DCM simu-
lated greater cost offsets for avoided stroke and ischemic
heart disease events than ECHO-T2DM, but ECHO-T2DM
predicted cost offsets for CKD while IHE-DCM predicted
a modest cost increase. Simulated biomarker evolution
curves diverged over time, especially for HbA,, and body
mass index where the start of rescue insulin medication
occurred at the same time and induced stair step patterns
in [HE-DCM, largely because of differential survival in the

60%

50%

Cumulative Incidence
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C
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:

Intervention $€

Comparator §€

Comparator
Intervention
Comparator
Intervention
Comparator
Intervention
Comparator
Intervention
Comparator
Intervention
Comparator
Intervention
Comparator

PVD

2

BDR ME PDR Blind

Neuropathy

X[HE-DCM @ECHO-T2DM

Fig.2 Forty-year predicted cumulative incidence rates for Expanded
Reference Case, by model. The whiskers represent the estimated 95%
confidence interval of the cumulative incidence in the Economic
and Health Outcomes Model of T2DM (ECHO-T2DM). BDR back-
ground diabetic retinopathy, CHF congestive heart failure, ESRD
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end-stage renal disease, GPR gross proteinuria (macroalbuminuria),
IHD ischemic heart disease, IHE-DCM THE Diabetes Cohort Model,
LEA lower extremity amputation, MA microalbuminuria, ME macular
edema, MI myocardial infarction, PDR proliferative diabetic retinopa-
thy, PVD peripheral vascular disease
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Fig.3 Cost-effectiveness plane for Expanded Reference Case, by
model (one sample point per cohort replication). ECHO-T2DM Eco-
nomic and Health Outcomes Model of T2DM, IHE-DCM THE Diabe-
tes Cohort Model, QALY quality-adjusted life-year

heterogeneous ECHO-T2DM simulated population (see
Fig. 8 of the ESM).

Results of the scenario analysis demonstrated that the
two models changed in predictable (and mostly similar)
ways to the parameter changes. IHE-DCM produced con-
sistently greater life-years, QALYs, and absolute costs for
both treatment arms than ECHO-T2DM (summary results
are presented in Table 5 in the ESM) and IHE-DCM also
generated consistently lower mean incremental costs,
QALYs, and NMBs. Mean ICER for the base case and the
18 scenarios (excluding one scenario for which interven-
tion was dominant for both models) were CAN$10,299 for
IHE-DCM and CAN$10,417 for ECHO-T2DM. IHE-DCM
generated a lower ICER in ten of the 18 cases (with well-
behaved ICERs).

Individually, the results of the scenarios were gener-
ally predictable and robust. Sub-group analysis was nota-
ble, for example, only because the early disease cohort was
associated with a noticeable change in incremental costs
(especially for IHE-DCM). This affected predicted ICERs
in relative terms, though the effect was less for the NMB
(CAN$41,300 for IHE-DCM vs CAN$43,411 for ECHO-
T2DM). The results were most affected by assumptions
about CKD, where structural differences could be least
standardized. Keeping eGFR constant over time increased
the ICERSs for both models compared with the base case,
with between-model differences driven largely by changes

in incremental costs. Using the model “as intended” (rather
than standardized) had limited impact on the results.

Mean and 95% confidence intervals (note, only for sce-
narios with PSA activated) for incremental costs, incre-
mental QALYs, and the NMB are plotted in Fig. 4. Nei-
ther model had a mean value that fell outside of the 95%
confidence interval for the other model in the base case or
any of the 18 scenarios. Paired ¢ tests uniformly rejected
the null hypothesis of between-model equality of the abso-
lute costs (p <0.001) and QALY (p <0.001), incremental
costs (p<0.001) and QALYs (p<0.001), and the NMB
(» <0.009). For the scenarios with well-behaved ICER esti-
mates, however, the ¢ test failed to reject between-model
equality (p <0.68).

5 Discussion

Using well-established cross-validation tools [11] modified
to allow structural standardization of the models, we exam-
ined whether IHE-DCM produces systematically biased esti-
mates of cost-effectiveness related to the cohort approach.
In a simple Reference Case performed to enable comparison
with the results of 11 other models that participated in the
9th Mount Hood Diabetes Challenge, IHE-DCM produced
consistently greater absolute survival, QALYs, and costs
than ECHO-T2DM, which is consistent with the difference
between modeling homogenous patients and heterogene-
ous patients when event risks are non-linear (specifically
convex) in key parameters [16]. Between-model differences
were generally small at the incremental level (i.e., different
between the two comparator arms) used to construct cost-
effectiveness metrics, however, and the ICER and NMB,
which were also similar between models. As expected, IHE-
DCM was considerably faster compared with ECHO-T2DM,
with a run time of approximately 45 min compared with 30 h
using ECHO-T2DM, an important aspect for many stake-
holders under time constraints.

This same pattern was observed for the more realistic
Expanded Reference Case and 18 scenario analyses, and both
models responded to changes in model parameters similarly
and predictably. This was supported statistically; incremen-
tal costs, incremental QALY's, and NMBs for each model fell
uniformly within the 95% confidence interval generated by
the other model. There was more uncertainty in the results
of IHE-DCM, which was driven in large part by uncertainty
in the parameter estimate for the hypoglycemia event rate
(eliminating it roughly halved the confidence interval). The
estimates of ECHO-T2DM falls within even half of the 95%
confidence intervals generated by IHE-DCM. Estimates
in the base case by IHE-DCM of the 40-year cumulative
incidence of study outcomes, moreover, fell within the 95%
confidence intervals generated by ECHO-T2DM. While the
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«Fig.4 Mean estimates using the IHE Diabetes Cohort Model (IHE-
DCM) and Economic and Health Outcomes Model of T2DM (ECHO-
T2DM) for Expanded Reference Case with 95% confidence interval
for ECHO-T2DM, by scenario. a Incremental costs. b Incremental
quality-adjusted life-years (QALYs). ¢ Net monetary benefits asso-
ciated with intervention (willingness to pay of CANS$50,000 per
QALY). CKD chronic kidney disease, HbA,. glycosylated hemo-
globin, PSA probabilistic sensitivity analysis

paired ¢ tests did find statistically significant between-model
differences in incremental costs, incremental QALY's, and
the NMB for these 19 scenarios, the paired ¢ test is grossly
overpowered to reject the null hypothesis in this setting as
the simulation scenarios (i.e., the sample draws) are not
independent of each other. Interestingly, however, the paired
t test failed to reject between-model differences for the ICER
(p <0.68) for the 18 scenarios for which both incremental
costs and incremental QALY's were positive (producing a
meaningful ICER). Further underscoring this absence of
clear bias in cost-effectiveness estimates, there was no dis-
cernible pattern as to which model produced more favora-
ble cost-effectiveness estimates, with each more favorable
in roughly half of the scenarios.

The trade-off between cohort modeling and micro-sim-
ulation is sometimes (perhaps mistakenly) cast as a choice
between time and transparency vs accuracy. Both models
satisfy International Society for Pharmacoeconomics and
Outcomes Research recommendations for model trans-
parency, which accept complexity and call instead for a
technical report that describes the structure, components,
equations, and computer code that would enable experts to
reproduce the model (full technical transparency) and non-
technical documentation that, at a minimum, describes the
type of model and intended applications, funding sources,
model structure, inputs and outputs, data sources, model
validation, and model limitations [11]. While transparency
in a general sense is hard to quantify, and no fit-for-purpose
diabetes models are likely to achieve “transparency” in a
general sense, analysts (authors AN and AL) generally con-
sidered that IHE-DCM was easier to grasp and work with
(and is constructed with approximately 50% fewer lines of
code).

This analysis has several strengths, including the use of
two models that were relatively similar and required limited
standardization. Many of the remaining differences could be
standardized to minimize the extent that differences would
be driven by model differences other than units of obser-
vations. The scenarios were inspired by the Mount Hood
Reference Case, which permits comparison (at least of the
Reference Case results) with 11 health economic models of
diabetes that participated in the 9th Mount Hood Diabetes
Challenge Network. Finally, a wide range of scenarios was
considered that explored different aspects of the model to
enhance generalizability.

The models could not be entirely standardized, however,
and remaining differences must be considered when inter-
preting the results of this analysis (i.e., between-model dif-
ferences may reflect more than just the potential bias related
to cohort vs micro-simulation modeling). In particular, the
main structural difference is the modeling of CKD, for which
there are different methods of simulating disease progres-
sion (transition probability vs biomarker driven) and which
clearly impact the results. Indeed, for the cumulative inci-
dence, the CKD outcomes (micro-and macroalbuminuria
and end-stage renal disease) were clear outliers and the mean
estimates for the [HE-DCM model were just within the 95%
confidence interval of ECHO-T2DM. Foot ulcer is included
only in ECHO-T2DM. To mitigate the impact on the analy-
sis, costs and QALY weights were set to 0. The indirect
impact on overall results was limited because foot ulcer
affected only the risk of congestive heart failure (though
patients simulated to develop congestive heart failure had in
turn increased risks for ischemic heart disease, myocardial
infarction, and mortality) and the simulated incidence of foot
ulcer was low. Second, while the scenarios were constructed
to mimic a cost-effectiveness analysis, the simulated sce-
narios are purely hypothetical.

While this study cannot provide a definitive (and uni-
versal) answer to concerns about possible bias, and it does
not address the academic discussion of how much accuracy
is reasonable to swap for increased transparency [30], this
exercise provides a careful examination of how two other-
wise similar models respond to the same set of stimuli (both
absolutely and incrementally), which can be valuable for
stakeholders charged with interpreting evidence produced
by IHE-DCM.

6 Conclusions

The IHE-DCM was faster to load and to run than the micro-
simulation model used in this study (ECHO-T2DM) and the
modeling details are likely to be more easily understood by
external reviewers, which can be an advantage for economic
stakeholders with limited time and resources. Despite sys-
tematic differences in absolute predicted survival, QALYs,
and costs, estimated cost-effectiveness metrics were simi-
lar suggesting that any bias related to the cohort approach
is small in the outcomes that matter most. We believe that
both models are suitable for use in cost-effectiveness evalu-
ations for interventions in T2DM; the selection of one over
the other should be made on the basis of stakeholder needs,
resources, and preferences.
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