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Abstract Categorical learning is dependent on feedback.

Here, we compare how positive and negative feedback affect

information-integration (II) category learning. Ashby and

O’Brien (2007) demonstrated that both positive and negative

feedback are required to solve II category problems when

feedback was not guaranteed on each trial, and reported no

differences between positive-only and negative-only feedback

in terms of their effectiveness. We followed up on these find-

ings and conducted 3 experiments in which participants com-

pleted 2,400 II categorization trials across three days under 1

of 3 conditions: positive feedback only (PFB), negative feed-

back only (NFB), or both types of feedback (CP; control par-

tial). An adaptive algorithm controlled the amount of feedback

given to each group so that feedback was nearly equated.

Using different feedback control procedures, Experiments 1

and 2 demonstrated that participants in the NFB and CP group

were able to engage II learning strategies, whereas the PFB

group was not. Additionally, the NFB group was able to

achieve significantly higher accuracy than the PFB group by

Day 3. Experiment 3 revealed that these differences remained

even when we equated the information received on feedback

trials. Thus, negative feedback appears significantly more ef-

fective for learning II category structures. This suggests that

the human implicit learning system may be capable of learn-

ing in the absence of positive feedback.

Keywords Categorization . Implicit learning . Positive

feedback . Negative feedback

Feedback plays a critical role in many forms of learning, so it

is not surprising that feedback optimization has been the sub-

ject of intense investigation (Abe et al., 2011; Ashby &

O’Brien, 2007; Brackbill & O’Hara, 1957; Dunn, Newell, &

Kalish, 2012; Edmunds,Milton, &Wills, 2015; Galea,Mallia,

Rothwell, & Diedrichsen, 2015; Meyer & Offenbach, 1962;

Maddox, Love, Glass, & Filoteo, 2008; Wächter, Lungu, Liu,

Willingham, & Ashe, 2009). For example, delaying feedback

(Dunn et al., 2012; Maddox, Ashby, & Bohil, 2003) and

adding reward to feedback (Abe et al., 2011; Freedberg,

Schacherer, & Hazeltine, 2016; Nikooyan & Ahmed, 2015)

impact learning. Of particular interest is the comparative ef-

fectiveness of positive and negative feedback to learning (Abe

et al., 2011; Brackbill & O’Hara, 1957; Frank, Seeberger, &

O’Reilly, 2004; Galea et al., 2015; Meyer & Offenbach, 1962;

Wächter et al., 2009). Here, we define positive feedback as a

signal that a task has been performed correctly and negative

feedback as a signal that a task has been performed incorrectly.

In terms of category learning, several studies (Brackbill &

O’Hara, 1957; Meyer & Offenbach, 1962) indicate a stronger

influence of negative feedback (such as punishments) over posi-

tive feedback (such as rewards) when solving rule-based (RB)

category problems, which can be solved by applying a verbal

strategy (Ashby&O’Brien, 2005). However, it is less clear how

effective positive and negative feedback are when solving
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information-integration (II) category problems (Ashby &

O’Brien, 2007). Information-integration category learning in-

volves the predecisional (nonverbalizable) synthesis of two or

more pieces of information (Ashby &O’Brien, 2005). Consider

the RB and II category structure examples in Fig. 1. The Bdiscs^

differ in terms of their bar frequency (x-axis) and bar orientation

(y-axis). The left panel is an exampleof anRBcategory structure.

The optimal linear bound (the black line) represents the best pos-

siblemethod for dividing the stimuli into categories and involves

paying attention to the bar frequency and ignoring the bar orien-

tation. The right panel is an example of an II category structure. It

uses the same stimuli, but the optimal linear bound is now a

diagonal. Here, both dimensions must be used on each trial to

make an accurate category judgment. This category structure is

difficult for participants to describe evenwhen they performwith

high accuracy.1

Previously, Ashby and O’Brien (2007) examined the effec-

tiveness of positive and negative feedback to II learning under

four different feedback conditions: (1) partial positive feed-

back only (PFB), (2) partial negative feedback only (NFB), (3)

partial positive and negative feedback (CP; control partial),

and (4) full negative and positive feedback (CF; control full).

To control the rate of feedback, the researchers employed an

adaptive algorithm that adjusted feedback based on each par-

ticipant’s error rate. Therefore, the PFB, NFB, and CP groups

received roughly equivalent feedback frequencies during the

course of the experiment. Moreover, the researchers told par-

ticipants that on trials where they did not receive feedback,

they should not assume that they were right or wrong. Thus,

participants were instructed to use only the feedback trials to

guide their decisions. Note that when there are just two cate-

gories, as in Ashby and O’Brien (2007) (and this study), pos-

itive and negative feedback provide the same amount of infor-

mation in the context of a single trial; both indicate what the

correct answer should have been. However, it is possible that

this information is more or less useful on correct than incorrect

trials, or that positive and negative feedback engage different

learning systems that are differentially suited for encoding II

categories. The primary finding from Ashby and O’Brien’s

(2007) study was that II learning was only observed in the

groups that received both types of feedback. Overall, the re-

searchers did not observe a significant difference between the

PFB and the NFB groups, nor did they observe significant II

learning in either the PFB or NFB groups.

Comparing the effectiveness of positive and negative

feedback

Wereturn to this issueandevaluate twopossibilities regarding the

utility of positive and negative feedback in shaping behavior, as

previously discussed by Kubanek, Snyder, and Abrams (2015).

The first possibility is that positive and negative feedback are

equal reinforcers in terms of magnitude, but differ in the sign of

their effect of behavioral frequency (Thorndike, 1911). This hy-

pothesis predicts thatwe should find an equal benefit for positive

and negative feedback in supporting II learning. A second possi-

bility is thatpositiveandnegative reinforcement representdistinct

influencesonbehavior (Yechiam&Hochman,2013). Incontrast,

thishypothesispredictsanasymmetrical influenceofpositiveand

negative feedback (as in Abe et al., 2011; Galea et al., 2015;

W chter et al., 2009); one type of feedback may be more useful

than the other. Note, that when feedback is guaranteed during

categorical learning, onemay expect amutual benefit of positive

and negative feedback. However, when feedback is ambiguous

onsome trials (when information is limited), it is possible thatone

type of feedback may be more useful than the other, or that they

maybemutuallybeneficial, as in thecaseofAshbyandO’Brien’s

(2007) experiment.

Brackbill and O’Hara (1957) and Meyer and Offenbach

(1962) demonstrated a clear advantage for negative feedback

over positive feedback in solving RB category problems.

Thus, as a starting point, we expect that participants who re-

ceive only negative feedback will demonstrate significantly

stronger II learning than participants only receiving positive

feedback, consistent with the asymmetry hypothesis.

However, this hypothesis runs counter to the conclusions of

Ashby andO’Brien (2007). It is important to note thatAshby and

O’Brien used an II category structure where each category was

defined as a bivariate normal distribution and the categories par-

tially overlapped (see Fig. 2, left panel). This category structure

has three consequences. The first is that the optimal accuracy that

couldbeachievedbyobeyingtheoptimal-linearboundwas86%.

Second, the category structure included items that were distant

from the category boundary (to illustrate this we have imposed a

lineorthogonal totheoptimal linearboundineachpanelofFig.2).

Theconsequenceof includingtheseitemsis that these trialscanbe

solved using RB strategies because they are sufficiently far from

the optimal bound. Thus, these trialsmay act as Blures^ to initiate

anRBstrategy.Third, thebivariateoverlappingdistributionof the

categories may have hindered the ability of the PFB and NFB

groups to achieve II learning. The optimal accuracy that could

be achieved by the best II strategy was 86 %, but the best RB

strategy was satisfactory enough to yield an accuracy of 77.8 %.

This difference (8.2 %) may not have been sufficiently

1 We note that there are mixed findings regarding whether RB and II
category problems are solved by one or more systems (Ashby et al.,
2002; Ashby & Maddox, 2011; Dunn et al., 2012; Edmunds et al.,
2015; Filoteo, Maddox, Salmon, & Song, 2005; Maddox et al., 2003;
Maddox & Ashby, 2004; Maddox & Ing, 2005; Newell, Dunn &
Kalish, 2011; Stanton & Nosofsky, 2007; Tharp & Pickering, 2009;
Waldron & Ashby, 2001), but here we do not wish to enter the debate
regarding whether one or more systems are engaged to support RB or II
learning. Rather, the main objective of this study is to characterize II
learning, whether positive or negative feedback is more effective for
solving II category problems.
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compelling to promote the abandonment of the default RB strat-

egy. Thus, it is possible that the pattern of results found byAshby

and O’Brien (2007) were shaped by the choice of category

structure.

To resolve these issues, we employed a modified version of

Ashby and O’Brien’s (2007) II category learning paradigm.

First, we modified the category structure so that the two catego-

ries were nonoverlapping. In this way, the optimal II strategy

would produce the correct response on 100% of trials. Thus, the

difference between the optimal RB strategy (81.6 %) and the II

strategy (100 %) is relatively large, to maximize the incentive to

abandon the RB strategy. Second, we eliminated trials that were

further from the optimal linear bound. The left panel of Fig. 2

shows the category structure used by Ashby and O’Brien

(2007). Although most trials are concentrated around the opti-

mal linear bound (denoted by the solid diagonal line), many

items are distant from the bound and therefore relatively easy.

Rule-based strategies generally provide the correct answer for

these stimuli and fail for the more difficult ones. Therefore, we

opted to exclude the easier items (see Fig. 2, middle and right

panel) to promote II learning while discouraging RB learning.

Experiment 1

Experiment 1 tested the hypothesis that negative feedback

would benefit II category learning more than positive feed-

back when the category structure minimized the effectiveness

of rule-based strategies. As a starting point, we used the same

adaptive algorithm used by Ashby and O’Brien (2007), with

the exception that the category structure was nonoverlapping

without stimuli that were 0.3 diagonal units beyond the opti-

mal linear bound (see Fig. 2, middle panel).

Method

Participants Fifteen participants were recruited from the

University of Texas at Austin community, in accordance with

Fig. 2 Left panel. Category structure used in Ashby and O’Brien (2007).
Plus signs represent Category A stimuli and dots represent Category B
stimuli. The optimal linear bound is denoted by the solid diagonal line.
The dashed gray line is imposed on the category structure to represent the
distinction between easy and hard trials; harder trials are located closer to

the optimal linear bound and easier trials are located farther from the
bound. The remaining panels represent the category structures used in
Experiment 1 (middle panel) and Experiments 2 and 3 (right panel), based
on 400 randomly sampled Category A (dots) and Category B stimuli
(crosses)

Fig. 1 Examples of rule-based (left panel) and information-integration (right panel) category structures. The optimal linear bound for each category
structure is denoted by the black line

14 Mem Cogn (2017) 45:12–25



the university’s institutional review board. Participants were

randomly assigned to one of three conditions: PFB, NFB, or

CP. All participants had normal or corrected-to-normal vision

and were paid $7 per session.

Stimuli On each trial, participants were shown a line that

varied along two dimensions: length and orientation. Stimuli

sets were pregenerated by drawing 10 sets of 80 random

values of arbitrary units from two distributions (see Table 1).

Each set represented one block of trials, and the presentation

order of the blocks were randomized between participants. To

generate a line stimulus, the orientation value was converted

to radians by applying a scaling factor of π/500 (see Ashby,

Maddox, & Bohil, 2002). The length value represented the

length of the generated line in screen pixels. Unlike Ashby

and O’Brien (2007), the large positive covariance between the

two dimensions ensured that stimuli represented values close

to the optimal linear decision bound of y = x. The rationale for

this strategy is that trials that exist on the extreme ends of each

category are easier to categorize because one dimension be-

comes increasingly more important than the other. For in-

stance, if a trial stimulus has an orientation of 90 degrees, then

there is a significantly greater chance that it belongs to

Category A than a stimulus that has an orientation of 45 de-

grees. Likewise, a stimulus with a length of 350 has a signif-

icantly greater chance of belonging to Category B than a stim-

ulus with a frequency of 175. Therefore, we excluded these

trials.

Procedure Participants in the positive feedback (PFB) condi-

tion only received positive feedback. Participants in the neg-

ative feedback (NFB) condition only received negative feed-

back. Finally, participants in the control condition (CP) re-

ceived both types of feedback (positive and negative) on

~26 % of trials. For all groups, the overall proportion of feed-

back was approximately 27 %. The PFB condition never re-

ceived feedback after an incorrect response, and the NFB con-

dition never received feedback after a correct response.

To control the proportion of feedback trials across sessions

and conditions, an adaptive algorithm was used (Equation 1).

The algorithm, developed by Ashby and O’Brien (2007) was

designed to roughly equate feedback between all groups.

Whereas the NFB group was given feedback on 80 % of

incorrect trials, the PFB group was given feedback on trials

according to the following algorithm:

P Feedback

�

�

� Correct Trial
� �

¼ :8
Q errors on last 50 trialsð Þ

Q correct on last 50 trialsð Þ
; ð1Þ

where P is probability and Q is proportion. The main function

of this algorithm is to decrease the probability of feedback for

the PFB group as performance improves (see the

Supplementa ry Method sec t ion for a graph ica l

representation).2 In the CP condition, feedback was given at

a rate which would provide the same amount of feedback as

the NFB and PFB conditions. The probability of feedback on

each trial was P(Feedback) = 0.8Q(errors on last 50 trials).

During the first 50 trials, the error rate was fixed to 0.5.

Participants completed three sessions, each with 800 trials.

Participants were instructed to classify the line stimuli into

two categories. The PFB group was instructed that on a por-

tion of trials they would receive positive feedback that would

be helpful toward making their judgments. The NFB group

was instructed that on a portion of trials they would receive

negative feedback that would indicate that their selection was

wrong. The CP group was told that they would receive both

types of feedback. On no feedback trials, participants in all

conditions were instructed not to assume that they were right

or wrong, but to use their partial feedback to guide their

decisions.

Each trial began with the presentation of a single line that

remained on the screen until the participant made their judg-

ment. Participants responded on a standard keyboard by press-

ing the z key if they believed the stimulus belonged to

Category A and the / key if they believed the stimulus

belonged to Category B. The stimulus and feedback were

presented in white on a black background. Positive feedback

took the form of the phrase BCorrect, that was an A^ and

negative feedback took the form of the phrase BError, that

was a B.^ Each trial began with a 500 ms fixation cross,

followed by a response terminated stimulus presentation,

followed by 1,000 ms of feedback (present or absent), and a

500 ms intertrial interval (ITI). Blocks included 100 trials that

were separated by participant-controlled rest screens.

Participants completed eight blocks in each session. Sessions

were usually completed on consecutive days, with no more

than 3 days between consecutive sessions.Table 1 Category distribution characteristics. Dimension x (length) is
represented in pixels. Dimension y (orientation) was converted to radians
with a scaling factor of π/500. μ = Mean, δ = Standard Deviation,
Covx,y = Covariance between dimensions x and y

μx μy σx σy COVx,y

Category A 185 115 65 65 339

Category B 115 185 65 65 339

2 Another important consequence of this feedback mechanism is that
improvements in performance result in decreases in positive feedback
for the PFB group. Thus, the PFB group is penalized with less feedback
for improving their performance, and rewarded with more feedback for
performing worse. Consequently, this feature of the algorithm may have
caused an elimination of group differences, which may also account for
Ashby and O’Brien’s (2007) pattern of results.
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Model-based analysesWe fit seven classes of decision bound

models to each participant’s data. Four of the models assume a

rule-based strategy: (1) Conjunctive A, (2) Conjunctive B, (3)

unidimensional length, and (4) unidimensional orientation.

The two conjunctive models assume that the participant sets

a criterion along the length dimension that divides the stimuli

into short and long bars and a criterion along orientation that

divided the stimuli into shallow and steep bars. Conjunctive A

assumes that the participant classifies stimuli into Category A

if they were short and shallow, and into Category B otherwise.

Conversely, Conjunctive B assumes the participant classifies

stimuli into Category B if they were long and steep and into

Category A otherwise. The unidimensional strategies assume

that the participant ignores one dimension when making their

judgments. Unidimensional length assumes that the partici-

pant sets a criterion on bar width and categorized based on

that value. Similarly, unidimensional orient assumes that the

participant sets a criterion on orientation and categorized

based on that value (see Fig. 3 for categorization strategy

examples). A fifth model assumes that the participant re-

sponds randomly (the random responder model). Because

our primary interest was in how learning differed between

groups, we excluded participants (a) if the best fitting model

was the random responder and (b) if accuracy scores on Day 3

did not exceed 50 %.

The final two models assumed that the participant uses an II

strategy when making their judgments. The optimum general

linear classifier (OPT-GLC) represents the most accurate strate-

gy for dividing the stimuli and is denoted by the gray line in the

right panel in Fig. 3. The suboptimal GLC represents a slightly

inferior, but still nonverbal, strategy for dividing the stimuli

based on the angle of the diagonal line. Thus, whereas the op-

timal GLC strategy assumes a 45° angle in the diagonal linear

bound, the suboptimal GLC assumes a diagonal that deviates

slightly from 45 degrees.3The best model fit for each participant

was determined by estimating model parameters relevant to

each strategy and using the method of maximum likelihood.

Maximum likelihood was defined as the smallest Bayesian in-

formation criterion (BIC; Schwarz, 1978) reached for eachmod-

el fit. BIC was calculated by the following equation:

BIC ¼ rlnN−2 lnL; ð2Þ

where N equals sample size, r is the number of free parameters,

and L is the likelihood of the model given the data.

Data archiving Trial-level raw data for Experiments 1–3 are

available at

http://psychology.uiowa.edu/hazelab/archived-data.

Results

Proportion of feedback trials To evaluate the algorithm’s

feedback rate, we submitted the proportion of feedback trials

to a 3 (condition: PFB, NFB, CP) × 3 (day) repeated measures

ANOVA. There was a significant main effect of day, F(2, 24)

= 14.6, p < .001, ηp
2 = 0.55, as well as a marginally significant

Day × Condition interaction, F(4, 24) = 2.61, p = .06, ηp
2 =

0.30. This interaction indicates that the NFB and CP groups

experienced a significant reduction in feedback across days

(NFB Day 1: 31 %; Day 2: 23 %, Day 3: 21 %; CP Day 1:

29 %, Day 2: 28 %, Day 3: 21 %), whereas the PFB group did

not (PFB Day 1: 30 %, Day 2: 29 %, Day 3: 28 %). There was

no main effect of condition (F < 1). Post hoc comparisons

revealed no significant pairwise differences between the

groups (|t| < 1). These results indicate that all groups received

feedback on a roughly similar proportion of trials, but that the

NFB and CP groups received slightly less feedback than the

PFB group on Days 2 and 3. Although the NFB group re-

ceived slightly less feedback than the PFB group, the NFB

group demonstrated greater improvements in accuracy.4

Accuracy-based analysis We performed a pairwise

Wilcoxon sign test on the twenty-four 100-trial blocks of the

experiment between all groups, similar to Ashby and

O’Brien’s (2007) analysis (see Fig. 4, left panel). There was

a significant difference between CP and PFB (sign test: S = 19

of 24 blocks, p < .01), but not between NFB and PFB (sign

test: S = 15 of 24 blocks, p = .31), nor between NFB and CP

(sign test: S = 12 of 24 blocks, p = 1.00). Overall, these results

indicate that there was only a significant pairwise difference

between the CP and PFB groups, indicating that the CP group

outperformed the PFB group.

Model-based analysis The left panel of Fig. 5 reveals the

results of the modeling analysis for Experiment 1. The cate-

gory boundaries for Day 3 were modeled for each participant

separately. The best fit model for each participant indicated

that an II strategy was used by three participants in the CP

group, three participants in the NFB group, and one partici-

pant in the PFB group.

Discussion

Although the NFB group did not significantly outperform the

PFB group, there was a trend suggesting that negative feedback

led to more learning than positive feedback, and participants

receiving both types of feedback performed no better than par-

ticipants receiving only negative feedback. Moreover, the two

groups appeared to prefer different strategies. Three out of five
3 Note that although Ashby and O’Brien (2007) do not mention the use of
a suboptimal GLC, they do include this model in their analyses. 4 This is also the case for Experiments 2 and 3.
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participants receiving only negative feedback engaged an II

strategy, whereas only one of the participants receiving only

positive feedback did so. Thus, although we did not find differ-

ences in accuracy between the PFB andNFB groups, our results

suggest that negative feedback may be more helpful toward

promoting II learning than positive feedback

Although not predicted, the bulk of the NFB group’s learning

improvements were observed between days (offline changes;

changes in performance between consecutive sessions) and

not within each day (online changes; changes in performance

during task engagement; see Fig. 6, top panels). To confirm this

impression, we conducted two additional analyses. First, we

submitted within-day learning scores (defined as accuracy on

Block 8 minus accuracy on Block 1 for each day) to a group

(PFB, NFB, CP) by day repeated-measures ANOVA. This re-

vealed a marginally significant main effect of day, F(2, 42) =

3.170, p = .06, ηP
2 = 0.209, but no main effect of group (F < 1).

The interaction between group and day, however, was margin-

ally significant, F(4, 42) = 2.490, p = .07, ηP
2 = 0.293. These

results suggest that within-day accuracy changes were lower for

the NFB group on Days 2 and 3, and that accuracy improve-

ments decreased across days (see Fig. 6, top middle panel).

Second, we submitted between-day scores (defined as accu-

racy on the first block of the following day minus accuracy on

the last block of the previous day) to a group by day (Day 2

minus Day 1, Day 3 minus Day 2) repeated-measures ANOVA.

The results revealed no main effect of day, and no interaction

(Fs < 1). The main effect of group, however, was marginally

significant, F(2, 12) = 3.545, p = .06, ηP
2 = 0.371. Post hoc

comparisons revealed that NFB differed marginally from PFB

(p = .06), CP did not differ from PFB (p = .741), nor did NFB

differ from CP (p = .199). This analysis showed that the NFB

group experienced larger between-day improvements than the

PFB group. Thus, it is possible that negative feedback may

engage offline processes not engaged by positive feedback.

However, because we did not identify strong behavioral differ-

ences between groups, the findings are only suggestive. To re-

solve this ambiguity, Experiment 2 used the same category

structure from Experiment 1, but substituted a more precise

method for equating feedback, and included three additional

participants to each group to increase statistical power.

Experiment 2

Despite the fact that the NFB group was given less feedback

than the NFB group, Experiment 1 suggested a trend toward

Fig. 3 Examples of unidimensional (left panel), conjunctive (middle panel), and optimal-II (right panel) categorization strategies from three participants
in Experiment 1. Gray lines denote the linear bound(s) for each categorization strategy

Fig. 4 Accuracy plotted across day and group for Experiments 1 (left panel) and 2 (right panel). PFB = positive feedback only, NFB = negative feedback
only, CP = control partial (both feedback types)

Mem Cogn (2017) 45:12–25 17



more successful engagement of II strategies and higher accu-

racies for the NFB group. Therefore, in Experiment 2 we used

an alternative algorithm to more precisely equate feedback

between groups. Additionally, we included eight participants

in each group (a total of 24 participants) to increase our power

to detect a potential difference between groups. We hypothe-

sized that we would detect stronger learning for the NFB

group over the PFB group. Additionally, since Experiment 1

suggested that negative feedback leads to greater offline

changes in category learning than positive feedback, we pre-

dicted that offline changes in accuracy would be greater for

the NFB group over the PFB group.

Method

Participants Thirty participants were recruited from the

University of Iowa community in accordance with the

universities institutional review board. Six participants were ex-

cluded for poor performance or if they were classified as a

random responder by our modeling analysis (1, for PFB, 3 for

NFB, and 2 for CP). Participants were randomly assigned to one

of three conditions: PFB, NFB, or CP. Eight participants were

assigned to each group and balanced based on age and sex

(PFB: average age = 24.89 ± 4.49 years, four females; NFB:

average age = 24.13 ± 4.48 years, four females; CP: average age

= 22.85 ± 4.69 years, five females). All participants had normal

or corrected-to-normal vision and were paid $10 per session.

Stimuli Participants were shown a Gabor patch that varied

along two dimensions: frequency and orientation. On each

trial a random value for each dimension was generated and

combined to form a Gabor patch. The orientation was free to

rotate between 0° (completely vertical lines) and 90°

(completely horizontal lines). Frequency was free to vary

Fig. 6 Comparison of within and between-day changes for Experiment 1
(top panels) and Experiment 2 (bottom panels). The left panels plot ac-
curacy for the PFB and NFB groups across days. The shaded region
represents the SEM, and the dashed lines represent breaks between days.
The middle panels plot within-day changes (last block accuracy minus

first block accuracy) for all groups across each day. The right panel plots
between-day changes (first block accuracy on the following day minus
last block accuracy on the previous day) for both between-day periods.
Error bars represent the SEM

Fig. 5 Number of participants in each group that engaged a unidimensional, conjunctive, or II categorization strategy on Day 3 for Experiment 1 (left
panel) and Experiment 2 (right panel)
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between 0.02 and 0.10 cycles per degree. Table 2 details the

characteristics for the category structure used in Experiments

2 and 3. The right panel of Fig. 2 represents 400 randomly

drawn trials from each category distribution. As in

Experiment 1, items that extended beyond a distance of 0.3

diagonal units perpendicular to the optimal linear bound were

not presented to participants (see Fig. 2 for a comparison be-

tween category structures).5

Procedure Participants in the positive feedback (PFB) condi-

tion only received positive feedback. Participants in the neg-

ative feedback (NFB) condition only received negative feed-

back, and participants in the control condition (CP) received

both types of feedback (positive and negative) on ~20 % of

trials. For all groups, the overall proportion of feedback was

approximately 20 %. Furthermore, for the CP condition, there

was the constraint that equal amounts of positive and negative

feedback be given. The PFB condition received no feedback

after an incorrect response, and the NFB condition received no

feedback after a correct response.

To control for the proportion of feedback trials across ses-

sion and condition, we used an adaptive algorithm

(Equation 3). Although Ashby and O’Brien (2007) were able

to roughly equate feedback between the PFB and NFB groups

in their experiment, the CP group received less feedback than

the NFB and PFB groups (although this was only significant

for the PFB group) and participants received different

amounts of feedback on each day. This was because the error

rate determined how much feedback participants in the PFB

group received.

For Experiment 2, feedback was given on trials eligible for

feedback (i.e., incorrect trials for the NFB group and correct

trials for the PFB group) if the following expression was true:

abs
total feedback trials

Total Trials

� �

−0:20

� �

> abs
total feedback trialsþ 1

Total Trials

� �

−0:20

� �

:

ð3Þ

This mechanism adjusted the trial-by-trial feedback so that

the total amount of feedback given on each day was as close to

20 % of all trials for all groups. After each trial in which a

response was made making feedback possible, we calculated

the overall percentage of feedback (1) if feedback was to be

given on the current trial (right side of Equation 3), and (2) if

feedback was not to be given (left side of Equation 3). The

option that brought the total percentage feedback closer to

20 % was chosen (see Supplementary Method section for a

detailed example). In sum, the feedback algorithm favors the

distribution of feedback when the percentage of feedback dis-

tributed falls below 20 % of all previous trials, and favors the

withholding of feedback when feedback exceeds 20 %. Thus,

there is constant adjustment after each trial response to keep

the amount of total feedback anchored towards 20 %.

For the CP condition, feedback type (positive or negative)

was dependent on the percentage of positive and negative

feedback trials as calculated throughout the experiment. If

the response was correct, then the proportion of positive feed-

back trials was calculated and the circumstance (presenting or

withholding feedback) that promoted positive feedback closer

to 20 % of correct trials was chosen. Likewise, if the response

was incorrect, then the proportion of negative feedback trials

was calculated and the circumstance (presenting or withhold-

ing feedback) that brought the total proportion of feedback

closer to 20 % was chosen. Thus, participants in the CP con-

dition received no feedback on ~80 % of all trials, positive

feedback on ~20 % of correct trials, and negative feedback on

~20 % of incorrect trials. Feedback instructions for

Experiment 2 were identical to Experiment 1.

Each trial beganwith the presentation of a single Gabor patch

and remained on the screen until the participant made his or her

judgment. Participants responded on a standard keyboard by

pressing the z key if they believed the stimulus belonged to

Category A and the m key if they believed the stimulus

belonged to Category B. The stimulus and feedback were pre-

sented on a gray background. Positive feedback took the form of

the word BCorrect,^ presented in green font and negative feed-

back took the form of the word BIncorrect,^ presented in red

font. All feedback remained on the screen with the stimulus for

1,500 ms. Trials with no feedback showed only the stimulus on

a gray background for 1,500 ms. Ten blocks of 80 trials were

completed and were separated by participant-controlled rest pe-

riods. Sessions were usually completed on consecutive days,

with no more than 3 days between consecutive sessions. One

participant in the NFB group only completed nine of the 10

blocks on Day 1, but completed all blocks on Day 2 and Day 3.

Model-based analysis The modeling analysis for Experiment

2 was identical to Experiment 1.

Results

Proportion of feedback trials Todetermine howour feedback

algorithm controlled the rate of feedback, we submitted the

Table 2 Category distribution characteristics. Dimension y (orientation) is
represented in degrees. Dimension x (frequency) was converted to degrees
by norming dimension x and multiplying by 90. μ = Mean, σ = Standard
Deviation, Covx, y = Covariance between dimensions x and y

μx μy σx σy COVx,y

Category A 56 36 21 20 304

Category B 36 56 22 22 304

5 Note that while Ashby and O’Brien (2007) employed a category struc-
ture with a bivariate normal distribution, we used an evenly distributed
category structure.
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proportion of feedback trials to a two-factor ANOVA using con-

dition (PFB, NFB, and CP) and day as factors. There was a sig-

nificant effect of day,F(2, 42) = 3.60, p < .05, ηp
2 = 0.146, condi-

tion,F(2,21)=7.783,p<.005,ηp
2=0.426,andasignificantDay×

Condition interaction,F(4, 42) = 3.876, p < .01, ηp
2 = 0.270. Post

hoc comparisons revealed a significant difference in the propor-

tionof feedback receivedbetween theNFBandPFBgroup, t(7)=

3.50,p<.05,andbetweentheNFBgroupand theCPgroup, t(7)=

4, p < .01, but not between the PFB and CP groups (|t| < 1). Note

that these effects are theproductof the lowvariance causedby the

precision of our feedback mechanism. This is supported by the

fact that theCP and PFBgroups both received 20% feedback on

eachday,while theNFBgroupexperienced19%,19%,and18%

feedback across the three days. We do note that, similar to

Experiment1, theNFBgroupreceivedsignificantly lessfeedback

than the PFB groups.

Accuracy We performed a pairwise Wilcoxon sign test on the

30 blocks between all groups, similar to Ashby and O’Brien

(2007) (see Fig. 4, right panel). There was a significant differ-

ence between CP and PFB (sign test: S = 24 of 30 blocks, p <

.005), NFB and PFB (sign test: S = 23 of 30 blocks, p < .01), but

not between NFB and CP (sign test: S = 17 of 30 blocks, p =

.585). This analysis indicates a strong advantage in learning for

the NFB and CP groups over the PFB group.

Although the PFB group experienced a gain in accuracy on

Day 1 from Block 1 (53 %) to Block 10 (64 %), no further

learning was observed for the rest of the experiment. In contrast,

the NFB and CP group continued to show strong evidence of

learning throughout the experiment, reaching accuracies of

73 % and 70 %, respectively by Block 10 of Day 3 (64 % for

PFB). Despite the fact that the NFB group received significantly

less feedback than the PFB and CP groups, we observed a

significant advantage for the NFB group over the PFB group.

Within- and between-day accuracy changes As in

Experiment 1, we submitted the within-day accuracy scores

(defined as accuracy on Block 10 minus accuracy on Block 1

for each day) to a group (PFB, NFB, CP) by day repeated

measures ANOVA. This revealed a significant main effect of

day, F(2, 42) = 6.726, p < .005, ηP
2 = 0.243, but no main effect

of group, and no interaction (Fs < 1). These results resembled

the results of Experiment 1 (within-day improvements de-

creased across days), with the exception that Day 1 improve-

ments were more similar across groups. Thus, within-day

changes in accuracy were statistically similar between groups

(see Fig. 6, bottom middle panel).

Furthermore, we submitted between-day accuracy scores

(defined as accuracy on the first block of the following day

minus accuracy on the last block of the previous day) to a

group by day (Day 2 minus Day 1, Day 3 minus Day 2)

repeated-measures ANOVA. The results revealed no main ef-

fect of day, F(1, 21) = 1.417, p = .247, and a marginally

significant interaction, F(2, 21) = 3.349, p = .06. The main

effect of group, however, was significant, F(2, 21) = 9.966, p

< .005, ηP
2 = 0.479. Post hoc comparisons revealed that NFB

differed significantly from PFB (p < .005), CP differed mar-

ginally from PFB (p = .072), but NFB did not differ signifi-

cantly from CP (p = .124). These results are similar to those of

Experiment 1 where learning differences were only identified

between days and provide a clearer picture regarding the ben-

efit of negative feedback over positive feedback; it appears

that negative feedback affords the engagement of offline pro-

cesses that cannot be engaged by positive feedback alone.

Model-based analyses As in Experiment 1, the model-based

analyses of the patterns of responses in Experiment 2 suggested

that participants in the NFB group were more likely to use an II

strategy than participants in the PFB group. The right panel of

Fig. 5 reveals the number of participants whose strategy were

best modeled by either a unidimensional, conjunctive, or II

strategy. The PFB group almost unanimously favored a unidi-

mensional strategy; seven of eight participants used a unidimen-

sional categorization strategy. For the NFB group, four partici-

pants used a GLC strategy while the other four participants

chose to use either a unidimensional or conjunctive strategy.

Finally, the CP group mostly engaged a unidimensional or

GLC strategy (unidimensional: 4, conjunctive: 1, GLC: 3).6

Although our modeling process selects the best-fitting model

based on the lowest BIC, it does not indicate the probability that

the best-fitting model is adequately superior to the other models

(Edmunds et al., 2015). To determine how likely the best-fitting

6 To test whether our modeling analysis favored the selection of RB
models, we conducted three model recovery simulations, similar to
Donkin, Newell, Kalish, Dunn, and Nosofsky (2015). We performed this
analysis for the suboptimal GLC, the unidimensional-length, and
Conjunctive B models. To conduct this analysis, we extracted the best
fitting parameters for each participant from our original modeling analy-
sis. Next, we used the parameters to form new optimal linear bounds for
each of our 24 participants and simulated their Day 3 responses as if they
were using that bound. Finally, we reran our modeling analyses for all
participants with these new responses. If our modeling analysis biases the
selection of RB models over II models, then we should identify several
participants who cannot be fit with the II models, even when we assume
that they are using a GLC strategy. Similarly, if our modeling analysis
biases the selection of II strategies over RB strategies, then we should
identify several participants who cannot be fit with RB strategies, even
when we assume they are using either a conjunctive or unidimensional
strategy.

When we modeled each participant’s responses using their subopti-
mal II parameters, all participants were best fit by an II strategy. Thus, our
modeling analysis did not favor the selection of an RB strategy over an II
strategy; all participants in our original modeling analysis had the chance
to be modeled using an II strategy, and either were, or another model fit
better. Finally, we reran our models assuming all participants adhered to a
unidimensional and a conjunctive strategy, in separate analyses. For both
of these model recovery simulations, we only identified one participant
(of 24) who was best fit by an II strategy. Thus, although our modeling
analysis represented a very slight bias toward II strategies, we still did not
identify any participants in the PFB group who used an II strategy.
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model derived from our analysis is actually the most appropriate

modelover the alternativemodels,wecomputedmodel probabil-

ities based on Bayesian weights (Wagenmakers & Farrell, 2004;

SeeSupplementaryMethodsection).Theseprobabilities for each

model and each participant are plotted in Fig. 7 as a heat map

(including Experiments 1 and 3). The darker the corresponding

box, the higher the model probability is for that model. For the

NFBgroup, theprobabilityof thewinningmodel being theGLC,

andnottheunidimensional, is97%;theprobabilityof thewinning

modelbeing theGLC,andnot conjunctive, is 78%.Thus, there is

a high probability that the correct model is the winning model

derived from our model analysis. Similarly, we can infer with

strong confidence that the PFB group was correctly modeled by

anRBstrategy; theprobabilityof thewinningmodelbeinganRB

model (unidimensional or conjunctive), rather than either IImod-

el, is 68 %. This analysis confirms that the PFB group was best

modeledbyanRBstrategy,and theNFBgroupwasbestmodeled

by an II strategy.

Summary of Experiments 1 and 2

Experiments 1 and 2 reveal an advantage for negative feed-

back over positive feedback in promoting II learning. Both

experiments used similar category structures (e.g., nonover-

lapping), but different mechanisms for controlling the rate of

feedback; whereas Experiment 1 used an error-based method

of controlling feedback, similar to Ashby and O’Brien (2007),

feedback in Experiment 2 did not depend on the error rate.

This pattern of results is likely the product of the type of

feedback received, but the distribution of trials that received

feedback may also play a critical role. Given that our mecha-

nisms for controlling the feedback rate did not control which

stimuli yielded feedback across perceptual space, it could be

the case that the PFB and NFB group may have received

qualitatively different information on their feedback trials.

For instance, consider a situation where two participants,

one in the PFB group and the other in the NFB group, are both

achieving 75 % accuracy. The PFB participant can receive

feedback on a range of trials that span the 75 % of accurate

trials, and the distribution of these trials in the stimulus space

should be biased toward stimuli far from the category bound-

ary. However, the NFB participant can only receive feedback

on the 25 % of trials that were incorrect. These trials are more

likely to involve stimuli that are closer to the category bound-

ary. Thus, the feedback received by the NFB participant may

be more useful because it focuses on the harder trials (trials

closer to the optimal linear bound). This is supported by re-

search showing that II category learning is facilitated by initial

training on Bharder^ trials over Beasier^ trials (Spiering &

Ashby, 2008). Figure 8 plots the percentage of feedback given

to the PFB and NFB groups for three levels of difficulty (i.e.,

distances from the boundary; top) and across perceptual space

(bottom). Whereas the NFB group appears to have a strong

concentration of feedback trials close to the optimal linear

bound (denoted by the white line), the PFB group appears to

have received more distributed feedback.

This presents a possible explanation for our results: perhaps

the NFB group performed significantly better than the PFB

group because the NFB group received more useful informa-

tion from their feedback (i.e., more feedback concentrated

Fig. 7 Heat plot of model probabilities for each model and participant.
Each participant is plotted across rows, and each model type is plotted
across columns. Black represents a model probability of 1 and white
represents a model probability of 0. SUB-OPT GLC = suboptimal

GLC, OPT-GLC = optimal GLC, UNI-L = unidimensional length,
UNI-O = unidimensional orientation, CONJ A = Conjunctive A, CONJ
B = Conjunctive B, Flat = flat model
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toward the optimal linear bound). To claim that negative feed-

back is more effective for teaching II categories than positive

feedback, the type of stimuli that receive feedback must be

equated across the PFB and NFB groups. Thus, in Experiment

3 we adjusted trial feedback so that participants in the PFB

group received feedback mostly on difficult trials in a corre-

sponding fashion to the NFB group run in Experiment 2.

Experiment 3

ForExperiment 3,we ran a group that received positive feedback

with an adaptive algorithmdesigned tomatch the biaseddistribu-

tion of feedback towards harder trials as in the NFB group. We

refer to the new PFB group as PFB-HF (harder feedback).

Method

Participants Eight participants were recruited from the

University of Iowa community in accordance with the univer-

sities institutional review board. Participants were balanced

with the NFB group from Experiment 2 based on age and

sex (PFB-HF: average age = 20.88 ±1.36 years, five females;

NFB: average age = 24.13 ± 4.48 years, four females; CP:

average age = 22.85 ± 4.69 years, five females). All

participants had normal or corrected-to-normal vision and

attended all three sessions. All participants were paid $10

per session.

Stimuli All stimuli were identical to Experiment 2.

Procedures All procedures were the same as the PFB group in

Experiment 2, except that the probability of feedback was ad-

justed so that the PFB-HF group was more likely to receive

feedback on harder trials (see Supplementary Method section).

Model-based analysis The modeling analysis for Experiment

3 was identical to Experiments 1 and 2.

Results

Proportion of feedback trials Figure 9 illustrates the distribu-

tion of feedback for the PFB-HF group across trial difficulty (left

panel) and across perceptual space (right panel). To determine

whether we equated the information received by participants be-

tween groups, we compared the proportion of feedback trials for

the PFB-HF group in Experiment 3 and the NFB group in

Experiment 2. Thus, we performed a three-way ANOVA using

day, condition (NFB vs. PFB-HF), and trial difficulty (easy, me-

dium, or hard) as factors, and percentage of feedback trials as our

Fig. 8 (Top Panels) Percentage of feedback trials plotted across days (x-
axis) for Hard, Medium, and Easy trials (separate lines) for Experiment 2.
(Bottom Panels) Percentage of feedback plotted across perceptual space

for PFB (left panel) andNFB (right panel) onDay 3. Darker shades reflect
higher percentages of feedback given for those trial types. The white lines
represent the optimal linear bound
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dependent variable. The ANOVA revealed a significant main

effect of day, F(2, 26) = 20.495, p < .001, ηp
2 = 0.612, and trial

difficulty,F(2, 26) = 184.909, p < .001, ηp
2 = 0.934, and a signif-

icant interaction between trial difficulty and day, F(4, 52) =

13.081,p< .001,ηp
2=0.502.Noothermaineffectsor interactions

were significant. Critically, no significant interaction between

conditionand trial difficultywas revealed (F<1), soweconclude

that our algorithm successfully equated feedback across percep-

tual space for all groups (for a comparison of the distribution of

feedback between the NFB and PFB-HF groups, see the upper

right panel of Fig. 8 and the left panel of Fig. 9). Participants

received feedback on approximately 20 % of all trials across all

days.

Accuracy-based analysis We performed a pairwise Wilcoxon

sign test on the thirty 80-trial blocks of the experiment between

the PFB-HF group and all of the groups in Experiment 2. The

pairwise analysis revealed a significant difference between CP

and PFB-HF (sign test: S = 28 of 30 blocks, p < .001), NFB and

PFB-HF (sign test: S = 23 of 30 blocks, p < .01), but not between

PFB-HF and PFB (sign test: S = 16 of 30 blocks, p = .856).

Similar to the original PFB group, the PFB-HF group experi-

enced a gain in accuracy on Day 1 from Block 1 (47 %) to

Block 10 (63 %), but this growth in accuracy did not increase

by the end of the experiment on Block 10 of Day 3 (63 %).

Within- and between-day learning Within and between-day

learning was contrasted between all four groups, similar to

Experiment 2. The within-day analysis revealed a significant

effect of day, F(2, 56) = 10.883, p < .001, ηp
2 = 0.280, but no

effect of group and no interaction (Fs < 1). The between-day

analysis revealed no significant effect of day, F(1, 28) = 1.107,

ns, and amarginally significant interaction,F(3, 28) = 2.658, p =

.07, ηp
2 = 0.222. We also identified a significant effect of group,

F(3, 28) = 5.079, p < .01, ηp
2 = 0.352. Post hoc tests revealed

group differences between NFB and PFB (p < .01), NFB and

PFB-HF (p< .05), but no other comparisonswere significant (ps

> .24). These results reveal that although both groups experi-

enced similar online changes, the NFB group experienced stron-

ger offline changes compared to the PFB and PFB-HF groups.7

Model-based analysis The data for the PFB-HF group were

modeled similarly to the previous groups. This analysis re-

vealed that no participant’s data in the PFB-HF group was best

modeled by an II strategy: five used a unidimensional strategy

and three used a conjunctive strategy. Thus, although equating

information between groups increased the number of partici-

pants using a conjunctive strategy from one (in Experiment 2)

to three, we still did not see more than one participant engage

an II strategy among this group. Note also that the model

probabilities are high for the PFB-HF group (see Fig. 7).

Discussion

Experiment 3 revealed that equating information was not suffi-

cient to eliminate performancedifferences betweengroups.After

roughly equating the regions of perceptual space that received

feedback, we still observed a difference between the PFB-HF

and NFB group in terms of accuracy achieved across days. In

addition,weonlyidentifiedasinglePFBparticipantwhowasable

toengageanII strategyacross21 totalPFBparticipantscompared

to 7 out of 13NFBparticipantswho adopted an II strategy. These

results provide further evidence that negative feedback is signif-

icantly more effective for teaching II categories than positive

feedback.

General Discussion

This study demonstrates a clear advantage for negative feed-

back over positive feedback for II category learning. This

conclusion is supported by higher accuracy for the NFB over

Fig. 9 Left panel. Percentage of trials plotted across days (x-axis) for
hard, medium, and easy trials (separate lines). Right panel. Percentage
of feedback plotted across perceptual space for PFB-HF onDay 3. Darker

shades reflect a higher percentage of feedback given for those trial types.
The white line represents the optimal linear bound

7 Note that this pattern of results is the same when directly comparing the
PFB-HF and NFB groups.
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the PFB group and greater use of II strategies in groups that

were given negative feedback. In addition, we observed that

the advantage for the NFB group was driven by between-

session changes in accuracy, rather than within-session chang-

es. These findings remained robust when the information that

each group received was equated.

These results contrast with Ashby and O’Brien’s (2007)

finding that there was no difference in the effectiveness be-

tween positive and negative feedback. One possible reason for

the disparity relates to the category structure. Unlike Ashby

and O’Brien, we used categories that were nonoverlapping

and excluded trials further than 0.3 diagonal units perpendic-

ular to the optimal linear bound. Overlapping category struc-

tures lead to feedback that is inconsistent with the optimal

bound, and this may be particularly detrimental to perfor-

mance when the overall rate of feedback is low. Feedback

on trials that are far from the bound may provide little infor-

mation about the location of the bound, thereby diluting the

proportion of trials on which useful information was given. In

the case of limited feedback (such as in the PFB and NFB

groups), these conditions are likely to promote the continued

use of an RB strategy. By increasing the gap between the

optimal accuracy using an II strategy versus using an RB

strategy from 82 % to 100 %, we promoted conditions neces-

sary to see a difference between these groups. These changes

were sufficient to reveal a distinct advantage for negative

feedback over positive feedback in promoting II learning.

Possible Mechanisms

One might propose that negative feedback is necessary to

engage an II strategy because negative feedback signals the

need to update the current categorization strategy, whereas

positive feedback does not signal the need to change strategy.

In other words, negative feedback may present a global signal

that the current strategy being used is incorrect on top of the

signal that the trial was performed incorrectly. For example,

participants in the NFB group who may have used a unidi-

mensional or conjunctive strategy early on may have realized

that their current strategy was inadequate, leading to a strate-

gic shift. Thus, negative feedback may signal the need to

break out of an inadequate rule-based strategy. In contrast, in

the absence of negative feedback, the PFB group may have

assumed that their strategy was adequate, resulting in acqui-

escence to inferior performance. This may explain why par-

ticipants in the PFB group failed to engage an II strategy.

Another possible explanation for our pattern of results is that

negative feedback is required to unlearn incorrect associations

between a stimulus and a response that were formed early on

during training. In other words, it is possible that when an incor-

rect response is produced, an association is formed between a

stimulus and a response. Evidence for this comes from

Wasserman, Brooks, and McMurray (2015), who demonstrated

that pigeons can learn to categorize stimuli into multiple catego-

ries over the course of thousands of trials. On each trial, the pi-

geonswere shown a target stimulus and a distractor stimulus and

were cued to categorize the stimulus into one of 16 categories.

Interestingly, theresearchersnotedthatpigeonswerelessaccurate

when the current trial display included a distractor that had been

rewarded as a target on the previous trial. This suggests that the

pigeons had difficulty suppressing responses to stimuli that had

justbeenrewarded.Theypositedthatassociative learningbenefit-

ted from Bpruning^ incorrect associations, as well as the forma-

tion of correct associations. Based on our experiments, it is rea-

sonable to suggest that the PFB group formed many incorrect

associations early on in training, but that those associations were

nevercorrectedintheabsenceofnegativefeedback. If thiswasthe

case, it may imply that the positive feedback group had difficulty

pruning these incorrect or irrelevant associations, whichmay ex-

plain the pattern of results we observed in our experiments.

A final possibility is that positive feedback on correct trials

may not have been as informative as negative feedback on incor-

rect trials in our experiments. Typically, in a two-choice categori-

zation task, positive and negative feedback are equally informa-

tive; positive feedback indicates that the response was correct

whereas negative feedback indicates that the alternate option

was correct.Nonetheless, it is possible that as trainingproceeded,

positive feedback became less useful than negative feedback.

This is because positive feedback may predominantly include

information about trials the participant has already mastered. In

contrast, negative feedback always indicates information about

trials that participants are unsure about, or at least erred on. This

may explain the differences in the pattern of information the PFB

andNFBgroup received duringExperiment 2.However, a prob-

lem with this explanation is that even when biasing feedback

towardsharder trials (thePFB-HFgroup inExperiment3),which

is presumablywhere onewould find feedbackmost informative,

we still observed a significant advantage for the NFB group over

the PFB-HFgroup. Future researchwill be needed to disambigu-

ate which possibility best explains our pattern of results.

Our analyses pointed to a potential mechanism to ex-

plain the advantage for the NFB group: differences in

offline changes between groups rather than online chang-

es. Although we did identify that this was the key differ-

ence between groups, we did not specifically isolate the

locus of this effect (time away from the task, sleep-

dependent consolidation, etc.). Thus, we are unable to

give a precise reason why offline changes were greater

for the NFB group over the PFB groups. Generally, how-

ever, it is assumed that offline processes do not involve

any intentional shifts in categorization strategy. Thus, the

between-days advantage suggests that negative feedback

affords the engagement of incidental learning (e.g., learn-

ing not guided by intention) processes between days, that

positive feedback cannot. Future work will be needed to

determine if this is the case.
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Conclusion

Our objective was to investigate the effectiveness of positive

and negative feedback toward promoting II learning. Contrary

to previous findings (e.g., Ashby & O’Brien, 2007), we dem-

onstrated a stronger advantage for negative feedback over

positive feedback. We observed higher accuracies as well as

the successful engagement of II strategies for the negative

feedback groupwhereas only one participant in the PFB group

was able to engage an II strategy. These results were observed

even after equating the information that was received between

groups. In addition, although online changes were similar be-

tween groups, stronger offline changes were observed for par-

ticipants that received negative feedback compared to those

that received positive feedback. These results suggest that

negative feedbackmay act as a more effective signal for teach-

ing II categories.
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