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Abstract

Background Economic modeling is widely used in estimating cost-effectiveness in type 2 diabetes mellitus. Because type 2 

diabetes is complex and patients are heterogenous, the cohort modeling approach may generate biased estimates of costef-

fectiveness. The IHE Diabetes Cohort Model (IHE-DCM) was constructed using the cohort approach as an alternative for 

stakeholders with limited resources, some of whom have voiced reasonable concerns about a lack of transparency with type 

2 diabetes micro-simulation models and long run times.

Objectives The objective of this study was to inform decision makers by investigating the direction and magnitude of bias 

of IHE-DCM cost-effectiveness estimates that can be attributed to the cohort modeling approach.

Methods Simulation scenarios inspired by the 9th Mount Hood Diabetes Challenge were simulated with IHE-DCM and with 

a micro-simulation model, the Economic and Health Outcomes Model of T2DM (ECHO-T2DM), and key metrics (absolute 

and incremental costs and quality-adjusted life-years, event rates, and cost-effectiveness) were compared for evidence of 

systematic differences. The models were harmonized to the extent possible to ensure that differences were driven primarily 

by the unit of observation and not by other model differences.

Results IHE-DCM run times were faster and IHE-DCM produced uniformly larger estimates of absolute life-years, quality-

adjusted life-years, and costs than ECHO-T2DM but smaller between-arm (incremental) differences. Estimated incremental 

cost-effectiveness ratios and net monetary benefits varied similarly and predictably across the scenarios. On average, IHE-

DCM estimates of incremental cost-effectiveness ratios and net monetary benefits were CAN$269 (3%) and CAN$2935 

(10%) smaller, respectively, than ECHO-T2DM.

Conclusions There was little evidence that estimated cost-effectiveness metrics, the outcomes that matter most to stakehold-

ers, differed systematically.

1 Introduction

Type 2 diabetes mellitus (T2DM) is a chronic and pro-

gressive disease hallmarked by hyperglycemia. Chronic 

hyperglycemia, together with common co-morbidities 

such as obesity, hypertension, and dyslipidemia, is asso-

ciated with high risks for serious micro- and macro-

vascular complications and premature mortality [1, 2]. 

Currently, T2DM cannot be cured and treatment consists 

primarily of managing blood glucose and cardiovascular 

risk factors (e.g., blood pressure and serum lipids) to 

postpone or prevent the development of disease compli-

cations [3].

The economic burden of T2DM is substantial [4–6], 

cost-effectively allocating scarce resources among com-

peting resources is challenged not only by the limited 

time and resources available to economic stakeholders in 

general but also by an unusual degree of decision-making 

uncertainty (e.g., clinical and economic implications that 
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extend far beyond trial durations, large number of inter-

dependent micro- and macrovascular complications with 

multiple treatment targets, patient heterogeneity, evolving 

practice patterns, and practice patterns that can differ 

widely between trials and ordinary use) [7].

The evidence used by economic stakeholders to make 

decisions is routinely generated using economic models 

that support extrapolation of trial data to time horizons 

sufficient to capture the full costs and benefits of interven-

tion (often lifetime). A large number of economic models 

of T2DM are available [8]. Ideally, these models would 

be user friendly, transparent, fast, and accurate (i.e., good 

external validity). To obtain good predictive accuracy 

given the complexity of T2DM, however, these models 

must include a large set of interdependent micro- and 

macrovascular complications and sophisticated long-term 

treatment managers that challenge these goals.

Economic simulation models can generally be divided 

according to whether they represent the hypothetical 

patients as unique individuals (micro-simulation) or as 

average members of a representative cohort (cohort mod-

eling) [9, 10]. Both approaches have well-known advan-

tages and disadvantages. Micro-simulation models can 

accommodate patient heterogeneity and interdependent 

health states while maintaining a compact form because 

individual hypothetical patients can be assigned and carry 

with them a large amount of personal information, which 

enables simulation of personalized treatment pathways 

and event risks and realistic patient histories [9, 10]. The 

primary disadvantages of the micro-simulation approach 

in T2DM are a lengthy model code (often in high-level 

programming language rather than the more accessible 

Microsoft  Excel® [Microsoft, Seattle, WA, USA]), com-

putational intensiveness [9, 11], and an additional demand 

on the economic stakeholder for case-specific disease and 

programming expertise to evaluate the suitability of man-

ufacturer-submitted models. Indeed, the code underlying 

most current models of T2DM is generally impenetrable 

to most non-programmers and run times (numbering in 

hours and sometimes days) can be limiting. The Canadian 

Agency for Drugs and Technologies in Health (CADTH), 

for example, has announced pending updates to its Cat-

egory 1 Requirements that include model run times for the 

base-case analysis and key scenario analyses of less than 1 

business day and programming in Microsoft  Excel® [12].

Cohort models can approximate a micro-simulation 

model if the disease is discretized into enough health states, 

but “state explosion” and the paradoxical possibility the 

model is less manageable and transparent than a correspond-

ing micro-simulation model [10], thus the micro-simulation 

approach has been widely used for T2DM [8, 13, 14]. Prag-

matic cohort models can be constructed without a “state 

explosion”, however, even for complicated diseases with-

out a complete sacrifice of predictive accuracy. The IHE 

Diabetes Cohort Model (IHE-DCM) [15] was designed and 

Key Points 

Efficiently allocating scarce resources for chronic and 

progressive diseases such as type 2 diabetes mellitus 

(T2DM) is challenged by limited time and resources 

and an unusual degree of decision-making uncertainty 

(e.g., clinical and economic implications that extend 

far beyond trial durations, patient heterogeneity, evolv-

ing practice patterns, and practice patterns that differ 

between trials and ordinary use).

To extrapolate trial data to longer decision-making 

time horizons, economic modeling is routinely used. 

While economic models of T2DM would ideally be user 

friendly, transparent, fast, and accurate (i.e., good exter-

nal validity), the complexity of T2DM generally requires 

comprehensive (including parallel sets of complications 

and sophisticated treatment-switching algorithms) to 

ensure good predictive accuracy. Established T2DM 

models are generally slow and relatively opaque, which 

imposes an additional demand on economic stakeholders 

for case-specific expertise to evaluate the suitability of 

manufacturer-submitted models and in some cases to run 

the models with tight deadlines.

To address a need that some economic stakeholders 

have for greater user friendliness and faster run times, 

the IHE Diabetes Cohort Model was constructed using 

the cohort rather than the micro-simulation approach. A 

well-known limitation of cohort modeling, however, is 

an inability to adequately model patient heterogeneity (at 

least not without a health state explosion) and a potential 

for biased cost-effectiveness estimates.

In exercises designed to evaluate the potential magnitude 

of bias of the IHE Diabetes Cohort Model, we com-

pared results generated for a set of simulation scenarios 

with those of a micro-simulation model (Economic and 

Health Outcomes Model of T2DM), chosen because the 

structures are otherwise generally similar and because 

it was possible to harmonize the models even more to 

minimize between-model simulation differences. We 

found systematic differences in simulated costs and qual-

ity-adjusted life-years, but little evidence of systematic 

differences in the incremental costs and quality-adjusted 

life-years that underlie cost-effectiveness metrics or in 

incremental cost-effectiveness ratios and net monetary 

benefits themselves.
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constructed in Microsoft  Excel® (Microsoft) with this in 

mind to address reasonable concern about a lack of trans-

parency in micro-simulation models and has demonstrated 

external validity on par with other micro-simulation mod-

els of T2DM [15]. The benefits include fewer parameters, 

faster run times, and convenient use of Microsoft  Excel®, 

all of which can be appealing to stakeholders tasked with 

understanding (and potentially running) the models under 

time pressure [16]. The primary disadvantage of the cohort 

modeling approach is the potential for biased estimates of 

the incremental cost-effectiveness ratio (ICER), which arises 

when there is “uncaptured” patient heterogeneity that forces 

the cohort approach to simulate non-linear relationships with 

average patient characteristics [16]. To manage the large 

number of parallel health states, Visual Basic for Applica-

tions was used to program key model functions as macros, 

thus sacrificing some of the potential gains in transparency.

The IHE-DCM has been used to estimate long-term cost 

consequences of T2DM in Sweden [17], to estimate the cost-

effectiveness of anti-hyperglycemic treatments [18–22], and 

to support HTA submissions in Sweden, Norway, and Can-

ada [23–25]. Given the possibility that the cohort modeling 

approach produces biased estimates for complex diseases 

like T2DM, stakeholders can benefit from an empirical 

investigation of the likely magnitude and direction (i.e., the 

potential penalty to be traded against the other benefits). 

Indeed, CADTH conjectured that “there may be a significant 

degree of bias …” involved in a recent application using 

IHE-DCM, owing in part to the model design (including 

absence of patient variability and the non-linear relationship 

between biomarkers and outcomes) [25]. The Norwegian 

Medicines Agency had similar reservations about the cohort 

approach, though they concluded that IHE-DCM was appro-

priate given shorter run times and greater transparency [23].

2  Objective

The objective of this study was to inform decision makers 

by investigating the direction and magnitude of bias of IHE-

DCM cost-effectiveness estimates attributable to using the 

cohort modeling approach.

3  Methods

We borrowed well-established cross-validation tools [11, 

13, 26] to examine whether cost-effectiveness estimates 

generated by IHE-DCM are tangibly biased by comparing 

IHE-DCM results from a set of scenarios inspired by the 9th 

Mount Hood Diabetes Challenge with corresponding results 

produced by an otherwise similar micro-simulation model—

the Economic and Health Outcomes Model of T2DM 

(ECHO-T2DM). Similar analyses have been performed pre-

viously for other diseases, including chronic obstructive pul-

monary disease [27], human immunodeficiency virus [28], 

and hepatitis C [29]. While such an exercise cannot provide a 

definitive (and universal) answer to concerns about possible 

bias, and it does not address the academic discussion of how 

much accuracy is reasonable to swap for increased transpar-

ency [30], it can provide a careful examination of how two 

otherwise similar models respond to the same stimuli (both 

absolutely and incrementally) and thus inform stakeholders 

charged with interpreting evidence generated by IHE-DCM.

3.1  The Models

IHE-DCM uses the cohort approach to model the cost-effec-

tiveness of competing treatment alternatives for representa-

tive hypothetical patients with T2DM [18–22]. It is con-

structed with Markov health states representing important 

microvascular complications (retinopathy, neuropathy, and 

nephropathy) and macrovascular complications (myocardial 

infarction, ischemic heart disease, heart failure, and stroke) 

and dead, updated in annual cycles. Microvascular event 

risks are sourced primarily from the National Institutes of 

Health model [31] and Bagust et al. [32]. Multiple sets of 

macrovascular and mortality event risks are supported in 

the model [33–36], of which the UK Prospective Diabe-

tes Study Outcomes Model 2 equations [36] were used in 

this exercise. Treatment effects are applied as changes in 

biomarkers (applied during the first year of treatment) and 

biomarker evolution is simulated until the predefined time 

horizon is reached. Treatment algorithms allow for treatment 

intensification when glycemic goals are not met. Unit costs 

and quality-adjusted life-year (QALY) disutility weights are 

applied based on health outcomes. The simulation time hori-

zon is user defined and the probabilistic sensitivity analysis 

(PSA) is supported for treatment effects, risk coefficients, 

biomarker drifts, adverse event rates, unit costs, and QALYs. 

A more complete description can be found in the Electronic 

Supplementary Material (ESM). IHE-DCM performed in 

line with other micro-simulation models in internal and 

external validation exercises covering 12 long-term clini-

cal studies, though there was a tendency to overestimate 

the macrovascular outcomes [15]. Model validity has been 

described formally using the Assessment of the Validation 

Status of Health-Economic decision modeling tool [37] (see 

the ESM).

ECHO-T2DM was chosen as the micro-simulation model 

because it has a similar (albeit not identical) structure (e.g., 

health states, biomarkers, risk predictions, as well as out-

comes) and model features (e.g., treatment intensification 

following poor glycemic control), an ability to simulate com-

mon risk equations (both models support multiple sets), and 

flexibility. Furthermore, as both models were available to 
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the study authors, the models could be modified to further 

improve standardization and reduce noise attributable to 

factors other than the modeling approach (something not 

possible when cross-validating against previously published 

results in the literature). ECHO-T2DM is validated [38, 39] 

and has participated in the 5th through 9th Mount Hood Dia-

betes Network Challenges [8, 13, 26]. A full description can 

be found in the ESM and tests of its validity are described 

using the Assessment of the Validation Status of Health-

Economic decision modeling tool [37] (see the ESM).

The main differences in the models and the steps taken 

to harmonize them are presented in Table 1.1 Briefly, we 

harmonized the model structures used in this exercise by: 

(1) selecting the same sets of macrovascular and mortality 

risk prediction equations (UKPDS 82) [36], (2) simplifying 

the ECHO-T2DM insulin treatment algorithm to duplicate 

the simpler regimen supported by IHE-DCM, and (3) align-

ing diverse inputs such as microvascular risk elasticities 

with glycosylated hemoglobin  (HbA1c) and systolic blood 

pressure and drifts of clinical biomarkers. However, the 

models simulate end-stage renal disease risk and estimated 

glomerular filtration rate (eGFR) progression differently, 

which could not be resolved directly, thus eGFR progression 

in IHE-DCM was loaded as closely as possible to ECHO-

T2DM. Health states for kidney disease and foot ulcer also 

differed, which was handled by disabling the cost and QALY 

consequences for micro-and macroalbuminuria in IHE-DCM 

and for chronic kidney disease (CKD) stages as well as foot 

ulcer in ECHO-T2DM. Because these standardizations entail 

that the simulated versions of the models are somewhat arti-

ficial, a sensitivity analysis was performed using the models 

“as intended” (i.e., not harmonized).

3.2  Reference Case

A set of simulation scenarios was designed with inspira-

tion from the “Reference Case” simulation developed for 

the 9th Mount Hood Diabetes Challenge Network (convened 

in Dusseldorf, Germany in 2018) [40] and based loosely 

on the Action in Diabetes and Vascular Disease: Preterax 

and Diamicron Modified Release Controlled Evaluation 

(ADVANCE) trial [41]. The Mount Hood Diabetes Chal-

lenge Network Reference Case was chosen as it is well 

known in diabetes modeling circles and permits compari-

son with publicly available results for 11 other models of 

diabetes [8]. In a first step, the Reference Case was simu-

lated exactly as per the Challenge instructions [42], which 

importantly extends the reach of this analysis by support-

ing comparison with 11 different diabetes models that have 

uploaded results to the online Mount Hood Diabetes Net-

work Registry [8] (because of the harmonization, the results 

reported here for ECHO-T2DM differ slightly from those 

online).

Baseline patient characteristics were sourced from the 

Challenge instructions and, as necessary, from ADVANCE 

trial publications (see Table 2). Quality-adjusted life-year 

disutility weights were sourced entirely from the Challenge 

instructions (see Table 1 of the ESM). The Mount Hood 

Challenge simulation consisted of a control arm compared 

with five hypothetical treatment profiles, the first four of 

which considered changes in individual biomarkers one at 

a time and the last of which included the combined set of 

biomarker changes. For this application, we simulated the 

combined set of biomarker changes (see Table 3). As per 

the Challenge instructions, male and female individuals 

are simulated separately (though baseline characteristics 

were otherwise identical), biomarkers were kept constant 

over time, and the simulation time horizon was 40 years. 

We supplemented the Reference Case by including a vec-

tor of unit costs reflecting the Canadian treatment setting 

(see Table 1 in the ESM), which enabled consideration of 

cost-effectiveness metrics. Fictional, but not unreasonable, 

annual costs were applied for the control and intervention 

arms (CAN$1000 vs CAN$2500). A porobabilistic sensi-

tivity analysis was used in the base case for both models, 

which is consistent both with micro-simulation modeling 

and with ordinary use of IHE-DCM (though it may differ 

from common practice with cohort modeling in general). 

Preliminary simulations found that cost-effectiveness met-

rics stabilized at or well before 500 cohorts (with 1000 indi-

viduals per cohort for ECHO-T2DM), ICER for IHE-DCM, 

and net monetary benefits (NMB) for ECHO-T2DM based 

on model functionalities. Conservatively, 1000 cohorts (and 

2000 individuals per cohort for ECHO-T2DM) were chosen 

(see Fig. 7 in the ESM). 

3.3  Expanded Reference Case

The restriction of homogeneous patients at baseline (and 

the absence of biomarker evolution and rescue medication) 

in the Reference Case artificially limits a key difference 

between cohort and micro-simulation modeling and lim-

its generalizability of the exercise. Inspired by the Mount 

Hood Reference Case, we created a more realistic simula-

tion scenario that captures patient heterogeneity, natural 

evolution of biomarkers, and treatment intensification. 

We also added biomarker treatment effects for  HbA1c and 

eGFR to the control arm (see Table 3). Because cost-effec-

tiveness is rarely estimated separately for male and female 

individuals in T2DM, the sexes were pooled. Treatment 

1 This differs from a conventional cross-validation analysis, in which 
the models are applied without adjustment to the same decision-
making problem. In this exercise, the models were adjusted to remove 
structural differences to better isolate differences attributable to the 
unit of representation (i.e., cohort vs patient).
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intensification starting with basal insulin and followed by 

a basal and bolus insulin regimen was applied when  HbA1c 

was ≥ 8% (see Table 2 in the ESM). Note: these results are 

not comparable to those stored in the Mount Hood Diabe-

tes Network Registry [8].

In addition to the base case, 18 additional scenarios were 

created and simulated to evaluate whether systematic differ-

ences between the models (and modeling approaches) could 

be identified and, if so, which model features drive them. 

The scenarios are presented in Table 4 and can broadly be 

sub-divided into tests of the treatment algorithm, the impor-

tance of PSA, economic parameters (i.e., costs of treatment 

and QALY disutility weights), different patient sub-groups 

(male vs. female individuals, early disease, and late disease), 

and differences in the CKD sub-model. Baseline patient 

characteristics for early and late disease are presented in 

Table 2. As these scenarios are each based on model har-

monization to minimize between-model differences unre-

lated to the cohort vs micro-simulation approaches, we also 

simulated a less artificial scenario in which the models were 

simulated as intended.

3.4  Analysis

We compared estimated model outcomes (including costs, 

QALYs, and ICERs and NMBs defined based on QALYs 

Table 2  Baseline patient characteristics

Bolded values for early disease and late disease cohorts indicate changes from expanded reference case

BMI body mass index, CHF congestive heart failure, eGFR estimated glomerular filtration rate, HbA1c glycosylated hemoglobin, HDL high-den-
sity lipoprotein, HR heart rate, IHD ischemic heart disease, LDL low-density lipoprotein, MI myocardial infarction, SBP systolic blood pressure, 
SD standard deviation, WBC white blood cell
a Entered as minimum/maximum in the Economic and Health Outcomes Model of T2DM
b Entered as mmol/L in the IHE Diabetes Cohort Model

Parameter Reference case (male and 
female individuals separately)

Expanded Reference 
case

Early disease (hypotheti-
cal)

Late disease (hypo-
thetical)

Mean/% Mean/% SD Mean/% SD Mean/% SD

Demographics

Age (years) 66.00 66.00 6.00 50.00 6.00 75.00 6.00

Male (%) – 50.0 – 50.0 – 50.0 –

Disease duration (years)a 8.00 8.00 – 2.50 – 15.00 –

Ethnicity/race (%)

 African Americans 1.9 1.9 – 1.9 – 1.9 –

 Caucasian 98.1 0.0 – 0.0 – 0.0 –

Clinical indicators

 Atrial fibrillation (%) 0.0 0.0 – 0.0 – 0.0 –

 Smokers (%) 0.0 0.0 – 0.0 – 0.0 –

 HbA1c (%) 7.50 8.00 1.50 8.00 1.50 8.00 1.50

 SBP (mmHg) 145.00 145.00 22.00 135.00 22.00 155.00 22.00

 BMI (kg/m2) 28.00 28.00 5.00 27.00 5.00 30.00 5.00

 WBC (*106) 7.00 7.00 1.90 7.00 1.90 7.00 1.90

 HR (beat/minute) 79.00 79.00 12.00 79.00 12.00 79.00 12.00

 Total cholesterol (mg/dL)b 200.77 200.77 1.20 190.00 46.33 210.00 46.33

 LDL cholesterol (mg/dL)b 115.83 115.83 39.77 110.00 39.77 130.00 39.77

 HDL cholesterol (mg/dL)b 50.19 50.19 15.44 50.19 15.44 50.19 15.44

 Triglycerides (mg/dL)c 176.99 176.99 1.50 176.99 132.74 176.99 132.74

 eGFR (mL/min/1.73  m2) 70.00 70.00 15.00 80.00 15.00 60.00 15.00

Co-morbidities (%)

 Microalbuminuria – 25.6 – 10.3 – 30.0 –

 Macroalbuminuria – 3.6 – 1.9 – 20.0 –

 IHD (not including MI) – 6.1 – 0.0 – 12.0 –

 MI – 12.0 – 2.0 – 25.0 –

 CHF – 6.1 – 0.0 – 10.0 –

 Stroke – 9.2 – 1.4 – 20.0 –
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gained) under the maintained assumption that systematic dif-

ferences can largely be attributed to the modeling approach 

(cohort vs micro-simulation) given our attempts to otherwise 

harmonize the models and input parameters. Numerical dif-

ferences between models were calculated and assessed, for 

costs and QALYs at both the absolute and incremental lev-

els. Mean differences were calculated across the base case 

and all scenarios in the Expanded Reference Case. Because 

harmonization was incomplete, however, some noise will 

inevitably enter, thus we assessed concordance statistically 

using three different methods (for the Reference Case, only 

visual assessment was performed):

1. We plotted the mean and 95% confidence intervals for 

incremental costs, incremental QALYs, and NMB esti-

mated for both models for the base case and for the 18 

scenario analyses. The proportion of point estimates for 

each model falling within the 95% confidence interval 

produced by the other model was generated for each out-

come (ICERs were excluded because more than 2.5% of 

replications produced negative values). Ninety percent 

was considered a threshold for concordance.

2. At an anonymous reviewer’s suggestion, we conducted 

a formal hypothesis test for costs, QALYs, and NMB 

using the paired t test with a null hypothesis of con-

cordance (significance level of 5%). We performed the 

test for ICERs as well because they are of considerable 

interest to decision makers, but one of the scenarios 

had to be omitted because it produced cost savings and 

QALY gains (i.e., a negative ICER). To ensure that vio-

lation of normality does not invalidate the results, the 

non-parametric Wilcoxon Signed Rank Test was also 

Table 3  Treatment profiles

BMI body mass index, CDC Center of Disease Control, CHF congestive heart failure, CKD chronic kidney disease, ECHO-T2DM Economic and 
Health Outcomes Model of T2DM, eGFR estimated glomerular filtration rate, HbA1c glycosylated hemoglobin, HDL high-density lipoprotein, 
IHD ischemic heart disease, IHE-DCM IHE Diabetes Cohort Model, LDL low-density lipoprotein, MI myocardial infarction, P-Y patient-year, 
SBP systolic blood pressure, SE standard error
a Hypoglycemic event rates increase or decrease inversely with  HbA1c, thus hypoglycemic event rates are adjusted from mean  HbA1c in the trial 
from which event rates are sourced to match the  HbA1c of the patients being simulated in both models. See also the ESM
b Annual decline for patients with eGFR > 60  mL/min/1.73  m2 − 1.1, patients with eGFR > 60 and macroalbuminuria − 4.1, patients with 
eGFR < 60 − 2.8, patients with eGFR < 60 and macroalbuminuria − 5.2

Reference Case Expanded Reference Case

Treatment Intervention Control Intervention Control

Mean (SE) change from baseline Mean Mean Mean SE Mean SE

HbA1c, % − 1 0 − 1 0.05 − 0.5 0.05

SBP, mmHg − 10 0 − 10 1.5 0 0

LDL cholesterol, mg/dL − 19.305 0 − 19.305 1.5 0 0

BMI, kg/m2 − 1 0 − 1 0.05 0 0

eGFR 0 0 0 0 − 5 1.000

Rates of adverse events (per P-Y of 
exposure):

Non-severe hypoglycemia 0 0 0.5 0 1 0

Severe hypoglycemia 0 0 0 0 0 0

Correspondinga  HbA1c, % 7.5 7.5 7.5 0 7.5 0

Drifts

HbA1c, % 0 0 0.14 0 0.14 0

SBP, mmHg 0 0 0.3 0 0.3 0

Total cholesterol, mg/dL 0 0 0 0 0 0

LDL cholesterol, mg/dL 0 0 0 0 0 0

HDL cholesterol, mg/dL 0 0 0 0 0 0

Triglycerides, mg/dL 0 0 0 0 0 0

BMI, kg/m2 0 0 0 0 0 0

eGFR (ECHO-T2DM) 0 0 Estimated from CDC-CKD model 
[47, 48]b

Estimated from CDC model 
[47, 48]b

eGFR (IHE-DCM) 0 0 − 2.43 0 − 2.43 0

Treatment costs (CAN$)

Drug 2500 1000 2500 0 1000 0
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performed. Because the results of modeling different 

simulation scenarios are not akin to independent draws 

from a population (i.e., there is considerable depend-

ence), this test is over-powered and thus too likely to 

reject the null hypothesis of concordance.

3. At the same reviewer’s suggestion, we also performed a 

test loosely based on methods proposed by Corro Ramos 

and colleagues [43] in which we calculated the number 

of PSA iterations for each model for which the estimated 

NMB falls within the 95% confidence interval produced 

by the other model for the base case scenario (ICERs 

were excluded because 95% confidence intervals could 

not be generated). Note, the Corro Ramos et al. approach 

is designed to assess the validity of model estimates by 

comparing with clinical data rather than predictions 

from a different model.

Because important differences can be masked when looking 

only at the aggregate level, we also compared cumulative event 

incidences in the Expanded Reference Case for IHE-DCM and 

ECHO-T2DM (95% confidence intervals are not generated by 

IHE-DCM). Specifically, the proportion of the 14 IHE-DCM-

predicted cumulative event incidence rates in the base case 

falling within the 95% confidence intervals for the correspond-

ing ECHO-T2DM micro-simulation estimates was calculated. 

Ninety percent was considered a threshold for concordance. 

Biomarker evolution curves were examined to ensure that the 

simulations were properly implemented.

4  Results

4.1  Comparison of Model Implementation

Run times differed substantially by model. On a personal 

computer with a 16-GB random access memory and an 

I7-processor, run times for the base case analysis were 

approximately 45 min for IHE-DCM and 30 h for ECHO-

T2DM. For the scenario analysis without PSA (i.e., run-

ning only one cohort), run times were less than 1 min for 

IHE-DCM and between 2 and 3 min for ECHO-T2DM. In 

part because there are more parameters in micro-simulation 

though also because ECHO-T2DM has more model features, 

the analysts (authors AN and AL) noted that loading and 

double checking ECHO-T2DM took longer than IHE-DCM.

4.2  Reference Case

Key results for the Reference Case are presented in Tables 3 

and 4 of the ESM for male and female individuals, respec-

tively. Estimated life-years predicted by IHE-DCM were 

approximately 1  year longer for male individuals and 

0.6 years longer for female individuals for both treatment 

arms than for ECHO-T2DM, which is consistent with the 

larger predicted QALYs and total costs. The between-model 

differences were smaller at the incremental level. Incremen-

tal predicted life-years were 0.61 and 0.47 years for IHE-

DCM vs 0.71 and 0.55 years for ECHO-T2DM, for male 

and female individuals, respectively. The between-model 

differences in incremental predicted QALYs were smaller 

by about half. Incremental predicted total costs differed by 

CAN$294 for male and CAN$462 for female individuals, 

which yielded ICERs (per QALY gained) of CAN$29,309 

for IHE-DCM vs CAN$27,654 for ECHO-T2DM for male 

individuals and CAN$38,680 for IHE-DCM vs CAN$37,109 

for ECHO-T2DM for female individuals. At a willingness-

to-pay threshold of CAN$50,000, NMBs (based on QALYs 

gained) were $13,293 for IHE-DCM vs CAN$15,452 for 

ECHO-T2DM for male individuals and CAN$6,199 for IHE-

DCM vs CAN$7518 for ECHO-T2DM for female individu-

als. The cumulative incidences for micro- and macrovascular 

complications are presented in Figs. 3 and 4 of the ESM. 

With the exception of kidney complications, IHE-DCM pre-

dictions fell well within the 95% confidence intervals.

4.3  Expanded Reference Case

Key results for the Expanded Reference Case are presented 

in Table 5. Predicted absolute life-years, QALYs, and total 

costs were (as with the Reference Case) larger for IHE-DCM 

for both treatment arms. Incremental (between-arm) differ-

ences were again smaller, though the between-model gap 

differences were larger than in the Reference Case (0.46 vs 

0.60 life-years gained, 0.67 vs 0.72 QALYs gained, and net 

cost increases of CAN$3719 vs CAN$5098 for IHE-DCM 

and ECHO-T2DM, respectively). Uncertainty as indicated 

by 95% confidence intervals was similar for the two models 

for costs, but about twice as high for IHE-DCM for QALYs 

(with the difference largely attributable to hypoglycemia 

event rates). Estimated ICERs were CAN$5542 for IHE-

DCM and CAN$7059 for ECHO-T2DM and NMBs were 

CAN$28,834 and CAN$31,009, respectively. While 95% 

confidence intervals could not be calculated for ICERs, the 

95% confidence intervals for NMBs were also about twice 

as wide for IHE-DCM and the lower bound was below 0 

(CAN$-5833).

Estimated survival curves were visually similar, though 

slightly higher for IHE-DCM (see Fig. 1). Estimated 40-year 

cumulative incidence rates for IHE-DCM fell within the 95% 

confidence intervals for ECHO-T2DM predictions for each 

outcome, though IHE-DCM generated generally lower esti-

mates than ECHO-T2DM (see Fig. 2). These cumulative 

incidences are also presented in a scatterplot in Fig. 6 of the 

ESM, with the values for IHE-DCM on the horizonal axis 
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and for ECHO-T2DM on the vertical axis. Points along the 

45-degree line indicate equality and the dotted lines plot the 

best-fitting linear regression lines.

A cost-effectiveness scatterplot plane is presented in 

Fig. 3, with each point representing incremental QALYs 

and costs for one of the 1000 cohort replicates for the two 

Table 5  Detailed cost-effectiveness estimates for the Expanded Reference Case, by model

AE adverse event, AHA anti-hyperglycemic agent, CHF congestive heart failure, CI confidence interval, CKD chronic kidney disease, ECHO-

T2DM Economic and Health Outcomes Model of T2DM, IHD ischemic heart disease, IHE-DCM IHE Diabetes Cohort Model, LY life-year, MI 
myocardial infarction, PVD peripheral vascular disease, QALY quality-adjusted life-year
a Note: this is the outcome measure for IHE-DCM. Individual components are calculated separately for ECHO-T2DM, but we calculated this ex 

post as PVD + amputation + neuropathy for comparison purposes
b For consistency with the other disutility measures, only the disutility associated with survival differences is reported (with the value of one 
intervention normalized to 0)

IHE-DCM ECHO-T2DM

Intervention Control Difference Intervention Control Difference

Cost drivers

Treatment 31,473 24,186 7287 29,372 21,674 7698

Non-insulin AHA – – – 15,040 4666 10,375

Insulin AHA – – – 14,332 17,009 − 2677

MI 12,384 13,152 − 768 12,828 13,540 − 712

IHD 7391 7830 − 439 5524 5685 − 161

CHF 9228 9659 − 431 7343 7282 62

Stroke 14,349 16,454 − 2105 9391 10,025 − 634

PVD – – – 183 165 18

Retinopathy 247 286 − 40 250 264 − 14

CKD 4051 4007 44 6890 8199 − 1309

Neuropathy – – – 310 319 − 8

Amputation 3716 3449 267

Lower extremity  diseasea 5142 4972 171 4209 3932 277

Hypoglycemia 483 655 − 171 602 711 − 109

Total costs (95% CI) 84,266 80,547 3719 (− 2807; 10,245) 76,410 71,312 5098 (− 3162; 9694)

Disutility drivers

MI 0.097 0.099 − 0.002 0.089 0.089 0.000

IHD 0.081 0.086 − 0.004 0.059 0.060 − 0.001

CHF 0.094 0.097 − 0.003 0.071 0.069 0.002

Stroke 0.086 0.095 − 0.009 0.077 0.078 − 0.001

PVD – – – 0.090 0.081 0.009

Retinopathy 0.033 0.038 − 0.005 0.034 0.037 − 0.002

CKD 0.040 0.040 0.000 0.083 0.098 − 0.015

Neuropathy – – – 0.025 0.025 − 0.001

Amputation event – – – 0.050 0.046 0.004

Lower extremity disease 0.201 0.192 0.009 – – –

Hypoglycemia 0.642 0.807 − 0.165 0.598 0.740 − 0.142

Excess weight 0.202 0.268 − 0.066 0.266 0.283 − 0.017

Survivalb 0.471 − 0.558

Total 0.671 0.722

Health outcomes (discounted)

LYs (95% CI) 13.169 12.710 0.459 (0.096; 0.822) 11.150 10.546 0.604 (0.180; 1.033)

QALYs (95% CI) 10.966 10.295 0.671 (− 0.029; 1.371) 8.978 8.256 0.722 (0.359; 1.205)

Survival at end of year 40 0.8% 0.7% 0.2% 0.3% 0.2% 0.1%

Net monetary benefits 29,834 (− 5833; 65,501) 31,009 (14,562; 55,026)

Incremental cost per QALY gained 5542 7059
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models (IHE-DCM in black and ECHO-T2DM in red). 

Though uncertainty is larger for IHE-DCM, the scatterplots 

largely coincide. Cost-effectiveness acceptability curves 

are largely similar as well (see Fig. 5 in the ESM). Both 

models predict a low probability of cost savings, but the 

predicted probabilities that the intervention is cost-effective 

are about 70% at a willingness-to-pay of CAN$10,000 per 

QALY gained rising to 96% for IHE-DCM and 100% for 

ECHO-T2DM at a willingness-to-pay of CAN$50,000 per 

QALY gained. The modified Corro Ramos et al. test found 

that estimated NMB for IHE-DCM fell within the 95% 

confidence interval generated by ECHO-T2DM for 72% of 

the PSA iterations. For ECHO-T2DM, estimated NMB fell 

within the 95% confidence interval generated by IHE-DCM 

for 98% of the replications.

Similarities at the aggregate level may mask some differ-

ences at the granular level. For example, IHE-DCM simu-

lated greater cost offsets for avoided stroke and ischemic 

heart disease events than ECHO-T2DM, but ECHO-T2DM 

predicted cost offsets for CKD while IHE-DCM predicted 

a modest cost increase. Simulated biomarker evolution 

curves diverged over time, especially for  HbA1c and body 

mass index where the start of rescue insulin medication 

occurred at the same time and induced stair step patterns 

in IHE-DCM, largely because of differential survival in the 

Fig. 1  Forty-year intervention and comparator survival for Expanded 
Reference Case, by model. ECHO-T2DM Economic and Health Out-
comes Model of T2DM, IHE-DCM IHE Diabetes Cohort Model

Fig. 2  Forty-year predicted cumulative incidence rates for Expanded 
Reference Case, by model. The whiskers represent the estimated 95% 
confidence interval of the cumulative incidence in the Economic 
and Health Outcomes Model of T2DM (ECHO-T2DM). BDR back-
ground diabetic retinopathy, CHF congestive heart failure, ESRD 

end-stage renal disease, GPR gross proteinuria (macroalbuminuria), 
IHD ischemic heart disease, IHE-DCM IHE Diabetes Cohort Model, 
LEA lower extremity amputation, MA microalbuminuria, ME macular 
edema, MI myocardial infarction, PDR proliferative diabetic retinopa-
thy, PVD peripheral vascular disease
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heterogeneous ECHO-T2DM simulated population (see 

Fig. 8 of the ESM).

Results of the scenario analysis demonstrated that the 

two models changed in predictable (and mostly similar) 

ways to the parameter changes. IHE-DCM produced con-

sistently greater life-years, QALYs, and absolute costs for 

both treatment arms than ECHO-T2DM (summary results 

are presented in Table 5 in the ESM) and IHE-DCM also 

generated consistently lower mean incremental costs, 

QALYs, and NMBs. Mean ICER for the base case and the 

18 scenarios (excluding one scenario for which interven-

tion was dominant for both models) were CAN$10,299 for 

IHE-DCM and CAN$10,417 for ECHO-T2DM. IHE-DCM 

generated a lower ICER in ten of the 18 cases (with well-

behaved ICERs).

Individually, the results of the scenarios were gener-

ally predictable and robust. Sub-group analysis was nota-

ble, for example, only because the early disease cohort was 

associated with a noticeable change in incremental costs 

(especially for IHE-DCM). This affected predicted ICERs 

in relative terms, though the effect was less for the NMB 

(CAN$41,300 for IHE-DCM vs CAN$43,411 for ECHO-

T2DM). The results were most affected by assumptions 

about CKD, where structural differences could be least 

standardized. Keeping eGFR constant over time increased 

the ICERs for both models compared with the base case, 

with between-model differences driven largely by changes 

in incremental costs. Using the model “as intended” (rather 

than standardized) had limited impact on the results.

Mean and 95% confidence intervals (note, only for sce-

narios with PSA activated) for incremental costs, incre-

mental QALYs, and the NMB are plotted in Fig. 4. Nei-

ther model had a mean value that fell outside of the 95% 

confidence interval for the other model in the base case or 

any of the 18 scenarios. Paired t tests uniformly rejected 

the null hypothesis of between-model equality of the abso-

lute costs (p < 0.001) and QALYs (p < 0.001), incremental 

costs (p < 0.001) and QALYs (p < 0.001), and the NMB 

(p < 0.009). For the scenarios with well-behaved ICER esti-

mates, however, the t test failed to reject between-model 

equality (p < 0.68).

5  Discussion

Using well-established cross-validation tools [11] modified 

to allow structural standardization of the models, we exam-

ined whether IHE-DCM produces systematically biased esti-

mates of cost-effectiveness related to the cohort approach. 

In a simple Reference Case performed to enable comparison 

with the results of 11 other models that participated in the 

9th Mount Hood Diabetes Challenge, IHE-DCM produced 

consistently greater absolute survival, QALYs, and costs 

than ECHO-T2DM, which is consistent with the difference 

between modeling homogenous patients and heterogene-

ous patients when event risks are non-linear (specifically 

convex) in key parameters [16]. Between-model differences 

were generally small at the incremental level (i.e., different 

between the two comparator arms) used to construct cost-

effectiveness metrics, however, and the ICER and NMB, 

which were also similar between models. As expected, IHE-

DCM was considerably faster compared with ECHO-T2DM, 

with a run time of approximately 45 min compared with 30 h 

using ECHO-T2DM, an important aspect for many stake-

holders under time constraints.

This same pattern was observed for the more realistic 

Expanded Reference Case and 18 scenario analyses, and both 

models responded to changes in model parameters similarly 

and predictably. This was supported statistically; incremen-

tal costs, incremental QALYs, and NMBs for each model fell 

uniformly within the 95% confidence interval generated by 

the other model. There was more uncertainty in the results 

of IHE-DCM, which was driven in large part by uncertainty 

in the parameter estimate for the hypoglycemia event rate 

(eliminating it roughly halved the confidence interval). The 

estimates of ECHO-T2DM falls within even half of the 95% 

confidence intervals generated by IHE-DCM. Estimates 

in the base case by IHE-DCM of the 40-year cumulative 

incidence of study outcomes, moreover, fell within the 95% 

confidence intervals generated by ECHO-T2DM. While the 
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paired t tests did find statistically significant between-model 

differences in incremental costs, incremental QALYs, and 

the NMB for these 19 scenarios, the paired t test is grossly 

overpowered to reject the null hypothesis in this setting as 

the simulation scenarios (i.e., the sample draws) are not 

independent of each other. Interestingly, however, the paired 

t test failed to reject between-model differences for the ICER 

(p < 0.68) for the 18 scenarios for which both incremental 

costs and incremental QALYs were positive (producing a 

meaningful ICER). Further underscoring this absence of 

clear bias in cost-effectiveness estimates, there was no dis-

cernible pattern as to which model produced more favora-

ble cost-effectiveness estimates, with each more favorable 

in roughly half of the scenarios.

The trade-off between cohort modeling and micro-sim-

ulation is sometimes (perhaps mistakenly) cast as a choice 

between time and transparency vs accuracy. Both models 

satisfy International Society for Pharmacoeconomics and 

Outcomes Research recommendations for model trans-

parency, which accept complexity and call instead for a 

technical report that describes the structure, components, 

equations, and computer code that would enable experts to 

reproduce the model (full technical transparency) and non-

technical documentation that, at a minimum, describes the 

type of model and intended applications, funding sources, 

model structure, inputs and outputs, data sources, model 

validation, and model limitations [11]. While transparency 

in a general sense is hard to quantify, and no fit-for-purpose 

diabetes models are likely to achieve “transparency” in a 

general sense, analysts (authors AN and AL) generally con-

sidered that IHE-DCM was easier to grasp and work with 

(and is constructed with approximately 50% fewer lines of 

code).

This analysis has several strengths, including the use of 

two models that were relatively similar and required limited 

standardization. Many of the remaining differences could be 

standardized to minimize the extent that differences would 

be driven by model differences other than units of obser-

vations. The scenarios were inspired by the Mount Hood 

Reference Case, which permits comparison (at least of the 

Reference Case results) with 11 health economic models of 

diabetes that participated in the 9th Mount Hood Diabetes 

Challenge Network. Finally, a wide range of scenarios was 

considered that explored different aspects of the model to 

enhance generalizability.

The models could not be entirely standardized, however, 

and remaining differences must be considered when inter-

preting the results of this analysis (i.e., between-model dif-

ferences may reflect more than just the potential bias related 

to cohort vs micro-simulation modeling). In particular, the 

main structural difference is the modeling of CKD, for which 

there are different methods of simulating disease progres-

sion (transition probability vs biomarker driven) and which 

clearly impact the results. Indeed, for the cumulative inci-

dence, the CKD outcomes (micro-and macroalbuminuria 

and end-stage renal disease) were clear outliers and the mean 

estimates for the IHE-DCM model were just within the 95% 

confidence interval of ECHO-T2DM. Foot ulcer is included 

only in ECHO-T2DM. To mitigate the impact on the analy-

sis, costs and QALY weights were set to 0. The indirect 

impact on overall results was limited because foot ulcer 

affected only the risk of congestive heart failure (though 

patients simulated to develop congestive heart failure had in 

turn increased risks for ischemic heart disease, myocardial 

infarction, and mortality) and the simulated incidence of foot 

ulcer was low. Second, while the scenarios were constructed 

to mimic a cost-effectiveness analysis, the simulated sce-

narios are purely hypothetical.

While this study cannot provide a definitive (and uni-

versal) answer to concerns about possible bias, and it does 

not address the academic discussion of how much accuracy 

is reasonable to swap for increased transparency [30], this 

exercise provides a careful examination of how two other-

wise similar models respond to the same set of stimuli (both 

absolutely and incrementally), which can be valuable for 

stakeholders charged with interpreting evidence produced 

by IHE-DCM.

6  Conclusions

The IHE-DCM was faster to load and to run than the micro-

simulation model used in this study (ECHO-T2DM) and the 

modeling details are likely to be more easily understood by 

external reviewers, which can be an advantage for economic 

stakeholders with limited time and resources. Despite sys-

tematic differences in absolute predicted survival, QALYs, 

and costs, estimated cost-effectiveness metrics were simi-

lar suggesting that any bias related to the cohort approach 

is small in the outcomes that matter most. We believe that 

both models are suitable for use in cost-effectiveness evalu-

ations for interventions in T2DM; the selection of one over 

the other should be made on the basis of stakeholder needs, 

resources, and preferences.
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