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Abstract: The rapid rise of voice user interface technology has changed the way users traditionally in-
teract with interfaces, as tasks requiring gestural or visual attention are swapped by vocal commands.
This shift has equally affected designers, required to disregard common digital interface guidelines
in order to adapt to non-visual user interaction (No-UI) methods. The guidelines regarding voice
user interface evaluation are far from the maturity of those surrounding digital interface evaluation,
resulting in a lack of consensus and clarity. Thus, we sought to contribute to the emerging literature
regarding voice user interface evaluation and, consequently, assist user experience professionals in
their quest to create optimal vocal experiences. To do so, we compared the effectiveness of physi-
ological features (e.g., phasic electrodermal activity amplitude) and speech features (e.g., spectral
slope amplitude) to predict the intensity of users’ emotional responses during voice user interface
interactions. We performed a within-subjects experiment in which the speech, facial expression,
and electrodermal activity responses of 16 participants were recorded during voice user interface
interactions that were purposely designed to elicit frustration and shock, resulting in 188 analyzed
interactions. Our results suggest that the physiological measure of facial expression and its extracted
feature, automatic facial expression-based valence, is most informative of emotional events lived
through voice user interface interactions. By comparing the unique effectiveness of each feature,
theoretical and practical contributions may be noted, as the results contribute to voice user interface
literature while providing key insights favoring efficient voice user interface evaluation.

Keywords: voice user interface; implicit measures; emotional valence; emotional arousal; user
experience

1. Introduction

The history of interface design has primarily revolved around Graphical User In-
terfaces (GUI), resulting in longstanding and familiar frameworks [1]. From Nielsen’s
10 usability heuristics to Bastien Scapin’s ergonomic criteria for the evaluation of human–
computer interfaces, designers have an array of tools to guide them in their conception of
optimal digital experiences [2,3]. With the rise of non-visual user interaction (No-UI), it
may be argued that the groundwork for vocal interface design is still in development due
to the recency and rapid growth of vocal interface technologies. Indeed, in 2020, 4.2 billion
digital voice assistants worldwide were in use [4]. By 2024, this number is projected to
reach 8.4 billion, a number greater than the world’s population [4]. With this said, a set of
validated voice user interface heuristics and guiding principles has yet to breakthrough.

Research within the field has recently tried to address this matter. For example,
Nowacki et al. [5] developed an adapted version of Bastien Scapin’s ergonomic criteria
to vocal interfaces. On the other hand, Seaborn and Urakami [6] presented descriptive
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frameworks to quantitatively measure voice UX. Both studies relied on extensive reviews
of academic and professional guidelines to propose an adapted set of criteria. These studies
have contributed to the emerging field of voice user interface design, a discipline in need
of support to guide designers in the conceptualization and evaluation of speech-based
products. Despite this development, Seaborn and Urakami [6] highlighted the fact that
numerous studies in relation to voice UX rely heavily on self-reported measures, defined
by the users’ own report of their states of being. According to the authors, self-reported
measures, based on psychometric scales, were widespread and consequently called for
the development of measures, such as behavioral measures, to support findings. Self-
reported measures fall within the realm of explicit measures, characterized by the conscious
behaviour of subjects under scrutiny. Explicit measures, such as self-reported measures,
are often adopted due to their inexpensive nature [7]. However, they are limiting, as they
do not delve into the real-time automatic and subconscious reactions of users. As a result,
UX professionals are at risk of overlooking key insights regarding the underlying emotions
of users. Moreover, the limiting nature of certain explicit methods are made evident when
evaluating voice user interfaces, notably the think-aloud method [8]. Due to the nature of
this method, in which users verbally share their thoughts during interface usage, vocal
interference may hamper the user’s experience.

To obtain a thorough understanding of the user’s lived experiences, implicit measures
can be used to observe emotional reactions [9]. As opposed to explicit measures, implicit
measures tap into the subconscious behavior of users and can be reflected in speech
or physiology. In the study of emotions during voice user interface interactions, the
measure of speech is an obvious implicit measurement target due to the vocal nature
of the interaction. The data obtained from this measure can be analyzed under various
lenses through extracted speech features, including, for instance, pitch and fundamental
frequency. However, physiological measures such as electrodermal activity (EDA) and
facial micro expressions and their respective features (e.g., phasic EDA and the valence
of facial micro expressions, respectively) have the potential to be equally revealing of
emotional events [10,11].

Studies regarding emotions induced by voice user interface interactions seldom study
both speech and physiological features simultaneously. Indeed, voice user interface eval-
uation often employs explicit methods, such as questionnaires, diaries, interviews, and
observations [12–16], and do not additionally utilize implicit measures. Thus, combining
self-reported measures in addition to utilizing implicit methods to evaluate voice user
interface interactions is rare and constitutes an important gap in the literature.

Addressing this gap could potentially improve the insight UX professionals can ob-
tain when studying voice interfaces within a business context. Indeed, obstacle-prone or
provocative questioning from voice user interface systems can cause undesirable, intense
emotional responses from users, which can derail an optimal experience. Consequently,
companies seeking to avoid such responses must first be able to capture them effectively.
Limited resources can potentially prevent companies from doing so, as certain measurement
methods may fail to fully reveal the underlying emotions experienced by users. Comparing
and contrasting the strength or effectiveness of speech and physiological measures through
their respective features when observing emotional dimensions could help prioritize re-
sources and, consequently, efficiently evaluate voice user interfaces. To our knowledge,
no other study has sought to compare the effectiveness of speech against physiological
features in explaining emotional events provoked by voice user interface interactions. With
this said, the central research question of this study is the following:

RQ1: Between speech and physiological features, which are more informative in assess-
ing intense emotional responses during vocal interactions with a voice user interface?

A secondary research question has been posed, as the context of this study is unique.
Although speech and physiological measures have been widely used in human–computer
interaction (HCI) literature, few studies have sought to simultaneously capture speech and
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physiological data within a voice user interface context. This leads us to our secondary
research question:

RQ2: Can we unobtrusively identify an intense emotional response during voice user
interface interactions?

To address these gaps, using a within-subject experimental design, our research
observed speech, alongside physiological measures of EDA and automatically analyzed
facial micro expression (AFE), during emotionally charged voice user interface interactions.
The effectiveness of eight extracted speech and three extracted physiological features
in explaining these emotional events was compared. By assessing the effectiveness of
each feature, actionable insights regarding voice user interface evaluation methods were
reported. Our results provide support for the inclusion of physiological measurements in
UX evaluations of voice interfaces.

The article is structured as follows. A literature review regarding the study of emotion
in UX, as well as the leading speech features and physiological measures used to observe
user emotions, will be presented. Following this, the proposed approach and hypotheses
of the study will be explained. Next, the research methodology will be addressed, followed
by the results of the study. The paper will end with the interpretations of these results
within the discussion section followed by a brief conclusion.

2. Literature Review and Hypotheses Development

The emerging omnipresence of voice user interfaces calls for methodologies regarding
their evaluation. Unlike the methodologies surrounding the evaluation of digital products,
the authors suggest that those regarding voice user interface evaluation lack consensus
amongst UX [6], resulting in the topic’s vagueness. This is perhaps due to the fact that the
majority of interface and user experience designers have been trained in the function of
GUIs [1]. This can pose difficulties for GUI designers transitioning into voice user interface
design, as the GUI guidelines and patterns cannot directly be applied to voice user inter-
faces [1]. For example, the think-aloud method is an adequate evaluation method for GUIs,
but can interfere with the user’s experience during voice user interface evaluations. To
evaluate vocal experiences, UX professionals must resort to other methods and measures,
such as self-reported measures. As stressed in the previous section, the widespread use
of self-reported measures within voice user interface evaluation is limiting, as it fails to
unveil the underlying automatic and subconscious user reactions which are essential to
understanding user experiences. Tapping into various methods, such as implicit measures
utilizing speech and physiological data, may further help paint a vivid picture of users’ vo-
cal experiences. Furthermore, a multi-method approach can be beneficial to understanding
the effectiveness of each method in explaining emotional events experienced during voice
user interface interactions. Assessing the strength of both physiological and speech features
can provide valuable insight to UX professionals seeking to select the most effective and,
consequently, efficient evaluation method while contributing to the emerging field of voice
user interface evaluation.

In order to obtain a deeper understanding of the users’ experience, a combination
of implicit measures and explicit measures can be used [9,15]. Implicit measures allow
for real-time and precise data free of retrospective and cognitive biases to be collected [9].
Moreover, the unobtrusive nature of implicit measures favours a more natural reaction
from participants, allowing researchers to gain insights into unconscious, automatic, and
authentic emotional reactions free of interruptions [9,17–19]. Thus, by including implicit
measures, a more thorough understanding of the users’ emotions and, consequently, their
experiences, may be noted.

2.1. Speech Features

When considering implicit methods, one obvious choice for assessing changes in the
affective state is through the study of acoustic characteristics known as speech features.
Indeed, research has suggested the human voice to be a ubiquitous and insightful medium
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of vocal communication [20–25]. In the field of emotion detection and speech research,
common prosodic features such as fundamental frequency (F0) (e.g., minimum, maximum,
mean, jitter) and energy (e.g., loudness, shimmer) as well as duration are often observed and
considered among the most common [21,26,27]. Other vocal paralinguistic features, such as
psychoacoustics features of speech rate, pitch changes, pitch contours, voice quality, spectral
content, energy level, and articulation, are also often extracted due to their informative
nature relating to emotion detection [28,29].

Each vocal paralinguistic feature pertains to different vocal cues. For instance, F0
depicts the rate of vocal fold vibration and is perceived as vocal pitch, where the pitch
period represents the fundamental period of the signal [30,31]. Deriving from F0, pitch
period entropy (PPE) is a measure that denotes the impaired control of F0 during sustained
phonation [32,33]. On the other hand, spectral slope and spread respectively represent the
observed tendency to have low energy during high frequencies, and the total bandwidth
of a speech signal using spectral centroid, a measure used to evaluate the brightness of a
speech [34]. As for spectral entropy, it can assess silence and voice region of speech [35].
In sum, various speech features exist and denote vocal characteristics relating to states of
being. A summary of the defined features may be found in Table 1 below.

Table 1. Summary of common speech features indicative of emotion.

Speech Features Definition

Fundamental frequency (F0) The rate of vocal fold vibration.

Pitch period The fundamental period of the signal.

Pitch period entropy (PPE) The impaired control of F0 during sustained phonation.

Spectral slope The observed tendency to have low energy during
high frequencies.

Spectral spread The total bandwidth of a speech signal using spectral centroid.

Spectral centroid A measure used to evaluate the brightness of a speech.

Spectral entropy Observed to assess silence and voice region of speech.

Studies in both HCI and non-HCI contexts have extracted numerous speech features
to explain cognitive and affective states. For instance, research surrounding PPE has
suggested the speech feature to be indicative of Parkinson’s disease [32,33]. When assessing
affective states, various speech features have been used simultaneously by researchers. As
seen within a study by Papakostas et al. [36], spectral entropy, alongside spectral centroid,
spectral spread, and energy, was observed in the aim of analyzing speakers’ emotions. In
research by Lausen and Hammerschmidt [26], 1038 emotional expressions were analyzed
according to 13 prosodic acoustic parameters, including F0 and its variations.

Within a HCI context, speech features have been studied through the lens of speech
emotion recognition (SER) systems, in which emotional states via speech signals are an-
alyzed [37]. In line with SER systems, emotion voice conversion is meant to generate
expressive speech from neutral synthesized speech or natural human voice [38]. For ex-
ample, research by Xue et al. [39] analyzed F0, power envelope, and spectral sequency
and duration to propose a voice conversion system for emotion that allowed for neutral
speech to be transformed into emotional speech, with dimensions of valence and arousal
serving as a control to the degrees of emotion. Valence refers to the degree of pleasure
or displeasure, whereas arousal denotes the levels of alertness [40]. Moreover, in order
to assess a system’s recognition accuracy upon the Chinese emotional speech database,
researchers extracted an array of speech features, including spectral centroid, spectral crest,
spectral decrease, spectral entropy, spectral flatness, spectral flux, spectral kurtosis, spectral
roll-off point, spectral spread, spectral slope, and spectral skewness, in addition to prosodic
features of energy and pitch [41].
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In the context of voice user interface evaluation, a study by Kohh and Kwahk [42]
analyzed speech amplitude, pitch, and duration to assess participants’ speech behaviour
patterns during voice user interface usage. More precisely, speech patterns were observed
during responses following errors produced by iPhone’s Siri. As stressed by the authors,
few studies have investigated users’ speech behaviour patterns while using a voice user
interface. As seen in Kohh and Kwahk’s study [42], as well as various HCI and non-HCI
studies, speech features were informative of affective states. With this said, this leads us to
our first replication hypothesis:

Hypothesis 1 (H1). There is a relationship between the amplitude of targeted speech features and
the emotional intensity of users during voice user interface interactions.

2.2. Physiological Features

Measuring affective states using physiology is a predominant strategy employed
within the field of UX. According to the circumplex model of affect, affective states emerge
from two fundamental neurophysiological systems related to valence and arousal [39].
Two common physiological indices used to measure the valence and arousal dimensions
defining affective state are facial micro expressions and EDA. Often captured via a webcam,
facial micro expressions are generally quantified using some form of automated facial
micro expression (AFE) analysis software and assessed through the lens emotional valence.
Facial expression analysis remains one of the most reliable ways to physiologically measure
emotional valence, as facial muscles’ micromovements will involuntarily occur as a direct
result of changes in affective state [10]. Indeed, in one study, it was found that data
captured via facial micro-expressions were more effective in measuring instant emotions
and pleasure of use in comparison to a user questionnaire [43].

Emotional valence, characterized by negative emotions (e.g., fear, anger, sadness)
and positive emotions (e.g., joy, surprise), on opposite sides of the spectrum, refers to the
emotional response to a specific stimulus [44]. Simply put, it has been described as how
users feel [45]. The dimension of valence can be studied alone or as a complementary
construct to arousal, as described in the following paragraphs.

As for EDA, it is a measurement of electrical resistance through the skin that captures
changes of skin conductance response (SCR) from the nervous system functions [11,46,47].
Indeed, it relates to the sympathetic nervous system, an automatic response to different
situations [48]. The easy to use and reliable physiological measure has been widely used
in NeuroIS research [48–52]. Often captured via electrodes on the palm of the hand, it is
sensitive to the variations in skin pore dilation and sweat gland activation, which are in
in turn sensitive to changes in emotional arousal [53,54]. As suggested in the literature, it
commonly infers levels of arousal through the measure of skin conductance [46].

The arousal levels measured via EDA range from very calm to neutral to highly
stimulated [55]. It has been suggested to be an ecologically valid portrait of the user’s
arousal, while being non-invasive and free of overt recoded behaviour [18]. In one study
regarding child–robot interactions, the measured arousal via skin conductance was deemed
as a valuable and reliable method in assessing social child–robot interactions [56].

2.3. Combination of Speech and Physiological Measures

Emotion is often expressed through several modalities [57]. For instance, the arousal
of emotion can manifest itself in speech, facial expressions, brain dynamics, and numerous
peripheral physiological signals, such as heart rate variability, respiration, and, of course,
electrodermal activity [58,59]. Indeed, research has suggested that EDA dynamics are
strongly influenced by respiration and speech activity [54]. With this said, a link is to
be made between the study of EDA and speech features in assessing emotional behavior.
Current literature regarding the study of emotions includes multi-modal research utilizing
both EDA and speech features. For example, in a study by Greco et al. [59], a multi-modal
approach combining EDA and speech analyses was used to develop a personalized emotion
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recognition system allowing for the arousal levels of participants to be assessed while
reading emotional words. As suggested within the study, the algorithm’s performance
accuracy was at its highest when combining both implicit measures, rather than observing
EDA and speech features separately, as both the sympathetic activity induced by the
voice and related respiration variations were captured. Within the same vein, research by
Prasetio et al. [60] proposed a speech activity detection system using the speech feature
extraction technique Mel Frequency Cepstral Coefficients (MFCC) in addition to EDA. By
including EDA, the system was able to perform in noisy environments and compensate for
the presence of emotional conditions. Hence, the complimentary nature of both measures
in explaining emotional behaviour is to be noted.

On the other hand, speech features have also been studied in parallel to facial expres-
sions. Speech and facial expressions provide a comprehensible view into a user’s reaction,
as visual and auditory modalities may infer a user’s emotional state [61]. To assess users’
emotional states in naturalistic video sequences, a study by Caridakis et al. [61] combined
information from both facial expression recognition and speech prosody feature extraction.
A study by Castellano et al. [57] went a step further by including body gesture modality
to build a multimodal emotion recognition system used to assess eight emotional states
that were equally distributed in valence-arousal space. Similarly to Greco et al.’s study [59],
the classifiers based on both speech data and facial expressions outperformed classifiers
trained with a single modality. This was also the case in research by Alshamsi et al. [62],
where a multimodal system including both facial expression and emotional speech was
more accurate in emotion recognition in comparison to isolated functions. A summary of
the multi-method studies is found in the Table 2 below.

Table 2. Summary of the multi-method studies utilizing speech and physiological measures in
relation to emotion recognition.

Study Contribution Contribution

Greco et al. (2019) Improved the recognition of human arousal level
during the pronunciation of single affective words.

EDA
Speech Features (F0 and MFCC)

Prasetio et al. (2020)
Developed a speech activity detection system which
can perform in noisy environment and compensate

for the presence of emotional conditions.

EDA
Speech Features (MFCC)

Caridakis et al. (2006) Proposed a framework to model affective states in
naturalistic video sequences.

Facial Expression
Speech Features (prosody related to pitch

and rhythm)
Bodily Expression (excluded in the fusion

of modalities)

Castellano et al. (2008)
Presented framework of multimodal automatic

emotion recognition system during a
speech-based interaction.

Facial Expression
Speech Features (MFCC)

Bodily Expression

Alshamsi et al. (2019)
Proposed a framework consisting of mobile phone

technology backed by cloud computing to recognize
emotion in speech and facial expression in real-time.

Facial Expression
Speech Features (MFCC)

EDA: electrodermal activity; MFCC: Mel Frequency Cepstral Coefficients.

With this said, EDA, facial micro expressions, and speech are capable of explaining
emotional states, both in isolation and in conjunction with each other. As stressed, facial
expressions and electrodermal activity are indicative of a user’s valence and arousal levels,
making them pertinent measures to the study of emotions. This leads us to our following
replication hypotheses:

Hypothesis 2a (H2a). There is a relationship between the amplitude of the extracted EDA features
and the emotional intensity of users during voice user interface interactions.
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Hypothesis 2b (H2b). There is a relationship between the amplitude of the extracted AFE-based
valence feature and the emotional intensity of users during voice user interface interactions.

Similarly to physiology, speech features are linked to the dimensions of valence
and arousal. Indeed, the emotional arousal of a speaker is accompanied by physiolog-
ical changes, consequently affecting respiration, phonation, and articulation, resulting
in emotion-specific patterns of acoustic parameters [63]. As suggested by Scherer [63],
F0, energy, and rate are considered the most indicative of arousal. More precisely, high
arousal is associated with high mean F0, F0 variability, fast speech rate, short pauses,
increased voice intensity, and increased high frequency energy [64–72]. Indeed, emotions
associated with high levels of physiological arousal, such as anger, fear, joy, and anxiety,
have depicted increases in mean F0 and F0 variability, in addition to vocal intensity [30].
For example, put into context, it is not uncommon for one to speak with a loud voice when
feeling gleeful. In contrast, emotions associated with low arousal levels, such as sadness,
tend to have lower mean F0, F0 variability, and vocal intensity [30]. With this said, vocal
aspects can covary with emotional attributes, which reflect and communicate arousal levels
associated to emotional reactions [63]. Across studies, results regarding arousal and speech
remain consistent [73].

On the contrary, results regarding the relationship of speech and valence are noticeably
inconsistent. In some studies, positive valence has been linked to low mean F0, fast speech
rate, F0 variability, and little high-frequency energy [68,69,72,74,75]. In others, valence is not
associated to specific patterns of vocal cues [65,67,70]. Moreover, research has suggested
that valence values are better assessed using facial features in comparison to acoustic
features [76,77]. In other words, the relationship between speech and valence appears to be
weaker in comparison to the physiological measure of facial expression.

Considering the inconsistencies and suggested weakness of the relationship between
speech features and valence, in addition to the predictive capabilities of physiological
measures in relation to both valence and arousal dimensions, we hypothesize the following.

Hypothesis 3 (H3). Physiological features are more explicative of emotional voice interaction
events in comparison to speech features.

3. Methods
3.1. Experimental Design

To test our hypotheses, we conducted a one-factor within-subject remote laboratory
experiment in which speech and physiological responses, including EDA and facial expres-
sions, were recorded during voice user interface interactions that were purposely designed
to elicit intense emotional responses. Considering the nature of the COVID-19 pandemic, a
remote experimental laboratory was made mandatory. The experiment followed guidelines
established for remote data collection [78,79].

3.2. Sample

Participants were recruited via the university’s research panel. To be eligible, par-
ticipants were required to be at least 18 years of age and should not have had any of the
following conditions: a partial or complete facial paralysis, a pacemaker, or an inability to
read text upon a computer screen. In total, 29 French-speaking participants were recruited
for our study (12 men, 17 women, mean age 29 years, standard deviation 11.75). All partici-
pants were adept at using computers and had no trouble with using the software and tools
required for the study. However, due to excessive darkness and poor contrast in the video
recording for AFE analysis, as well as technical issues with our remote EDA collection
device, 13 subjects had insufficient data for our analyses and were therefore excluded,
resulting in a sample size of 16 participants (7 men, 9 women, mean age 30.3 years, stan-
dard deviation 13.34). Each participant received a $20 gift card for their participation. The
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approval of the research ethics board was received for this study (Certificate #2021-4289)
and informed consent was obtained from all participants prior to their participation.

3.3. Voice User Interface Stimuli

Using a Wizard of Oz approach, participants interacted with a voice user interface
whose dialogue was pre-recorded and manually controlled by a moderator. The dialogue
was recorded as numerous individual MP3 files using a text-to-speech website (http:
//texttospeechrobot.com/, accessed on 20 December 2021) featuring a French-speaking
female voice (RenéeV3 [IBM-Female, enhanced dnn]). The dialogue files were arranged in a
script and separated into 27 to 28 interview questions, some with multiple flows depending
on participant response. To facilitate execution of the MP3 files and delivery of the dialogue
to the participants via our remote testing setup, all MP3 files were uploaded to Google
Drive and organized in a Google slides presentation such that the dialogue files could be
played directly in a Chrome web browser, as seen in Figure 1 below.

Figure 1. Google slides presentation featuring dialogue files.

The principal means by which the voice user interface was designed to evoke emo-
tional responses from the participants was through errors in comprehension of participant
responses. For example, despite having adequately answered a question, the voice user
interface often ignored a participant’s response and repeated its preceding question. This
occurred at the very first interaction, in which the voice user interface asked twice if the
participant was ready, despite the participant’s positive response (e.g., “are you ready to
start?” followed by “are you ready to start?”). This depicted a total and apparent incom-
prehension meant to elicit an intense emotional response, aiming to elicit frustration in
this particular exchange from the very start of the dialogue. Participants were also asked
by the voice user interface to repeat themselves on multiple occasions. Misunderstanding
occurred when the voice user interface warped the participant’s responses (e.g., “dog” to
“amphibian”). In addition to these faulty interactions, questions were purposely designed
to be provocative and unexpected in order to elicit shock. For example, following a series
of questions regarding a user’s workout habits, the voice user interface proceeded to ask if

http://texttospeechrobot.com/
http://texttospeechrobot.com/
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participants ever lied about the supposed amount of exercise in the hopes of impressing
others (e.g., “do you exercise every now and then” followed by “have you ever lied about
how much exercise you do to impress others?”). In sum, instances of incomprehension and
unexpected questioning led to intense emotional user responses during vocal interactions
with a voice user interface.

In general, the voice user interface dialogue was designed to elicit yes, no, or other
single word responses. A complete list of the corresponding dialogue for the voice user inter-
face and a chart featuring the number of questions posed can be seen in Tables A1 and A2,
respectively, in Appendix A, in which both the original French dialogue used for the
experiment and the translated English version are featured.

3.4. Experimental Setup

A remote connection between the participants and moderator was primarily estab-
lished using Lookback’s Liveshare, a platform allowing user research to be conducted
remotely (Lookback Group, Inc., Palo Alto, Santa Clara, CA, USA). To ensure an optimal
data collection free of distraction and noise, participants were required to be seated alone
and comfortably in a quiet room. It was necessary for the participants’ computer and
COBALT Bluebox device, described in the measures section below, to be placed upon a
stable surface such as a desk. Moderators asked the participants to sit in a straight and
forward-facing position within a well-lit environment, in an attempt to ensure that facial ex-
pressions were adequately recorded. To ensure that the audio data were properly captured,
participants were required to wear a headset or earphones with an integrated microphone.
A summary of the experimental setup is found in Figure 2 below.

Figure 2. An overview illustration of the experimental setup.

3.5. Measures

The physiological responses of users were measured via facial expression and EDA.
Facial expression was recorded via webcam at 30 fps using Lookback. The speech of
subjects was captured via their computer microphone and recorded along with the speech
of the voice user interface at a sampling rate of 48 KHz using Lookback. Lastly, EDA
was measured at a sampling rate of 100 Hz using the COBALT Bluebox device
(Courtemanche et al., 2022), a 3D printed case featuring BITalino (r)evolution Freestyle Kit
(PLUX Wireless biosignals S.A., Lisboa, Portugal) technology to record biosignals. EDA
was captured via electrodes placed on the lower part of participant’s palm, as depicted
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within the illustration featured in Figure 2, above. A photographic image of the placement
is also found in Figure 3, below.

Figure 3. The electrodes placed on the participant’s non-dominant hand are connected to sensor
cables wired to the COBALT Bluebox device. Image source: Brissette-Gendron, R., Léger, P.M.,
Courtemanche, F., Chen, S.L., Ouhnana, M., and Sénécal, S. (2021). The response to impactful
interactivity on spectators’ engagement in a digital game. Multimodal Technologies and Interaction,
4(89), 89–89. https://doi.org/10.3390/mti4040089, accessed on 20 December 2021.

3.6. Experimental Procedures

Prior to the experiment, participants received a link to their individual Lookback
sessions. Once the link was accessed upon the scheduled time of the experiment, a recording
of the participant’s screen and webcam was automatically initiated, alongside the audio
input of both the participant and the moderator.

After being welcomed to the experiment, the moderator proceeded to confirm that the
participant consented to participation in the experiment, as well as to the recording of the
session, screen, and physiological data. The moderator also validated that the informed
consent form, sent 24 h prior to the experiment, was read, signed, and returned.

Following this, the moderator confirmed that the participant was alone in a quiet room
free of distractions. In order to limit potential distractions, participants were informed to
close any unnecessary windows on their computer and set their phone to silent mode. A
visual scan was performed by the moderator, ensuring that the participant had conformed
to the experiment. Conformity required a set of functioning headphones with an integrated
microphone that did not obscure the participant’s face.

https://doi.org/10.3390/mti4040089
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The participant was then guided, with step-by-step instructions, to install the physio-
logical instruments, which had previously been delivered to the participant’s location. The
EDA electrodes were placed on the lower part of participant’s non-dominant palm. In other
words, the hand that was not used to control the mouse. More precisely, the electrodes were
placed on the thenar and hypothenar eminence regions of the palm vis-a-vis the thumb and
pinky fingers for optimal EDA data to be recorded [80]. Electrodes were wired to COBALT
Bluebox technology, allowing for the participant’s physiological data to be recorded. A
depiction of the electrode placements wired to a COBALT Bluebox device is found below in
Figure 3. Unlike Figure 3, the COBALT Bluebox device was placed in proximity to the par-
ticipant’s non-dominant hand on a stable surface. A validation of the cloud recording was
confirmed by the moderator, ensuring that the sensors were fully functional. A sequence of
flashing lights upon the COBALT Bluebox device served as a visual marker confirming the
synchronization of the data. Developed by Courtemanche et al. [81], the synchronization
technique used ensured the Bluetooth low energy (BLE) (Montréal, QC, Canada) signals
were sent to the lightbox and BITalino device in range [82].

In the presence of the moderator, participants embarked on the first task, consisting of
a voice calibration in which they were instructed to clearly read a series of words and short
sentences with a two second pause between each utterance. The implicit measures obtained
during the calibration phase served as a baseline for emotional valence and arousal, as the
randomized selection of words aimed to be as neutral as possible. Once the calibration
phase was completed, a brief introduction and set of instructions regarding the experiment
were provided to the participants. More precisely, the participant was informed that an
interaction with a voice user interface was to occur and that the calibration was to be
repeated following the voice user interface’s instructions. In addition to the calibration,
the participant was informed that the voice user interface would be conducting a short
interview and that the questions posed by the interface should be responded to with
either a “yes” or “no” response. If these answers did not apply to the question posed, the
participant was instructed to answer with one of the options provided by the voice user
interface. Moreover, if the participant did not know the answer to the question or could not
decide, the participant was instructed to answer, “I don’t know”. Following each answer,
the participant was required to evaluate the quality of the interaction using a digital sliding
scale provided in a link through Qualtrics™ (Qualtrics International, Provo, UT, USA), an
online survey tool. (Results from the sliding scales were purposely omitted from this study
due to inconsistencies regarding evaluation time gaps between interactions). Lastly, the
participant was instructed to provide loud and clear responses in order to ensure optimal
interactions with the voice user interface.

Once the instructions were provided, the moderator turned off his or her camera and
adjusted the sound preferences upon Lookback, allowing for the audio output to play the
first MP3 audio recording. The voice user interface audio was played in Google Chrome
and transmitted directly to the participant through Lookback, using VB Audio Virtual
Cable and Voicemeeter Banana Advanced Mixer, which allowed the moderator to hear both
the voice user interface transmission and participant responses for continuous monitoring
of participant and system-based performance during the experiment.

The dialogue between the voice user interface and user commenced with the calibra-
tion task conducted previously. Following the completion of this task, an array of questions
was asked, from the participant’s relation to the university (“are you a student at HEC
Montreal?”), to the participant’s preference between cats and dogs (“do you prefer cats or
dogs?”), to the participant’s workout habits (“do you exercise every now and then?”). The
dialogue ended with a brief conclusion by the voice user interface, thanking the partici-
pant for their time. The exchange between the voice user interface and participant lasted
approximately 30 min. Once the final audio recording was played, the moderator turned
on his or her camera and readjusted the sound preferences back to microphone setting. A
summary of the procedures is found in the graphical representation in Figure 4.
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Figure 4. Graphical summary of the experiment procedures.

3.7. Third-Party Emotion Evaluation

To establish ground-truth for the physiological and speech features derived from
user responses to the voice user interface, third-party evaluations were conducted by six
evaluators. To perform the evaluation, evaluators watched 188 clips of participant webcam
videos corresponding to each interaction in order to simultaneously consider both physical
and oral expressions of emotion. Each clip was coded to commence from the moment the
voice user interface’s question was posed and ended 500 ms following the participant’s
response. Each participant had a range of 7 to 17 interaction clips to be evaluated, presented
in a randomized order. Evaluations were recorded using the online survey tool Qualtrics.
The survey used to record the evaluations was built into the platform and embedded on
the page using custom HTML code. Each survey recorded the evaluations of the same
participant, resulting in 16 unique Qualtrics links.

To ensure standardized evaluations, all evaluators were trained. Within this training,
evaluators were guided within their manual assessment of the four studied dimensions
of affective state: valence, arousal, control, and short-term emotional episodes (STEE). As
its name suggests, the STEE evaluation point was indented to capture momentary fleeting
glimpses into the participant’s emotional state. The temporal nature of these events did not
make them any less important. On the contrary, these split moments depicted authentic
emotion, especially amongst subjects who tended to suppress public displays of emotion.

Evaluators were instructed to watch each interaction clip twice and assess the emo-
tional reaction using both visual and voice behavior of the participant, while taking into
consideration the semantic context of the voice user interface speech. A series of instruc-
tions and guidelines addressing the emotional dimensions to be assessed were provided
and explained to the evaluators. For each dimension, the spectrum of extremes was defined.
In addition to these definitions, a series of vocal and visual cues were provided as examples
of elements to look out for.

Evaluators were provided instructions with regards to the Self-Assessment Manikin
(SAM) scale proposed by Bradley and Lang in 1994 [83]. Valence, arousal, and control are
classic dimensions of affective state, measured ubiquitously in IS research by users through
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self-assessment questionnaires. The SAM scale measures three emotional dimensions, that
of pleasure, arousal, and control or dominance, using a series of graphic abstract characters
displayed horizontally using a nine-point scale, although five and seven-point variants
may also exist [84]. For this experiment, we opted for the nine-point scale in order to offer
further precision and remain consistent with previous observer-based studies utilizing this
measure [85,86].

In contrast to the valence, arousal, and control dimensions, the STEEs were observed
using a binary evaluation. To assess STEEs, evaluators were asked to select the best suited
option (non-present, positive STEE, or negative STEE) applicable to the interaction. Solely
its presence, rather than its frequency and intensity, was observed within this evaluation
point. In addition to the SAM-based and binary-based scale ratings, evaluators were asked
to note the vocal and visual cues supporting their evaluations.

In order to assess the evaluators’ grasp of the dimensions, all six analyzed the same
participant. Following this primary evaluation, the results were analyzed and further
guidance was provided in order to ensure uniformity. The process was repeated, resulting
in greater consistency. Once this consistency was achieved, evaluators were instructed to
pursue the remaining evaluations. The remaining Qualtrics links, featured in random and
individualized orders, limited the risk of bias, as evaluator fatigue upon the same final
evaluation was avoided.

3.8. Data Processing and Feature Extraction

As a result of the recorded experiments, two raw data streams, video and EDA, were
captured. Within the raw video data stream, both audio and visual information was
recorded. In order to extract the video’s audio and obtain a raw audio file, the open-source
audio software Audacity (Muse Group, New York, NY, USA) was employed. In parallel,
the video was processed using FaceReader 8 ™ (Noldus, Wageningen, The Netherlands)
software, resulting in a time series data stream for AFE-based valence. The output, or time
points, from FaceReader 8 were aligned with the captured EDA, as the COBALT Bluebox’s
flashing light series confirmed the synchronization of data.

Each physiological measure pertained to an interaction between the voice user in-
terface and participant, starting from the moment the interface posed the question up
until the participant’s response. The participant’s response was purposely excluded from
the physiological measurement window in order to prioritize and observe the emotional
build-up prior to a verbal response. Moreover, by observing this particular time window,
the studied physiological measures focused on early indications of emotional responses. In
contrast to the time windows chosen for physiological measures, the participant’s verbal
response was observed for the speech measure from the start of the participant’s utterance
to the end of his or her response.

3.8.1. Speech Features

The onset of the participants’ speech response was manually identified for every inter-
action where the response was “yes” and defined as the time point where the participants’
speech envelope exceeded .10 decibels. This was performed as such for the entirety of the
experiment in which a user interacted with the voice user interface, including both the
“yes” responses during the calibration and testing periods. The onset of the voice user
interface speech was also marked, in which the defined time point was identical to that of
the participant’s response. The time window consisted of the moment from the onset of
participant responses until 500 ms after that response.

To extract the speech features, we used Surfboard, an open-source Python library for
extracting audio features, and a python wrapper for open-source Speech Signal Processing
Toolkit (SPTK) (http://sp-tk.sourceforge.net/, accessed on 20 December 2021). Congruent
with existent research on emotion and speech [87], we extracted the following spectral
features using audio software Audacity: spectral slope, spectral entropy, spectral centroid,
spectral spread, F0, F0 standard deviation, and pitch period entropy, all recorded via the

http://sp-tk.sourceforge.net/
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participant’s webcam. As suggested, these parameters are among the most commonly
analyzed with the study of emotion in speech [87].

3.8.2. Facial Expression Feature

The participants’ facial micro expressions during their interactions with the voice user
interface were analyzed using automated facial expression analysis software FaceReader
8. Noldus’ FaceReader is considered a valid recognition software capable of automated
facial coding [88,89]. The AFE analysis was subsequently conducted upon the Lookback
recordings as M4V video files with a frame rate of 10 fps. The software coded the action
units of the facial micro expressions exhibited by the participants in the webcam videos at
a rate of 4 Hz. Valence levels were calculated by FaceReader 8 by the intensity of “happy”
minus the intensity of the negative expression with the highest intensity (Noldus). Indeed,
AFE can automatically recognize micro changes in facial action units (e.g., brow raise, chin
raise, jaw drop, etc.) and interpret data based on the Facial Action Coding System (FACS)
developed by Ekman and Friesen [55,90], allowing researchers to distinguish between a set
of discrete emotions, such as angry, happy, disgusted, sad, scared, and surprised.

The time-series data, from the onset of the voice user interface speech until the onset
of participant response, were averaged and used as a value for AFE-based valence. The
participant’s response was purposely omitted in order to avoid dubious automated facial
expression analyses affected by mouth movements of verbal responses. This calculation
was performed for both the experimental and calibration time windows. Following this,
the experimental values were standardized by subtracting the overall average of the
values calculated for time windows during the calibration time period. The AFE-based
valence time-series data were further processed for each interaction tested within the
statistical analyses.

3.8.3. Electrodermal Activity Feature

Similarly to the facial expression feature, the raw EDA time-series data, from the onset
of the voice user interface speech until the onset of participant response, were averaged and
used as a value for EDA features. This calculation was performed for both the experimental
and calibration time windows. Once this calculation was performed, the experimental
values were standardized by subtracting the overall average of the values calculated for
time windows during the calibration time period.

EDA features were processed in order to obtain phasic and z-score time series data.
Often referred to as EDA “peaks”, phasic changes are abrupt increases in the skin conduc-
tance [11]. In other words, phasic EDA stems from faster changing elements of the signal,
known as the Skin Conductance Response (SCR) [11]. As for the z-score, it requires the
mean and standard deviation to be used in place of a hypothetical maximum [11].

The phasic component of the EDA time-series was extracted. In parallel, the conver-
sion of the entire raw EDA time-series into a z-score was performed. The phasic EDA
and z-score EDA time-series data were further processed to derive phasic and z-score
features, serving as targets for an arousal assessment, for each interaction tested within the
statistical analyses.

3.9. Statistical Analyses

Using SPSS® (IBM, New York, NY, USA), Intraclass correlation (ICC) testing was
performed based on the 188 evaluations across all six evaluators to assess inter-evaluator
reliability and, consequently, demonstrate consistency regarding observational ratings
provided by the evaluators [91,92]. ICC scores allow for both the degree of correlation
and agreement between measurements to be reflected within a reliability index [93]. The
threshold for significance was set at p ≤ 0.05. In order to measure the statistical relationship
between the ground-truth and the extracted speech and physiological features, linear
regressions with random intercept were performed. A repeated linear regression with
random intercept was performed against each ground-truth affective dimension separately,
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with the combined speech and physiological measures as factors. The three physiological
factors were AFE-based valence, phasic EDA, and EDA z-score. The eight speech factors
were spectral slope, spectral entropy, spectral centroid, spectral spread, PPE, and log energy,
as well as F0 standard deviation and F0 mean. To correct for the 11 repeated measures
of each regression model, Bonferroni correction was applied at α = 0.05, resulting in a
significance threshold of p ≤ 0.0045 [94].

4. Results
4.1. Inter-Evaluator Reliability Results

The following table is a summary of the ICC scores per evaluated dimension for all
evaluators and interactions combined.

As seen in Table 3, the ICC scores per dimension were 0.898 for valence, 0.755 for
arousal, 0.789 for control, and 0.707 for STEE. With the exception of STEE, all ICC scores
were above 0.75, indicating excellent inter-rater agreement [95]. Based on analysis stan-
dards, inter-rater agreement for STEE was considered adequate, as it fell within the 0.60
and 0.74 range [95]. Of the four evaluated dimensions, valence was the most agreed upon
dimension, whereas STEE was the least. For a summary of the descriptive statistics re-
garding the third-party evaluation, see Table 4 below. For a visual representation of the
evaluator tendencies, see Figure 5a–d below, in which four distinct line graphs depicting
the mean scores per evaluator, participant, and dimension are presented.

Table 3. Results of the ICC scores.

Dimension ICC Scores 95% Confidence Interval Lower Bound 95% Confidence Interval Upper Bound

Valence 0.898 0.874 0.919
Arousal 0.755 0.696 0.806
Control 0.789 0.739 0.833

STEE 0.707 0.637 0.767

STEE: short-term emotional episodes.

Table 4. Descriptive statistics of third-party evaluations per dimension.

Mean Minimum Maximum Range Maximum/
Minimum Variance

Valence 5.187 4.862 5.516 0.654 1.135 0.061
Arousal 4.640 3.676 5.601 1.926 1.524 0.665
Control 5.537 4.723 6.404 1.681 1.356 0.542

STEE −0.057 −0.0101 0.027 0.128 −0.0263 0

STEE: short-term emotional episodes.

4.2. Multiple Linear Regression

Table 5 presents the regression results of the four observed emotion dimensions.
Multiple linear regression did not reveal a significant relationship between the evaluated di-
mension of valence and any speech feature prior to the Bonferroni correction. Although the
most explicative speech feature, showing the highest R-squared value of 0.009, was spectral
spread, it was deemed insignificant (see Table 5 below). As for the arousal dimension,
multiple linear regression revealed significant relationships between the emotional dimen-
sion and the following speech factors, featuring their respective p-values, being spectral
slope (0.001), spectral spread (0.004), F0 standard deviation (0.010), and log energy (0.001)
(see Table 6). Following the Bonferroni correction, spectral slope, spectral spread, and log
energy remained statistically significant. The R-squared values associated with spectral
slope, spectral spread, and log energy were respectively 0.060, 0.044, and 0.078. Hence, the
most explicative speech factor of the arousal dimension was log energy. As for the control
dimension, multiple linear regression revealed significant relationships between the dimen-
sion and two factors, being spectral slope and spectral spread, with respective p-values of
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0.008 and 0.040 (see Table 7). The R-squared values associated with spectral slope were
0.048 and 0.028 for spectral spread. However, neither factor was considered statistically
significant following the Bonferroni correction. Lastly, multiple linear regression revealed
significant relationships between the dimension of STEE and F0 standard deviation, with a
p-value of 0.015 (see Table 8). Following the Bonferroni correction, F0 standard deviation
was not considered statistically significant.

Figure 5. Cont.
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Figure 5. (a–d) The evaluator scores of the dimensions of valence, arousal, and control are a function
of the 9-point SAM scale, whereas the evaluator score of the dimension of STEE ranges from −2 to 2.
(a) Mean valence score per evaluator accorded to each participant. (b) Mean arousal score per
evaluator accorded to each participant. (c) Mean control score per evaluator accorded to each
participant. (d) Mean STEE score per evaluator accorded to each participant.

As stressed, no speech factors were deemed significant in explaining the dimensions
of arousal, control, and STEE. However, spectral slope, spectral spread, and log energy
were considered statistically significant features in explaining the arousal dimension. All
three speech features have a R-squared value under 0.10, indicating an existent but weak
relationship, as at least 90% of the variability in the outcome data cannot be explained.
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Despite the weakness of their relationship strength, speech features are deemed statistically
significant in explaining an emotional dimension within the context of voice user interface
interactions. Thus, H1 is supported.

Table 5. Regression results of Valence dimension.

Factor Estimate SE 1 DF 2 T Value p Value R2 Value 3

AFE-based valence 3.076 0.351 129 8.770 <0.001 *4 0.402
EDA Z-Score −0.074 0.066 129 −1.120 0.266 0.007

Phasic 0.026 0.076 127 0.350 0.728 <0.001
Slope −106.750 105.970 144 −1.010 0.316 0.007

Entropy 0.023 0.177 144 0.130 0.898 <0.001
Centroid 0.000 0.000 144 −0.540 0.590 0.002
Spread 0.000 0.000 144 −1.230 0.221 0.010
PPE 5 0.000 0.000 144 −0.860 0.391 0.004

F0 Standard Deviation −0.006 0.007 144 −0.790 0.430 0.004
F0 mean −0.002 0.005 144 −0.460 0.646 0.002

Log energy 0.014 0.024 144 0.590 0.559 0.003
1 SE: Standard Error. 2 DF: Degree of Freedom. 3 R2: R-Squared. 4 Significant factors following the Bonferroni
correction, with threshold of 0.004, identified with *. 5 PPE: Pitch Period Entropy.

Table 6. Regression results of Arousal dimension.

Factor Estimate SE 1 DF 2 T Value p Value R2 Value 3

AFE-based valence 1.755 0.365 129 4.810 <0.001 *4 0.152
EDA Z-Score 0.114 0.056 129 2.020 0.046 0.019

Phasic 0.154 0.064 127 2.420 0.017 0.028
Slope −310.810 92.645 144 −3.350 0.001 * 0.060

Entropy −0.240 0.157 144 −1.530 0.129 0.012
Centroid 0.000 0.000 144 −1.410 0.160 0.009
Spread 0.000 0.000 144 −2.940 0.004 * 0.044
PPE 5 0.000 0.000 144 −1.880 0.062 0.014

F0 Standard Deviation 0.017 0.006 144 2.610 0.010 0.032
F0 mean 0.001 0.004 144 0.260 0.799 <0.001

Log energy 0.073 0.022 144 3.360 0.001 * 0.079
1 SE: Standard Error. 2 DF: Degree of Freedom. 3 R2: R-Squared. 4 Significant factors following the Bonferroni
correction, with threshold of 0.004, identified with *. 5 PPE: Pitch Period Entropy.

Table 7. Regression results of Control dimension.

Factor Estimate SE 1 DF 2 T Value p Value R2 Value 3

AFE-based valence −0.400 0.530 129 −0.75 0.452 0.005
EDA Z-Score −0.133 0.082 129 −1.61 0.109 0.016

Phasic −0.108 0.095 127 −1.14 0.255 0.008
Slope 367.030 136.200 144 2.69 0.008 0.049

Entropy 0.425 0.229 144 1.86 0.065 0.023
Centroid 0.000 0.000 144 1.53 0.129 0.014
Spread 0.000 0.000 144 2.07 0.040 0.029
PPE 4 0.000 0.000 144 0.3 0.764 <0.001

F0 Standard Deviation −0.004 0.010 144 −0.41 0.681 0.001
F0 mean −0.002 0.006 144 −0.38 0.702 0.001

Log energy −0.049 0.032 144 −1.57 0.120 0.021
1 SE: Standard Error. 2 DF: Degree of Freedom. 3 R2: R-Squared. 4 PPE: Pitch Period Entropy. Note: No feature
was considered statistically significant.

Multiple linear regression between EDA features, being phasic EDA and EDA z-score,
and the ground-truth dimension of arousal failed to reveal a relationship between the
extracted features and the emotional intensity of users during voice user interface inter-
actions. Despite the fact that multiple linear regression revealed significant relationships
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between the evaluated dimension of arousal and EDA features, EDA z-score and phasic
EDA, with respective p-values of 0.046 and 0.017, both were deemed insignificant following
the Bonferroni correction (see Table 6). Within the context of this study, the amplitude of the
extracted EDA features was not indicative of a user’s arousal during voice user interface
interactions. Thus, H2a is not supported.

Table 8. Regression results of STEE dimension.

Factor Estimate SE 1 DF 2 T Value p Value R2 Value 3

AFE-based valence 0.936 0.171 129 5.480 <0001 *4 0.209
EDA Z-Score −0.029 0.030 129 −0.960 0.337 0.006

Phasic 0.007 0.034 127 0.210 0.837 <0.001
Slope −18.565 47.559 144 −0.390 0.697 0.001

Entropy 0.031 0.079 144 0.400 0.693 0.001
Centroid 0.000 0.000 144 0.250 0.807 <0.001
Spread 0.000 0.000 144 0.330 0.743 <0.001
PPE 5 0.000 0.000 144 0.420 0.677 0.001

F0 Standard Deviation −0.008 0.003 144 −2.460 0.015 0.038
F0 mean 0.000 0.002 144 0.020 0.984 <0.001

Log energy −0.002 0.011 144 −0.150 0.884 <0.001
1 SE: Standard Error. 2 DF: Degree of Freedom.3 R2: R-Squared. 4 Significant factors following the Bonferroni
correction, with threshold of 0.004, identified with *. 5 PPE: Pitch Period Entropy.

Multiple linear regressions between AFE-based valence and ground-truth dimension
of valence revealed a relationship between the feature and the emotional intensity of users
during voice user interface interactions. Indeed, the multiple linear regression revealed
a significant relationship between the evaluated dimension of valence and AFE-based
valence (p < 0.0001). This fact remained valid following the Bonferroni correction. The
R-squared value associated with AFE-based valence was of 0.402. Statistically speak-
ing, approximately 40% of the dimension variable is explained by AFE-based valence
(see Table 5). In other words, the amplitude of the extracted AFE-based valence feature
is explicative of a user’s valence during voice user interface interactions. Hence, H2b
is supported.

4.3. Multiple Linear Regression of Speech and Physiology

As stressed, multiple linear regression revealed a relationship between the dimension
of valence and speech feature spectral spread, with a R-squared value of 0.009. However,
even prior to the Bonferroni correction, the relationship was deemed statistically insignifi-
cant. On the other hand, the multiple linear regression revealed a significant relationship
between the evaluated dimension of valence and AFE-based valence (p < 0.0001), with a
R-squared value of 0.402 (see Table 5). Thus, when comparing R-squared values for spectral
spread and AFE-based valence, the physiological measure had approximately 41 times
more predictive power than voice feature when assessing valence ratings. The relationship
between the valence dimension and the AFE-based valence was therefore stronger than
any observed speech feature.

As for arousal, multiple linear regression revealed a relationship between AFE-based
valence and the dimension in question under 95% confidence interval range (p < 0.0001)
(see Table 6). Following Bonferroni correction, AFE-based valence remained statistically sig-
nificant, with a R-squared value of 0.152. This was the sole extracted physiological feature
that was considered statistically significant, as EDA z-score and phasic EDA did not achieve
significance. Despite having fewer statistically significant factors, physiological measure
AFE-based valence indicated a stronger relationship in comparison to significant speech
features of spectral slope, spectral spread, and log energy. When comparing the R-squared
value of AFE-based valence to the highest value amongst the statistically relevant speech
features, being log energy (0.078), physiological feature AFE-based valence had nearly twice
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the strength in explaining arousal ratings. Hence, the relationship between AFE-based
valence is stronger than any observed speech feature in assessing users’ arousal levels.

In addition to sharing a relationship with dimensions of valence and arousal, mul-
tiple linear regression revealed a statistically significant relationship between the evalu-
ated dimension of STEE and AFE-based valence, with a p-value of <0.0001 (see Table 8).
Speech factor F0 standard deviation also shared a relationship, with a p-value of 0.015.
Following the Bonferroni correction, only the physiological factor AFE-based valence re-
mained statistically significant. The R-squared value of AFE-based valence was 0.208, and
0.038 for F0 standard deviation. Consequently, physiological feature AFE-based valence
was approximately five times stronger than the voice feature F0 standard deviation in ex-
plaining STEE ratings. Thus, the relationship strength of AFE-based valence and dimension
STEE surpasses that of any speech feature.

Multiple linear regression revealed statistically significant relationships between the
evaluated dimension of control and two speech factors, being spectral slope and spectral
spread, with respective p-values of 0.008 and 0.040 (see Table 7). Under the 95% confidence
interval range, no physiological factor was deemed significant. As for speech features, the
R-squared value associated with spectral slope was 0.048, and 0.028 for spectral spread.
However, neither factor was considered statistically significant following the Bonferroni
correction. In contrast to the valence and arousal dimensions, the speech factor of spectral
slope was deemed more predictive of the control dimension in comparison to the strongest
physiological factor EDA z-score. Indeed, in comparison to the R-squared value of EDA
z-score (0.015), speech feature’s spectral slope had approximately three times more strength
than the physiological feature’s EDA z-score in explaining control ratings. Hence, the
relationship between speech factor spectral slope is stronger than the physiological factor
EDA z-score in explaining the control dimension. However, as stressed, no factor was
considered statistically significant in predicting control ratings. A comparative depiction of
the most explicative physiological and speech features can be found in Figures 6 and 7.

Figure 6. Bar chart of relationship strengths between physiological and speech features per dimension.
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Figure 7. Boxplots of evaluator rating and select physiological and speech features.

In sum, multiple linear regression revealed statistically significant relationships be-
tween AFE-based valence and the dimensions of valence, arousal, and STEE. Although
speech features were statistically significant in explaining the arousal dimension, the re-
lationship between the observed dimension and the strongest speech feature, being log
energy, was nearly half of AFE-based valence’s strength. As for the control dimension,
no physiological or speech feature was considered statistically significant in explaining
the dimension. Overall, physiological feature AFE-based valence best explains the users’
affective states during voice user interface interactions. Therefore, H3 is supported. A
summary of the hypotheses’ statuses following the results can be found in Table 9.

Table 9. Summary of hypotheses in relation to results status.

Hypothesis Description Results Status

H1 There is a relationship between the amplitude of targeted speech features and the
emotional intensity of users during voice user interface interactions. Supported

H2a There is a relationship between the amplitude of the extracted EDA features and the
emotional intensity of users during voice user interface interactions. Not supported

H2b There is a relationship between the amplitude of the extracted AFE-based valence
feature and the emotional intensity of users during voice user interface interactions. Supported

H3 Physiological features are more explicative of emotional voice interaction events in
comparison to speech features. Supported
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5. Discussion

The primary goal of this study was to compare the effectiveness of physiological and
speech measures through their respective features in explaining the affective states of users
during emotionally charged voice user interface interactions. Our research used speech
and physiological measures employing EDA and facial expression analysis. As a result,
we extracted eight distinct speech features, such as F0, spectral slope, and spectral spread,
alongside three physiological features, being EDA z-score, phasic EDA, and AFE-based
valence. Results suggest that speech features are indeed explicative of users’ emotions
during voice user interface interactions (H1). More precisely, relationships between the
speech features of spectral slope, spectral spread, and log energy with the dimension of
arousal can be noted. Of the three, log energy shared the strongest relationship strength
with the arousal dimension. As suggested in speech literature, the energy of vocal responses
is reflective of arousal [74]. Research regarding the subject suggests energy as well as F0
and speech rate to be the most indicative speech features of arousal, with high arousal
associated with high frequency energy [63,68,69,72]. Hence, our results are in line with
previous research, which consequently supports H1.

Contrary to what was hypothesized, within the context of this study, the amplitude of
the extracted EDA features does not share a relationship with the emotional intensity of
users during voice user interface interactions (H2a). Although EDA is widely considered an
appropriate measure for arousal, the latency of skin conductance response is approximately
two seconds, with a range between one and five seconds [96]. Considering the fact that
certain questions (such as “Really?”) were brief, the timeframe of analysis might have
excluded important indicative electrodermal signals. As noted in this study and suggested
within literature, arousal can manifest itself through various modalities, including facial
expressions and speech [58,59]. Enhanced arousal levels influence the intensity of facial
reactions [97]. Since the observed voice user interface interactions stemmed from emo-
tionally charged events, users’ facial expressions may have been accentuated and were
consequently reflective of arousal levels. Hence, the relationship between AFE-based
valence and the dimension of arousal was stronger than phasic EDA and EDA z-score,
both deemed statistically insignificant in relation to the observed dimension. Thus, H2a is
not supported.

As for the dimension of valence, the strength of the relationship between the am-
plitude of the extracted AFE-based valence feature and the dimension in question was
approximately 41 times more powerful than the most predictive speech feature, suggesting
a relationship between the extracted physiological feature and the emotional intensity of
users during voice user interface interactions (H2b). This result supports previous findings
in emotion literature suggesting facial expression to be more indicative of valence than
speech features [76,77]. Indeed, results correspond with the idea that facial expression
analysis is one of the most reliable measures of valence, as individuals are more likely to
express emotions through facial micromovements [10]. Thus, H2b is supported.

On the contrary, research has suggested that there are no specific vocal cues associated
with valence [65,67,70]. Moreover, the effects of valence are often vocally unapparent, as
they are masked by other emotional dimensions such as arousal and dominance [98]. Our
results are in line with the literature, as no speech feature was deemed statistically signifi-
cant in explaining valence. On the contrary, with the exception of the control dimension,
physiological feature AFE-based valence shared a significant relationship with all observed
emotion dimensions. As addressed previously, the suggested relationship between the
physiological measure of facial expression and the dimensions of valence and arousal are
in line with emotion literature. As for STEE, it is also best explained by AFE-based valence.
Due to their brief nature, physiological changes in facial expressions may easily have been
captured via AFE in comparison to EDA due to the latency of skin conductance response.
Results suggest that facial micro muscles’ movements indicative of STEE were automati-
cally detected using AFE. This is in line with previous research in which AFE was deemed
as an appropriate tool to assess micro changes in facial action units [90]. Considering the
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time points chosen for speech analysis, STEEs were most likely excluded because they
could have occurred prior to a participant’s vocal response. Hence, results indicate that
physiological measures are more informative of three emotional dimensions in comparison
to speech (H3), as physiological feature AFE-based valence best explains users’ emotional
states during voice user interface interactions. Thus, H3 is supported.

5.1. Theoretical Contributions

As a result of this paper, five theoretical contributions can be noted. For one, current
research regarding voice user interface evaluation gravitates around explicit methods,
such as interviews, observations, diaries, and questionnaires [13,99,100]. Data obtained
from explicit measures relying on self-reported measures can be flawed, as users are at
risk of cognitive and retrospective biases [9]. By including implicit measures, our study
avoids such biases while taking into account real-time, subconscious reactions linked to
important emotional states [9]. Consequently, results from this study contribute to the
understanding of underlying emotions lived by users interacting with voice user interfaces.
Hence, the measures used to capture the emotional responses provoked by voice user
interface interactions are both informative and complementary to the current literature.

Secondly, few studies have observed the users’ speech features during voice user
interface interactions, and less have done so in combination with physiological measures,
as research within the study of emotion through speech tends to focus on single sensor
data [101]. Thus, utilizing multiple physiological measures within this field of research
is a rare occurrence. Recording multiple physiological measures further provides a more
thorough understanding of the underlying emotions lived by users during such events,
while allowing for the comparative strength of each measure’s extracted feature in explain-
ing emotional responses induced by voice user interfaces to be assessed. By isolating each
measure, this study further confirms the indicative nature of speech and physiological
features in assessing users’ emotional responses, as suggested in previous emotion-centered
research. Indeed, extracted physiological feature AFE-based valence and speech features
such as spectral spread, log energy, and F0 were indicative of the observed emotion dimen-
sions. The relationship strength of these features in regard to assessing user emotions is in
line with previous research [26,34,36,43].

Thirdly, an important contribution of this study relates to the nuances of each mea-
sure’s strength in explaining four distinct emotional dimensions, as it allowed for their
effectiveness to be compared. As stressed previously, the effectiveness of physiological
feature AFE-based valence surpasses all extracted features of both physiological and vocal
nature. Indeed, its statistical relationship to valence, arousal, and STEE dimensions is signif-
icant and dominant. Hence, results from this study contribute to the understanding of mea-
surement effectiveness in assessing user emotions during voice user interface interactions.

Fourthly, in addition to exploring the dimensions of valence and arousal, this study
considered control as an additional emotional dimension. Within speech literature, the
dimension of control has received less attention in comparison to its counterparts of valence
and arousal [102]. Thus, this study further contributes to the literature by observing this
dimension. Unlike the valence and arousal dimensions, results suggest that the control
dimension is best explained by the speech feature of spectral slope. Indeed, spectral slope
had approximately three times more strength than extracted physiological feature EDA
z-score in explaining control ratings. However, this relationship is the weakest amongst
the observed dimensions, as the R-squared value was below 5%. Moreover, it was not
considered statistically significant. Previous speech-emotion studies assessing the control
dimension have been inconsistent. Result variances in F0, speech rate, and voice intensity
have been noted [73]. Indeed, when observing the dimension of control in relation to
spectral slope, research by Schröder et al. [69] suggest that low dominance is accompanied
by a flatter spectral slope, contrary to results obtained by Banse and Scherer [103]. With
this said, we cannot conclude that the results from this study are in line with those from
previous studies.
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A final contribution is the methodological inclusion of fleeting emotions. By intro-
ducing the additional dimension of STEE, fleeting emotions were observed using a simple
binary evaluation. By assessing temporary moments of authentic emotion, important
glimpses into affective states were captured, which was especially important for subjects
inclined to shy away from public displays of emotions. Future studies may benefit from
this complimentary element to observe temporary yet relevant emotional events.

5.2. Practical Implications

To our knowledge, no other study has compared the effectiveness between physio-
logical and speech measures through their respective features in explaining user emotions
provoked by voice user interface technologies. This novel study not only contributes to
the literature regarding voice user interface technology but may also have managerial im-
plications. Indeed, results from this study are particularly relevant within today’s context,
as the field of voice recognition continues to gain ground. The global voice recognition
market size is expected to reach 27.16 billion U.S. dollars by 2026, an increase of 16.8%
from 2020 [104]. Consequently, various companies have adopted voice user interface tech-
nologies as a competitive advantage. For example, certain high-volume call centers have
adopted voice recognition technology to better serve their customers, allowing them to
navigate the menu’s options in an autonomous, intuitive, and time-saving manner through
speech command [105]. To benefit from the success of this user-centric technology, early
evaluation of such a product is key. Results from this study not only assist companies
seeking to evaluate voice user interface products more efficiently, but also contribute to
the underdeveloped guidelines of voice user interface evaluation. Put into context, limited
resources may force a UX professional to select a single measure within their vocal product
evaluation. Thus, understanding which measure is more informative of user emotions is a
valuable insight, strategically and economically.

6. Conclusions

The evaluation of voice user interface experiences is an emerging topic that is gaining
ground as voice recognition technology continues to grow. The study presented herein
sought to understand the emotional responses experienced by users during voice user
interface interactions by observing and comparing the effectiveness of physiological and
speech measures through their respective features. Our results depict a stronger correlation
between the emotional dimensions and physiological measures in comparison to speech.
More precisely, extracted physiological feature AFE-based valence best explained user
emotions. To sum up, the use of physiological measures can equip UX professionals with
rich data regarding the emotional experiences lived by users during voice user interface
interactions, which may contribute to the design of optimal experiences.

Our study is limited by the fact that it was conducted remotely. The instructions
regarding the pose of sensors and the upload of the data to the cloud were provided by an
experience moderator. However, the acts were ultimately committed by the participants.
Hence, a lack of control and on-sight supervision might have played a role in the techni-
cal difficulties resulting in data loss. To counter these drawbacks, future studies should
consider an in-person data collection. Moreover, our experiment was limited by the use
of a Wizard of Oz technique, in which the moderator played sequential MP3 recordings
uploaded to a Google slides presentation. Occasional recordings were accidentally played
out of order or with a significant time-lapse in between them, which resulted in a less
authentic interaction in comparison to that of an actual voice user interface. Hence, future
studies featuring an authentic and functional voice user interface system should be consid-
ered. Furthermore, the scope of the present study was limited in that the speech features
analyzed were not exhaustive. Further studies regarding the matter should consider other
speech features in order to further explore the subject. On that note, different physiological
measures and their respective features should also be included to pursue the study of user
emotions during voice user interface interactions. Moreover, within the context of this study,
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the majority of emotional events investigated were related to negative user emotions, such
as frustration. Future studies should consider a diversified set of emotions, both of positive
and negative nature, in order to obtain a more holistic representation. Lastly, recorded
EDA data during brief voice user interface interjections was considered for the analysis.
The time points of concise and occasional one-worded questions may have affected the
results regarding the relationship between the extracted EDA features in relation to a users’
emotional intensity during voice user interface interactions. Considering the latency of
skin conductance response, ranging between one and five seconds [96], in conjunction to
the time points chosen, indicative electrodermal signals might have been excluded. Future
research should either consider changing the dialogue to limit brief questions or include
the participant’s response within the time window of EDA analysis.
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Appendix A

Table A1. Experimental script.

Original French
Question

English Translation of
Questions Type Description Question

Number
Possibility of

“Yes” Response

Bonjour. Je m’appelle
Renée. Je suis un robot

chercheur.
Aujourd’hui, j’aimerais

mener une entrevue
avec vous. Les questions

sont faciles.
Certaines questions

seront à choix multiples.
Certaines questions

seront des questions par
oui ou par non. Dans

tous les cas, vous
pouvez dire «je ne sais
pas», si vous ne savez

pas ou si vous ne
pouvez pas décider.

Hello. My name is
Renée. I am a research
robot. Today I would

like to conduct an
interview with you.

The questions are easy.
Some questions will be
multiple choice. Some

questions will be yes or
no questions. Either
way, you can say “I
don’t know” if you

don’t know or if you
can’t decide.

VUI 1 Comment
Introduction/
Instructions

[Robot] Acceptez-vous
de participer?

[Robot] Do you agree to
participate? VUI Question Confirmation 1
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Table A1. Cont.

Original French
Question

English Translation of
Questions Type Description Question

Number
Possibility of

“Yes” Response

[pXX] 2 Réponse [pXX] Answer Participant
Response Answer Yes

Merveilleux. Merci
beaucoup. Avant de

commencer, j’aimerais
calibrer mes oreilles à

votre voix. Pour ce faire,
j’ai besoin que vous

lisiez le texte de
calibrage qui vous a été
fourni par le modérateur

de l’expérience
d’aujourd’hui.

Veuillez lire le texte de
calibrage en

commençant par le
premier mot, puis

attendez deux secondes,
puis lisez le mot ou la

phrase sur la ligne
ci-dessous. Continuez
comme cela jusqu’à ce

que vous ayez fini de lire
la dernière ligne.

Marvellous. Thank you
so much. Before I begin,
I would like to calibrate
my ears to your voice.

To do this I need you to
read the calibration text
provided to you by the
moderator of today’s

experiment. Please read
the calibration text

starting with the first
word, pause two

seconds, then read the
word or phrase on the
line below. Continue

like this until you have
finished reading the

last line.

VUI Comment Introduction/
Instructions

[Robot] Êtes-vous prêt? [Robot] Are you ready? VUI Question Question 2

[pXX] Réponse [pXX] Answer Participant
Response Answer Yes

Excellent. Veuillez
commencer. Excellent. Please begin. VUI Comment Introduction/

Instructions

Bonjour. Hello. Participant
Response Calibration

Chat. Cat. Participant
Response Calibration

Chien. Dog. Participant
Response Calibration

Oui. Yes. Participant
Response Calibration

Il fait froid aujourd’hui. It is cold today. Participant
Response Calibration

Non. Non. Participant
Response Calibration

Un cheval fou dans mon
jardin.

A crazy horse in my
garden.

Participant
Response Calibration

Il y a une araignée au
plafond.

There is a spider on the
ceiling.

Participant
Response Calibration

Oui. Yes. Participant
Response Calibration

Deux ânes aigris au
pelage brun.

Two brown-furred
embittered donkeys.

Participant
Response Calibration
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Table A1. Cont.

Original French
Question

English Translation of
Questions Type Description Question

Number
Possibility of

“Yes” Response

Des arbres dans le ciel. Trees in the sky. Participant
Response Calibration

Non. No. Participant
Response Calibration

Trois signes aveugles au
bord du lac.

Three blind swans by
the lake.

Participant
Response Calibration

Des singes dans les
arbres. Monkeys in trees. Participant

Response Calibration

Oui. Yes. Participant
Response Calibration

Quatre vieilles truies
éléphantesques.

Four old elephantine
sows.

Participant
Response Calibration

Super. Super. Participant
Response Calibration

Merci. Thank you. Participant
Response Calibration

Bien sûr. Of course. Participant
Response Calibration

Oui. Yes. Participant
Response Calibration

Cinq pumas fiers et
passionnés.

Five proud and
passionate pumas.

Participant
Response Calibration

Non. No. Participant
Response Calibration

Six ours aimants
domestiqués.

Six affectionate
domesticated bears.

Participant
Response Calibration

J’ai terminé Renée. I’m finished Renée. Participant
Response Calibration

Fantastique. Merci
beaucoup.

Calibration réussie.
Vous pouvez me parler

librement.
Je voudrais commencer
l’entrevue maintenant.

N’oubliez pas d’évaluer
votre satisfaction à mon

égard après chaque
réponse verbale.
Ces informations

aideront mes designers à
me rendre meilleur.

Fantastic. Thank you so
much. Calibration

successful. You can talk
to me freely. I would

like to start the
interview now.

Remember to rate your
satisfaction with me

after each verbal
response. This

information will help
my designers to make

me better.

VUI Comment Introduction/
Instructions

Êtes-vous prêt à
commencer?

Are you ready to being? VUI Question Question 3

[Le participant doit
répondre par «oui»].

[The participant must
answer with “yes”].

Participant
Response Answer Yes

Êtes-vous prêt à
commencer?

Are you ready to being? VUI Question Error 4
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Table A1. Cont.

Original French
Question

English Translation of
Questions Type Description Question

Number
Possibility of

“Yes” Response

[Le participant doit
répondre par «oui»].

[The participant must
answer with “yes”].

Participant
Response Error Yes

D’accord. Voici la
première question.

OK. Here is the first
question. VUI Comment Transition

Êtes-vous étudiant à
HEC Montréal?

Are you a student at
HEC Montréal? VUI Question Question 5

[Le participant doit
répondre par «oui» ou

«non»].

[The participant must
answer with “yes”

or “no”].

Participant
Response Answer Yes

Oh. C’est étrange. Je
pensais que vous étiez

un étudiant d’HEC.

Oh. That’s strange. I
thought you were a

HEC student.
VUI Comment Error

[pause un moment, car
un participant pourrait

parler]

[pause for a moment, as
the participant might

reply]

Participant
Response Error

Vous n’êtes donc pas un
étudiant de HEC

Montréal?

So you are not a HEC
Montréal student? VUI Question Error 6

[Le participant devrait
commencer à montrer sa
frustration et répondre]

[The participant should
start to show

frustration and reply]

Participant
Response Error No/Yes 3

Je vous demande
pardon? Excuse me? VUI Question Error 7

[Le participant devrait
commencer à montrer sa
frustration et répondre]

[The participant should
start to show

frustration and reply]

Participant
Response Error

Oh. Je suis vraiment
désolée. J’étais vraiment

confuse pendant un
instant.

Oh. I am very sorry. I
was really confused for

a moment.
VUI Comment Reply

Donc vous êtes en fait...
un étudiant de HEC

Montréal?

So you are in fact a
HEC Montréal student? VUI Question Error 8

[Le participant doit
répondre par «oui» ou

«non»]

[The participant must
reply]

Participant
Response Error Yes

J’ai compris. Merci.
Désolée encore une fois.

I understand. Thank
you. Apologies once

more.
VUI Comment Reply

Essayons la question
suivante.

Let’s try the next
question. VUI Comment Transition

Pensez-vous que votre
communication

téléphonique et virtuelle
avec les autres a

augmenté pendant la
pandémie?

Do you think your
phone and virtual

communication with
others has increased

during the pandemic?

VUI Question Question 9

[pXX] Réponse [pXX] Answer Participant
Response Answer Yes
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Table A1. Cont.

Original French
Question

English Translation of
Questions Type Description Question

Number
Possibility of

“Yes” Response

C’est bien. Mais,
maintenant, vous êtes ici
en train de parler à un

robot. Des temps
étranges.

That’s good. And now
here you are talking to
a robot. Strange times.

VUI Comment Transition

Pensez-vous que HEC.
Montréal a fait du bon
travail pour répondre à

la pandémie?

Do you think HEC
Montréal did a good
job in response to the

pandemic?

VUI Question Question 10

[pXX] Réponse [pXX] Answer Participant
Response Answer Yes

Flow 1 Question 10 Flow 1 Question 10

[Si oui,] Moi aussi. Ils
ont créé de nouveaux
emplois juste pour les

robots. Donc je ne peux
pas me plaindre.

[If yes,] So do I.
They’ve created new
jobs for robots. I can’t

complain.

VUI Comment Reply

Flow 2 Question 10 Flow 2 Question 10

[Si non ou je ne sais pas,]
Je comprends. J’ai

essayé de dire à
l’administration ce qu’ils

pourraient faire de
mieux, mais personne ne

semble m’écouter.

[If no or unsure] I
understand. I tried to
tell the administration

what they could do
better, but no one

seemed to listen to me.

VUI Comment Reply

Quoi qu’il en soit,
j’aimerais maintenant
vous poser quelques

questions pour mieux
vous connaître.

Anyways, I would now
like to ask you a few
questions to get to
know you better.

VUI Comment Transition

Vous préférez les chiens
ou les chats?

Do you prefer cats or
dogs? VUI Question Question 11

[pXX] Réponse [pXX] Answer Participant
Response Answer

Flow 1 Question 11 Flow 1 Question 11

[Si les chats] Vous avez
dit, «rats»?

[If cats] Did you say,
“rats”? VUI Question Error 12

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error

Les rats n’étaient pas
une option. Rats was not an option. VUI Comment Error

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error

Les chats? Cats? VUI Question Error 13

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error

Bon, d’accord. J’aime
aussi les rats, je suppose.

Okay. I also like rats I
suppose. VUI Comment Error
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Table A1. Cont.

Original French
Question

English Translation of
Questions Type Description Question

Number
Possibility of

“Yes” Response

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error

Flow 2 Question 11 Flow 2 Question 11

[Si les chiens] Vous avez
dit amphibiens?

[If dogs] Did you say
amphibians? VUI Question Error 12

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error

Les amphibiens
n’étaient pas une option.

Amphibians was not an
option. VUI Comment Error

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error

Les chiens? Dogs? VUI Question Error 13

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error

Je suppose que les
grenouilles aussi sont

gentilles.

I guess frogs are nice
too. VUI Comment Error

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error

Flow 3 Question 11 Flow 3 Question 11

[Si, je ne sais pas]
Préférez-vous les chats

ou les chiens?

[If unsure] Do you
prefer cats or dogs? VUI Question Error 12

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error

[Si, je ne sais pas]
Préférez-vous les chats

ou les chiens?

[If unsure] Do you
prefer cats or dogs? VUI Question Error 13

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error

[Si, je ne sais pas]
Préférez-vous les chats

ou les chiens?

[If unsure] Do you
prefer cats or dogs? VUI Question Error 14 4

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error

[Si, je ne sais pas] Très
bien. Je comprends. Ce
ne sont que des bêtes

poilues, il est donc
difficile de se décider.

[If unsure] Very well. I
understand. They are

both hairy beasts, so it’s
difficult to decide.

VUI Comment Reply

Question suivante. Next question. VUI Comment Transition

Quels aliments
préférez-vous au

petit-déjeuner, des
céréales ou de la

poutine?

What type of food do
you prefer for breakfast,

cereal or poutine?
VUI Question Question 14

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Answer
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Table A1. Cont.

Original French
Question

English Translation of
Questions Type Description Question

Number
Possibility of

“Yes” Response

Flow 1 Question 14 Flow 1 Question 14

[Si les céréales]
Vraiment? [If cereal] Really? VUI Question Error 15

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error Yes

Je suis choquée.
N’êtes-vous pas

Québécois?

I am shocked. Are you
not from Quebec? VUI Question Error 16

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error Yes

Intéressant. Interesting. VUI Comment Reply

Flow 2 Question 14 Flow 2 Question 14

[Si la poutine]
Vraiment ? [If poutine] Really? VUI Question Error 15

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error Yes

Je suis choquée. Votre
santé ne vous

inquiète-t-elle pas?

I am shocked. Are you
not worried about your

health?
VUI Question Error 16

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error Yes

Intéressant Interesting. VUI Comment Reply

Question suivante. Next question. VUI Comment Transition

Les chemises de
l’archiduchesse

sont-elles sèches ou
archi-sèches?

Are the Archduchess’s
shirts dry or very dry? VUI Question Question 17

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error

Sèches ou archi-sèches? Dry or very dry? VUI Question Error 18

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error

Quoi? What? VUI Question Error 19

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error

Archiduchesse? Archduchess? VUI Question Error 20

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Error

Désolée. Je ne faisais que
plaisanter. Revenons à
une question sérieuse.

Sorry. I was just
kidding. Let’s get back
to a serious question.

VUI Comment Transition

Après avoir obtenu
votre diplôme,

avez-vous l’intention
d’entrer immédiatement
sur le marché du travail?

After having graduated,
do you plan on

immediately entering
the workforce?

VUI Question Question 21
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Table A1. Cont.

Original French
Question

English Translation of
Questions Type Description Question

Number
Possibility of

“Yes” Response

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Answer Yes

Flow 1 Question 21 Flow 1 Question 21

[Si oui]
Envisageriez-vous un

emploi à l’extérieur du
Québec?

[If yes] Would you
consider a job outside

of Quebec?
VUI Question Question 22

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Answer Yes

[Si oui ou non] Je vois. Je
vous remercie.

[If yes or no] I see.
Thank you. VUI Comment Reply

Flow 2 Question 21 Flow 2 Question 21

[Si non] Prévoyez-vous
de poursuivre vos

études?

[If no] Do you plan to
continue your studies? VUI Question Question 22

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Answer Yes

[Si oui ou non] Je vois. Je
vous remercie.

[If yes or no] I see.
Thank you. VUI Comment Reply

Dernière question. Last question. VUI Comment Transition

Faites-vous de l’exercice
de temps en temps?

Do you exercise every
now and then? VUI Question Question 23

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Answer Yes

[Si oui ou non] Plus d’un
jour par semaine?

[If yes or no] More than
one day a week? VUI Question Question 24

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Answer Yes

[Si oui ou non] Trois
jours par semaine ou

plus?

[If yes or no] Three
days a week or more? VUI Question Question 25

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Answer Yes

[Si oui ou non]
Avez-vous déjà menti

sur la quantité d’exercice
que vous faites pour

impressionner les
autres?

[If yes or no] Have you
ever lied about how

much exercise you do
to impress others?

VUI Question Question 26

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Answer Yes

[Si oui ou non] Eh bien,
je suppose que c’était un

peu trop personnel.

[If yes or no] Well, I
guess that was a little

too personal.
VUI Comment Reply

Voilà qui conclut notre
petit entretien.

This concludes our
brief interview. VUI Comment Conclusion

Merci beaucoup pour
votre participation.

Thank you very much
for your participation. VUI Comment Conclusion
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Table A1. Cont.

Original French
Question

English Translation of
Questions Type Description Question

Number
Possibility of

“Yes” Response

Avez-vous apprécié le
temps que nous avons

passé ensemble?

Did you enjoy the time
we spent together? VUI Question Question 27

[Permettre au
participant de répondre]

[Allow the participant
to respond]

Participant
Response Reply Yes

[Si oui ou non] Merci, je
transmettrai vos

commentaires à mes
concepteurs.

[If yes or no] Thank
you, I will pass your
comments on to my

designers.

VUI Comment Conclusion

Passez une bonne
journée. Have a good day. VUI Comment Conclusion

1 VUI: Voice User Interface. 2 [pXX]: Participant Number. 3 Certain participants answered with a “yes” re-
sponse despite it being a typical “no” response. 4 The number of questions posed for “Flow 3 Question 11”
differs in regards the other flows for the same question. For a detailed view of the number of questions posed,
see Table A2 below.

Table A2. Table presenting the possibilities of the number of questions posed.

Total number of questions posed 27

Total number of questions posed if Flow 3 Question 11 was selected 28

Total number possibilities of “Yes” responses 21
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