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Abstract Constructing a representation in which students express their domain under-
standing can help them improve their knowledge. Many different representational formats
can be used to express one’s domain understanding (e.g., concept maps, textual summaries,
mathematical equations). The format can direct students’ attention to specific aspects of the
subject matter. For example, creating a concept map can emphasize domain concepts and
forming equations can stress arithmetical aspects. The focus of the current study was to
examine the role of tools for constructing domain representations in collaborative inquiry
learning. The study was driven by three questions. First, what are the effects of
collaborative inquiry learning with representational tools on learning outcomes? Second,
does format have differential effects on domain understanding? And third, does format have
differential effects on students’ inclination to construct a representation? A pre-test post-test
design was applied with 61 dyads in a (face-to-face) collaborative learning setting and 95
students in an individual setting. The participants worked on a learning task in a simulation-
based learning environment equipped with a representational tool. The format of the tool
was either conceptual or arithmetical or textual. Our results show that collaborative learners
outperform individuals, in particular with regard to intuitive knowledge and situational
knowledge. In the case of individuals a positive relation was observed between constructing
a representation and learning outcomes, in particular situational knowledge. In general, the
effects of format could not be linked directly to learning outcomes, but marked differences
were found regarding students’ inclination to use or not use specific formats.
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Introduction

In collaborative inquiry learning, students are viewed as active agents in the process of
knowledge acquisition. Collaborative inquiry learning unites two approaches: inquiry
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learning and collaborative learning (Bell et al. 2010; Saab et al. 2007). In inquiry learning
students learn through exploration and scientific reasoning. In an empirical comparison
study, inquiry learning has been found to be among the most effective and efficient methods
of active learning (Eysink et al. 2009). In collaborative learning two or more students
construct knowledge together while they work towards the solution of a problem or
assignment. Research has shown that collaboration between students can enhance learning
(Lou et al. 2001; Slavin 1995; van der Linden et al. 2000). The combination of the two
might lead to very powerful learning environments.

In (collaborative) inquiry learning, students investigate a domain by making observa-
tions, posing questions, collecting empirical data, organizing and interpreting the data in
light of the posed questions, and drawing conclusions. This not only requires them to plan
and execute inquiry processes, but also to select, process, analyze, interpret, organize, and
integrate information into meaningful and coherent knowledge structures (Mayer 2002,
2004). Many things can and will go wrong in these processes unless students are provided
with guidance and scaffolding during their inquiry process (de Jong 2005, 2006; de Jong
and van Joolingen 1998; Quintana et al. 2004; Reiser 2004; Sharma and Hannafin 2007).
Computer technology can support students and facilitate the inquiry learning process in
many ways, for example by offering computer simulations for exploring, experimenting,
and collecting empirical data (de Jong 2006; de Jong and van Joolingen 1998; Park et al.
2009; Rieber et al. 2004; Trundle and Bell 2010); tools for building and running dynamic
models (Löhner et al. 2005; Sins et al. 2009; van Joolingen et al. 2005); tools for storing,
editing, organizing, visualizing, and sharing data (Nesbit and Adesope 2006; Novak 1990;
Suthers 2006; Suthers et al. 2008; Toth et al. 2002); and last but not least, tools for
communication and exchanging information with others (e.g., chat tools, e-mail, online
forums, message boards, threaded discussions) (Lund et al. 2007; Suthers et al. 2003).
Collaboration can also fulfil a scaffolding function in inquiry learning. For example, during
inquiry learning, students have to make many decisions (e.g., which hypothesis to test, what
variables to change). In a collaborative setting, the presence of a partner stimulates students
to make their plans and reasoning about these decisions explicit (Gijlers and de Jong 2009).
Through externalization students express and explain ideas, ask for clarifications or
arguments and generate new ideas or hypotheses. The process of expressing ideas through
externalization and explanation stimulates students to rethink their own ideas and might
even make them aware of possible deficits in their reasoning (Cox 1999; Kaput 1995; van
Boxtel et al. 2000).

In the case of collaborative learning it is logical to think of speech or typed chat
messages as primary media to externalize and explain ideas. Chat is a fast way of
exchanging messages; talking in particular in a face-to-face setting is even faster, more
elaborate, and richer in the sense that it provides both verbal and non-verbal information
(e.g., gesturing, nodding, pointing, facial expressions, and intonation of speech) (Janssen et
al. 2007; Strømsø et al. 2007; van der Meijden and Veenman 2005; van Drie et al. 2005).
On the other hand, the speed of these media might sometimes be a disadvantage as well.
Speech and chat are often fragmented, incoherent, jumping from one subject to another, and
since they are volatile (speech more than chat) they do not lend themselves very much for
reflection and consideration afterwards.

Another, more lasting way of externalizing and expressing ideas is by means of creating
artefacts or models representing a domain or topic. This can for example be done in the
form of writing a summary (Foos 1995; Hidi and Anderson 1986), creating a drawing (Van
Meter et al. 2006; Van Meter and Garner 2005), building a runnable computer model
(Löhner et al. 2003; Manlove et al. 2006), or constructing a concept map (Nesbit and
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Adesope 2006; Novak 1990, 2002). Furthermore, it should be noted that these activities
are not reserved for collaborative learning settings only, but can just as well be
applied in individual learning. Artefacts like these reflect the students’ current
overview and understanding of the domain, crystallize it as it were. It is open to be
viewed, viewed again, discussed, elaborated, manipulated, and reorganized. But there
might be an aspect that is even more important for learning. Externalizations show
more than simply what students know and understand. Equally if not more important
are the elements and aspects of the domain that are not represented, incorrectly
represented or only partly represented. Externalization elicits self-explanation effects,
and because the process of externalization requires students to go back and forth
between their mental representations and the external representations they are
constructing it can make them aware of unnoticed gaps and/or ambiguities in their
mental representations (Cavalli-Sforza et al. 1994; Cox 1999; Kaput 1995). This in turn
is important information that can be used to extend, refine and disambiguate their
domain knowledge.

Representational tools: Tools for constructing externalizations

Computer technology can be used for creating and sharing externalizations. These tools are
often referred to as representational tools (Suthers and Hundhausen 2003). Perhaps the
most common example of a representational tool is the concept mapping tool (Novak 1990,
2002), but many other forms are available as well. Suthers and Hundhausen (2003) argue
that in collaborative learning constructing external representations may form the pivot
around which students share and discuss knowledge. Gijlers and de Jong (submitted) found
that students who used a shared concept mapping tool in a collaborative simulation-based
inquiry learning task showed significantly enhanced levels of intuitive knowledge
compared to collaborating dyads that did not use a shared concept mapping tool. Intuitive
knowledge is considered a quality of conceptual knowledge that taps on understanding how
changes of one variable affect other variables (Swaak and de Jong 1996). Gijlers and de
Jong (submitted) observed that in the concept mapping condition the intuitive knowledge
scores were significantly and positively related to the percentage of chat messages related to
conclusion and interpretation.

Effects of format on learning and communication

Representational tools can be used to store, display, manipulate, organize and share
information, but also to support, scaffold, and even direct inquiry, communication, and
knowledge construction processes. The representational format of a tool, also referred to as
“notation” or “notational system” (e.g., Kaput 1995; Suthers 2008; Suthers et al. 2008;
Wilensky 1995), can play a key role in learning. Kaput (1995) remarks: “different notation
systems support dramatically different forms of reasoning, although the differences are
strongly influenced by interactions between the knowledge structures associated with the
notations and the prior knowledge to the reasoning” (p. 148). The properties of formats
influence which information is attended to and how people tend to seek, organize and
interpret information (e.g., Ainsworth and Loizou 2003; Cheng 1999; Larkin and Simon
1987; Zhang 1997). For example, constructing a concept map draws students’ attention to
key concepts in the subject matter and to the relations between those concepts (Nesbit and
Adesope 2006) which can help students to enhance and refine their conceptual knowledge
and understanding.
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Suthers and Hundhausen (2003) compared three different formats of representational
tools (concept maps, evidence matrix, and text) that were integrated in an electronic
learning environment in which students explored a sequence of information pages about
complex science and public health problems. It was found that pairs using an evidence
matrix representation discussed and represented issues of evidence more than pairs using
other representations. Second, pairs using visually structured representations (concept map,
evidence matrix) revisited previously discussed ideas more often than pairs using text.
Third, it was observed that the evidence matrix not only prompted novices to consider
relevant relationships, but made them spend considerable time and resources on irrelevant
issues as well.

van Drie et al. (2005) also compared three different formats of representational tools.
They compared argumentative diagrams, lists, and matrices in a historical writing task in a
computer-supported collaborative learning (CSCL) environment. It was found that matrices
consisting of a table format that could be filled in by the students, supported domain-
specific reasoning and listing arguments, whereas argumentative diagrams, organizing and
linking arguments in a two-dimensional graphical way, made students focus more on the
balance between pro and con arguments.

A study by Ertl et al. (2008) illustrates how pre-structuring a representational tool
prompted the students’ attention particularly to specific information that was relevant to the
task. They used a task about Attribution Theory. Students were required to identify and
name causes, to classify values of consensus and consistency, and to describe the
attribution in students with school problems. Twenty-seven triads were provided with a
representational tool, twenty-six triads did not have a representational tool. The tool
consisted of a content scheme, that is, a table in which causes, consensus, consistency, and
attribution could be filled in by the students. It was found that triads provided with a
scheme, scored higher with respect to determining consensus, consistency, and attribution.
This study suggests that the effects of a representational tool can depend to a large extent on
the mapping between the tool on the one hand and the goals and aims of the learning task
on the other hand. In this domain, causes, consensus, consistency, and attribution were the
main aspects.

Do representational tools always work?

Formats can have different affordances, not only in the sense that they focus the attention of
students on different aspects of the subject matter, but also with regard to how accessible or
easy to use they are for students. Format can therefore play a critical role in the likelihood
that students engage in constructing a representation and use a representational tool as
intended. Kolloffel et al. (2010) studied the effects of representational tools used by
individual students in a learning environment about combinatorics and probability theory.
Three different formats of representational tools were tested: a concept mapping tool, a tool
for creating arithmetical representations (e.g., formulas, equations), and a textual
representational tool, which resembled simple word processing software. Each of the tools
was integrated in a simulation-based inquiry learning environment. It was found that
students who used a representational tool showed significantly higher post-test scores, and
they also showed enhanced levels of situational knowledge, which is a prerequisite for
going beyond the superficial details of problems. Furthermore, when students were
provided with a conceptual or textual representational tool they were much more likely to
construct representations than when provided with a representational tool with an
arithmetical format.
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In a similar sense is offering tools and scaffolds not a guarantee that the learning
outcomes improve. Clarebout and Elen (2006; see also: Clarebout et al. 2009) pointed out
that tools are often used inadequately or not at all by students. Inadequate use of tools is for
example using a tool “to gather but not organize or synthesize problem-related information”
(Jiang et al. 2009). They argue that the likelihood that students will use a tool depends on a
complex interplay of factors, including (but not limited to) prior knowledge (high or low,
both can stimulate or inhibit tool-use), motivation and goal orientation, self-regulation
strategies, and domain-related interest (Jiang et al. 2009).

Talking or chatting about the subject matter in collaborative inquiry learning can be seen
as a way of externalizing and expressing knowledge. Yet, tools can be useful to direct the
attention of students toward specific aspects of the domain that might be overlooked
otherwise.

Research questions

The focus of the current study was to examine the role of representational tools in
collaborative inquiry learning. The study was driven by the following questions. First, what
are the effects of collaborative inquiry learning with representational tools on learning
outcomes? Second, does format of the tool have differential effects on domain
understanding? And third, does the format of the tool have differential effects on students’
inclination to use a representational tool?

In the current study the format participants could use to construct a representation was
experimentally manipulated. Three representational tools were developed, each designed in
such a way that it constrained the format that could be used to construct a representation.
One tool allowed only conceptual input, another one allowed only arithmetical input, and a
third one could only be used to create texts (these tools will be described in more detail in
the Method section).

In order to gain a fuller appreciation of the collaborative aspect in this study, the results
were contrasted to a twin study reported earlier (see Kolloffel et al. 2010), that took place in
an individual inquiry learning setting. In the collaborative inquiry learning setting the
students communicated face-to-face with each other. Following existing literature on the
comparison learning outcomes in individual and collaborative learning settings (e.g., Lou et
al. 2001; Slavin 1995; van der Linden et al. 2000), it was hypothesized that learning
outcomes in the collaborative learning setting would be higher than for those in the
individual learning setting.

The format used to construct a representation was assumed to have differential effects on
knowledge construction and domain understanding. Creating a conceptual representation
like a concept map was hypothesized to point the students’ attention at the identification of
concepts and their relationships (Nesbit and Adesope 2006). A concept map is relatively
easy to construct, especially if there are not too many concepts and relations (van Drie et al.
2005). Because this format is easy to understand and use, it was assumed that participants
would be inclined to use it. The focus of students on the domain concepts was hypothesized
to result in enhanced levels of knowledge about the conceptual aspects of the domain,
rather than procedural or situational aspects.

Constructing representations in an arithmetical format was assumed to direct the
students’ attention mainly towards procedural domain aspects (e.g., the ability to calculate
the probability of an event). Therefore, it was hypothesized that constructing an arithmetical
representation would foster the acquisition of procedural knowledge rather than knowledge
about conceptual and situational aspects. Regarding the likelihood that students would
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construct a representation, it was hypothesized that compared to other formats students
would have difficulty constructing arithmetical representations (cf. Tarr and Lannin
2005), however, discussing the arithmetical aspects of the domain with a peer in a
collaborative learning setting could have a beneficial effect on students’ inclination to use
the arithmetical tool.

The third format for constructing a domain representation was a textual format. This
format particularly allows students to express their knowledge in their own words. The
current domain could easily be described in terms of everyday life contexts and situations.
Constructing textual representations was assumed to direct the student’s attention to
situational and conceptual aspects, although the textual format was not expected to
emphasize domain concepts as strongly as the concept maps were supposed to do. It was
expected that students would not experience much difficulty with using the textual format.
Overall, this is one of the most commonly used formats inside and outside educational
settings. Therefore, it was assumed that many participants would be inclined to use this
representational tool.

Method

Participants

In the collaborative learning study, 128 secondary education students entered the
experiment. In total, the data of 61 pairs could be analyzed. The average age of these 56
boys and 66 girls was 14.62 years (SD=.57). In the twin study, the individual learning
study, 95 secondary education students, 50 boys and 45 girls, participated (Kolloffel et al.
2010). The average age of the students was 14.62 years (SD=.63). All data were collected
in two subsequent years in the same school with the same teachers and the same method.
The experiments employed a between-subjects design with the format of the provided
representational tool (conceptual, arithmetical, or textual) as the independent variable.
Students were randomly assigned to conditions. Of the 61 pairs in the collaborative setting,
22 pairs were in the Conceptual condition, 19 pairs in the Arithmetical condition, and 20
pairs in the Textual condition. Of the 95 students in the individual learning setting, 33
were in the Conceptual condition, 30 in the Arithmetical condition, and 32 in the
Textual condition. The domain of combinatorics and probability theory was part of the
regular curriculum and both experiments took place some weeks before this subject
would be treated in the classroom. The students attended the experiment during regular
school time; therefore, participation was obligatory. They received a grade based on
their post-test performance.

Domain

The instruction was about the domain of combinatorics and probability theory, which
involves determining how many different combinations can be made with a set of elements
and the probability that one or more combinations will be observed in a random
experiment. Some of the key concepts in this domain are replacement (are elements allowed
to occur more than once in a combination?) and order (is the specific order of elements in a
combination relevant information?). On basis of these two concepts, four so-called problem
categories can be distinguished (replacement and order relevant; no replacement and order
relevant; and so on). An example of a problem which comes under the category
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“replacement and order relevant” is the following: what is the probability that a thief will
guess the 4-digit PIN-code of your credit card correctly in one go?. It is possible that a digit
is observed more than once in a code (replacement). Second, it is necessary but not
sufficient to know which four digits comprise the code because one also needs to know the
specific order in which the digits appear in the code (order relevant).

Learning environment

The instruction about the domain was implemented in a simulation-based inquiry learning
environment, called Probe-XMT, which was created with SIMQUEST authoring software
(de Jong et al. 1998; Swaak and de Jong 2001). .Computer simulations can be used by
students to inquire into a domain. The simulation displays a state or situation of the domain
and some of the elements or variables that play a role in that domain can be changed by the
user. Each time the user makes a change, the simulation shows the effects of the change on
the state or situation. The idea behind this instruction is that by systematically changing
variables and observing the consequences of those changes, the students can explore and
learn to master the key concepts and principles of the domain (de Jong 2005, 2006; de Jong
and van Joolingen 1998). An example of a computer simulation in Probe-XMT is displayed
in Fig. 1.

The simulation in Fig. 1 is about predicting the outcome of a footrace. Relevant
variables here are for example the total number of runners and the range of the prediction
(e.g., predicting only the winner, or the top 3, or the top 10, and so on). In the box on the
left-hand side of the simulation, students could enter the values of those variables. On the
right-hand side of the simulation the resulting effects of the values on number of possible
combinations and the probability that a certain prediction would be true could be observed.
In this case, this consisted of a text and an equation that changed whenever the values of the
variables were changed. In an earlier study, the combination of text and equations was
found to have computational benefits and benefits in terms of learning outcomes compared
to other formats, e.g., tree diagrams (Kolloffel et al. 2009).

Probe-XMT consisted of five sections (not displayed in Fig. 1). Four of these sections
were devoted to each of the four problem categories. The fifth section aimed at connecting
and integrating these four problem categories. Each section used a different cover story, that
is, an everyday life example of a situation in which combinatorics and probability played a
role, exemplifying the problem category treated in that section. The example of the footrace
(see above) was used as cover story for problem category “no replacement; order relevant”.

Fig. 1 Screen dump Probe-XMT
simulation

Computer-Supported Collaborative Learning 229



The example of the thief and the credit card was used as a cover story in the “replacement;
order relevant” section. In the fifth (integration) section, the cover story applied to all
problem categories. In each section the students’ inquiry activities were guided by a series
of questions (both open-ended and multiple-choice items) and assignments, all based on the
cover story of that particular section. Information about user actions in the learning
environment, including time-on-task, path through the learning environment, and
simulation use, were registered in log files.

Representational tools

For this study an electronic on-screen representational tool was added to the learning
environment Probe-XMT. This tool could be used to construct an overview or summary of
the domain’s main concepts, principles, variables, and their mutual relationships. Depend-
ing on the experimental condition to which a participant was assigned, the format of this
tool was either conceptual, or arithmetical, or textual. (This will be explained in more detail
later). In each condition the tool was available at all times in the learning environment and
therefore the participants could use it any time they wanted during their learning process.
Operating the tool was easy and straightforward. Participants received a demonstration of
how to use the tool beforehand and there was plenty of time to practice using the tool
before the actual experiment started. Furthermore, during the experiment help and
assistance with using the tools was available at all times.

As mentioned before, the experimental manipulation focused on the format of the
representational tool. There was a tool with a conceptual format, a tool with an arithmetical
format, and a tool with a textual format. The conceptual representational tool (see Fig. 2) could
be used to create a concept map of the domain. Students could draw circles representing
domain concepts and variables. Keywords could be entered in the circles. The circles could be
connected to each other by arrows indicating relations between concepts and variables. The
nature of these relations could be specified by attaching labels to the arrows.

In the arithmetical representational tool (see Fig. 3), students could use variable names,
numerical data, and mathematical operators (division signs, equation signs, multiplication
signs, and so on) in order to express their knowledge.

Fig. 2 Conceptual
representational tool (Concept
map created by participants)
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Finally, the textual representational tool (see Fig. 4) resembled simple word processing
software, allowing textual and numerical input.

In theory, the participants could have used paper and pencil to “bypass” the representational
tool. Experimenters were present in the classroom at all times and this behavior was not
observed. Participants were focused on the computer screen, meanwhile talking with each other
about the subject matter, assignments, navigation, and so on. No artefacts were created outside
the electronic learning environment. In the current study, the effects of representational tools
were tested outside the lab, in real classroom settings. The tools were intended as means to
support students while learning, not as means to assess learning. Assessment is mostly
obligatory in classroom settings, whereas making use of support is not. For reasons of
ecological validity, the use of the representational tool was therefore not obligatory,
although students were strongly advised to use the tool and they were informed that
using the tool would help them to better prepare themselves for the post-test.

Fig. 3 Arithmetical
representational tool (Input on the
right side created by participants)

Fig. 4 Textual representational
tool (Text created by participants)
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Knowledge measures

Two knowledge tests were used in this experiment: a pre-test and a post-test. The tests
contained 12 and 26 items respectively. The sensitivity and reliability of the test items have
been established in recent years in a number of studies performed across Germany and The
Netherlands (see e.g., Berthold and Renkl 2009; Eysink et al. 2009; Gerjets et al. 2009;
Kolloffel et al. 2009; Wouters et al. 2007). The pre-test was aimed at measuring (possible
differences in) the prior knowledge of the students. The post-test was specifically designed
to measure the effects of external representations on domain knowledge. Well-structured
and organized mathematical knowledge is thought to include conceptual, intuitive,
procedural, and situational understanding (e.g., Fuchs et al. 2004; Garfield and Ahlgren
1988; Hiebert and Lefevre 1986; Rittle-Johnson and Koedinger 2005; Rittle-Johnson et al.
2001; Sweller 1989). The post-test consisted of different types of items, each aimed at
measuring one of these types of knowledge.

Conceptual knowledge is the implicit or explicit understanding of principles
underlying and governing a domain and of the interrelations between pieces of
knowledge (Rittle-Johnson et al. 2001) developed by establishing relationships between
pieces of information or between existing knowledge and new information. The post-test
contained 12 multiple choice items aimed at measuring conceptual knowledge. Four of
these items were intended to measure regular conceptual knowledge (see Fig. 5 for an
example).

Eight items were intended to measure intuitive conceptual knowledge (see Fig. 6 for
an example). Intuitive conceptual knowledge reflects the extent to which conceptual
understanding has become automated. The idea behind intuitive conceptual knowledge
is that as students’ conceptual understanding becomes deeper and more automated, this
will increase the speed with which they can assess concepts and their relations in
problem situations and also enable them to accurately predict how these concepts and
relations will respond to changes. Items measuring conceptual knowledge and intuitive
conceptual knowledge differed in three respects (Eysink et al. 2009): first, the situation
described in the problem statement regarding the intuitive items was the same for each
item and was presented prior to the items instead of being presented with each separate
item; second, the intuitive items offered two alternatives instead of four; finally,
students were asked to answer the intuitive items as quickly as possible, as intuitive
knowledge is characterized by a quick perception of the meaningful situation (Swaak
and de Jong 1996).

Procedural knowledge is “the ability to execute action sequences to solve problems”
(Rittle-Johnson et al. 2001, p.346). The post-test contained 10 open-ended items aimed at
measuring procedural knowledge (see Fig. 7 for an example).

You have a deck of cards from which you select 4 cards. You predict
that you will select an ace, a king, a queen and a jack in this specific
order. Does it matter whether you put back the selected cards before
each new selection or not? 

a. Yes, your chances increase when you put back the selected cards 
b. Yes, your chances decrease when you put back the selected cards 
c. No, your chances remain the same whether you put back the 

selected cards or not 
d. This depends on whether the deck of cards is complete or not 

Fig. 5 Post-test item measuring conceptual knowledge
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Situational knowledge (de Jong and Ferguson-Hessler 1996) enables students to relate a
problem to everyday, real-life situations, and to analyze, identify, and classify a problem, to
recognize the concepts that underlie the problem, and to decide which operations need to be
performed to solve the problem. Four multiple-choice items were included in the post-test
to measure this type of knowledge (see Fig. 8 for an example).

The correct answers to the items presented in Figs. 5, 6, 7, and 8, are respectively:
answer B; answer A; (1/10)*(1/10)=1/100; and answer A.

Procedure

The experiments were performed in three sessions all separated by a one-week interval, and
took place in a real school setting. The procedures in both the individual and collaborative
setting were identical.

In session one, students received some background information about the purpose of the
study, the domain of interest, learning goals, and so on. This was followed by the pre-test.
In both the individual and the collaborative setting, students completed the pre-test
individually. It was announced that the post-test would contain more items of greater
difficulty than the pre-test, but that the pre-test items nonetheless would give an indication
of what kind of items to expect on the post-test. At the end of the pre-test, a printed
introductory text was handed out to the students in which the domain was introduced. The
duration of the first session was limited to 50 min. During the last 15 min of the session, the
students received an explanation of how their representational tool could be operated and
they could practice with the tool.

A week later, in session two, the students worked with the learning environment and had
to construct a domain representation using a representational tool. The duration of this
session was set at 70 min. Students in the individual learning setting worked alone. In the
collaborative learning setting students were allowed to choose their partner themselves.
Communication between students was on a face-to-face basis: the collaborating students
were sitting next to each other, using the same computer terminal. They worked together on
the assignments, simulations, and the representational tool in the learning environment.

(Answer the following question(s) as quickly as possible) 

There are a number of marbles in a bowl. Each marble has a different
color. You will pick at random (e.g., blindfolded) a number of marbles
from the bowl, but before you do you predict which colors you will pick.

The chance your prediction proves to be correct is higher in case of: 

a. No replacement; order not important 
b. Replacement; order important 

Fig. 6 Post-test item measuring intuitive conceptual knowledge

In a pop music magazine you see an ad in the rubric FOR SALE in
which a ticket for a spectacular concert of your favorite pop group is
offered. Unfortunately the last 2 digits of the telephone number, where
you can obtain information about the ticket, are not readable anymore.
You really like to have the ticket and decide to choose the 2 digits
randomly. What is the probability that you dial the correct digits on
your first trial? 

Fig. 7 Post-test item measuring procedural knowledge
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Despite the possibility of following a non-linear path through the learning environment,
students were advised to keep to the order of sections and assignments because they built
upon each other.

The third session was set at 50 min. First, students were allowed to use the learning
environment for 10 min in order to refresh their memories with regard to the domain. Then
all students had to close their domain representations and learning environments, and had to
complete the post-test. In both the individual and the collaborative setting, students
completed the post-test individually.

Data preparation

A scoring rubric (see Appendix) was used to assess whether the domain representations
constructed by the students reflected the concepts of replacement and order, presented
calculations, referred to the concept of probability, indicated the effect of size of (sub)sets
on probability, and the effects of replacement and order on probability. The scoring rubric
was designed in such a way that all types of representations could be scored on the basis of
exactly the same criteria. The maximum number of points that could be assigned on the
basis of the rubric was eight points.

Results

Prior knowledge

Two measures of prior knowledge were obtained, a pre-test score and math grade. The
reliability, Cronbach’s α, of the pre-test was .40 in the individual setting and .48 in the
collaborative setting. The pre-test reliabilities were rather low, but sufficient for the
purpose of verifying that students did not have too much prior knowledge and that
there were no differences between settings and/or conditions. Second, students were
asked for their latest school report grade in mathematics. This grade, which can range
from 1 (very, very poor) to 10 (outstanding) was interpreted as an indication of the
student’s general mathematics achievement level. It should be noted that this measure
was reported by the students themselves and since no data from the school regarding
math grades was available to the experimenters, the accuracy and reliability of the
reported math grades should be considered with care. In Table 1 math grade and pre-test
measures are presented.

Three-way ANOVAs with setting (individual or collaborative), format (Conceptual,
Arithmetical, Textual), and tool-use (Tool-use or No-tool-use) as factors were performed to
test for a priori differences with respect to math grade (general mathematics achievement
level) and pre-test score (prior knowledge). A difference regarding math grade was
observed with respect to setting, F(1,205)=5.37, p<.05, and tool-use, F(1,205)=6.97,
p<.01. Furthermore, an interaction between setting and tool-use, F (1,205)=7.24, p<.01,

You throw a dice 3 times and you predict that you will throw 6-4-2 in
that order. What is the characterization of this problem? 

a. order important; replacement 
b. order important; no replacement 
c. order not important; replacement 
d. order not important; no replacement 

Fig. 8 Post-test item measuring
situational knowledge
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was observed. On average, the math grades of students in the collaborative learning setting
were somewhat higher compared to the individual students. Furthermore, in the individual
learning setting it was observed that students who used a representational tool had higher
math grades compared to individuals who did not use a tool. The math grades of individuals
who used a tool were equal to those of students in the collaborative setting. If applicable,
math grade was entered as a covariate in subsequent analyses. With regard to pre-test
scores, no significant differences were found for setting (F (1,205)=3.12, p=.08), format
(F (2,205)=0.06, p=.95), or tool-use (F (1,205)=0.13, p=.72). No interactions were
observed either.

Learning task

Use of representational tools

One of the research questions was about the students’ inclination to use a representational
tool and whether or not the format of the tool affected this inclination. The percentages of
students in each condition who used a representational tool to construct a domain
representation are displayed in Fig. 9.

When provided with a conceptual tool, 52% of the individual students and 45% of the
pairs of students used it. A Chi-Square analysis showed that these percentages do not differ
significantly, X2(1, N=55)=0.19, n.s.

Of students provided with an arithmetical tool, 20% of the individuals and 21% of the
pairs used it, with no significant difference, X2(1, N=49)=0.01, n.s.

Table 1 Math grade and pre-test measures

Representational format

Conceptual
(indiv. n=33)
collab. n=44)

Arithmetical
(indiv. n=30)
collab. n=38)

Textual
(indiv. n=32)
collab. n=40)

Total
(indiv. n=95)
collab. n=122)

M SD M SD M SD M SD

MATHGRADE (max. 10)

Individual (Total) 6.46 1.61 5.89 1.55 6.25 1.54 6.21 1.57

Tool-use 7.12 1.52 6.62 1.63 6.73 1.37 6.89 1.46

No-tool-use 5.75 1.41 5.71 1.51 5.82 1.58 5.75 1.48

Collaborative (Total) 6.56 1.32 6.98 1.20 6.80 1.00 6.77 1.19

Tool-use 6.75 1.33 6.75 1.49 6.82 1.10 6.75 1.09

No-tool-use 6.40 1.32 7.04 1.14 6.79 0.93 6.84 0.94

PRE-TEST (max. 12)

Individual (Total) 5.70 1.36 5.43 1.85 5.25 1.59 5.46 1.60

Tool-use 5.94 1.39 5.67 1.75 5.40 1.60 5.68 1.51

No-tool-use 5.44 1.32 5.38 1.91 5.12 1.62 5.32 1.65

Collaborative (Total) 5.70 1.94 5.71 1.52 6.35 1.88 5.92 1.81

Tool-use 5.90 1.89 6.00 1.51 5.67 1.65 5.83 1.70

No-tool-use 5.54 2.00 5.63 1.54 6.91 1.90 5.97 1.88
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When provided with a textual tool, 47% of the individuals and 45% of the pairs of
students used it, again with no significant difference, X2(1, N=52)=0.02, n.s.

As can be observed in Fig. 9, the patterns of tool use are quite similar for the individual
and the collaborative setting. The overall picture is that about 50% of the students provided
with a conceptual or textual tool used the tool. Of students provided with the arithmetical
tool, about 20% actually used the tool. A Chi-Square analysis showed that these differences
between conditions are significant, X2(2, N=156)=10.58, p<.01. Compared to students in
the Arithmetical condition, students in the Conceptual condition used their tool more often
(X2(1, N=104)=9.30, p<.01) and so did students with a textual tool (X2(1, N=101)=7.49,
p<.05). No difference was observed between the Conceptual and the Textual condition
(X2(1, N=107)=0.09, n.s.).

The hypothesis that students would be inclined more to use a conceptual or a textual tool
rather than an arithmetical tool, was therefore confirmed by the data. However, the data also
show that the hypothesis that collaboration could have a stimulating effect on using the
arithmetical tool was not confirmed.

Quality of constructed representations

In Table 2 the average quality scores of the constructed representations are displayed. In
the case of representations constructed by pairs, the representations are considered a
group product and therefore the quality scores are assigned to pairs and not to individuals.
All representations were scored by two raters who worked independently. The inter-rater
agreement was .89 (Cohen’s Kappa) for the individual setting and .92 for the
collaborative setting.

A two-way ANOVA with setting (individual vs. collaborative learning) and format
as factors showed that with regard to quality scores there was no main effect of setting
(F (1,55)=3.69, p=.06), no main effect of format (F (2,55)=1.57, p=.22), and no
interaction effect (F (2,55)=0.71, p=.50).

Fig. 9 Percentage of students in
each condition who did or did not
construct a representation

Table 2 Quality scores of constructed representations

Representational format

Conceptual
(indiv. n=17; coll. 10 pairs)

Arithmetical
(indiv. n=6; coll. 4 pairs)

Textual
(indiv. n=15; coll. 9 pairs)

M SD Min Max M SD Min Max M SD Min Max

Individual 2.38 0.99 1 5 2.67 1.97 1 6 2.67 0.98 1 4

Collaborative 2.70 1.42 1 5 4.00 1.41 2 5 3.00 0.87 2 4
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Time-on-task

The log files provided data about the amount of time students spent on the learning task
(see Table 3). Time-on-task is conceived here as the time that elapsed between the moment
the participants started their learning environment and the moment they closed it. In the
learning environment the participants worked through the five sections (see
section Learning environment), read the cover stories, read and worked on the assignments
and simulations, and used a representational tool that was integrated into their learning
environment. The tool was at the participants’ disposal throughout the time they spent in
the learning environment.

The data presented in Table 3 were analyzed by means of a three-way ANOVA with
setting (individual vs. collaborative learning), format, and tool-use as factors. Note that in
the case of collaborative learning the process measures of the dyads were analyzed, not the
measures of the individual students of the dyad. With regard to time-on-task it was found
that there was a main effect of setting (F (1,143)=5.09, p<.05). The average time-on-task
of students in the collaborative learning setting was lower than that of students in the
individual learning stetting. If applicable, time-on-task was entered as a covariate in
subsequent analyses. No main effects were observed for format (F(2,143)=0.10, p=.91), or
tool-use (F(1,143)=2.97, p=.09). No interaction effects were observed.

Learning outcomes

Both in the collaborative and the individual setting students completed the post-test
individually. The reliability, Cronbach’s α, of the post-test was .80 in the individual setting
and .78 in the collaborative setting. All post-test measures were analyzed and compared by
means of ANOVAs with setting (individual or collaborative), format (Conceptual,
Arithmetical, or Textual), and tool-use as factors.

Two research questions were related to learning outcomes. The first was: what are
the effects of collaborative inquiry learning with representational tools on learning
outcomes? The second, concerned the differential effects of different formats on
learning outcomes. These questions and hypotheses will be addressed in the following
paragraphs.

Table 3 Time-on-task (min.)

Setting Representational format

Conceptual
(indiv. n=33;
coll. 22 pairs)

Arithmetical
(indiv. n=30;
coll. 19 pairs)

Textual
(indiv. n=32;
coll. 19 pairs)

Total
(indiv. n=95;
coll. 60 pairs)

M SD M SD M SD M SD

Individual (Total) 69.64 13.95 66.95 17.61 66.64 18.32 67.78 16.57

Tool-use 70.84 14.17 70.62 15.98 70.50 16.85 70.67 15.13

No-tool-use 68.38 14.05 66.04 18.19 63.23 19.38 65.86 17.33

Collaborative 62.36 4.98 60.90 8.41 62.85 4.31 62.05 6.06

Tool-use 64.88 3.98 65.68 2.16 63.13 5.08 64.34 4.19

No-tool-use 60.25 4.88 59.63 9.04 62.59 3.75 60.63 6.64
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Post-test overall scores

The post-test overall scores are displayed in Table 4. Post-test overall scores and math grade
covaried and the same was true for post-test overall scores and time-on-task, so math grade
and time-on-task were entered as covariates.

It was found that students in the collaborative learning setting obtained significantly
higher post-test overall scores (F (1,201)=17.33, p<.001) compared to individual learners.
The hypothesized beneficial effect of collaborative learning, observed in many other studies
as well, was therefore also present in the current data. Furthermore, an interaction was
observed between setting and tool-use (F (1,201)=6.23, p<.05) (see Fig. 10). The
interaction indicates that students in the individual learning setting who used a
representational tool obtained higher scores than individuals who did not, and the scores
of those tool-using individuals equaled the post-test overall scores of students in the
collaborative setting. The hypothesis that using a representational tool leads to better
learning outcomes compared to not using such a tool, was therefore only partly confirmed.
This effect was only observed in the individual learning setting. Inspection of the post-test
scores of collaborating students not using a tool (see Table 4) suggests that dyads in the
textual tool condition obtained lower scores (M=18.17) compared to dyads in the
conceptual and arithmetical tool condition (means respectively 19.27 and 19.66). An
additional analysis showed that this difference is not significant.

Conceptual and intuitive knowledge

The average scores on conceptual knowledge items are displayed in Table 5.
No main effect of format of the representational tool was observed. The hypothesized

beneficial effect of constructing a concept map on conceptual understanding was not
confirmed by the data. The ANOVA showed an interaction between setting and tool-use (F
(1,205)=6.37, p<.05) (see Fig. 11). This interaction indicates that students in the individual
setting using a representational tool obtained slightly higher scores on conceptual
knowledge compared to collaborating students (whether or not using a representational
tool) and individuals not using a tool.

Table 4 Post-test overall scores (corrected for math grade and time-on-task; max. 26 points)

Representational format

Conceptual
(indiv. n=33)
collab. n=44)

Arithmetical
(indiv. n=30)
collab. n=38)

Textual
(indiv. n=32)
collab. n=38)

Total
(indiv. n=95)
collab. n=120)

M SE M SE M SE M SE

Individual (Total) 16.01 0.63 17.42 0.82 15.70 0.63 16.38 0.41

Tool-use 17.16 0.88 18.73 1.45 16.21 0.93 17.36 0.65

No-tool-use 14.86 0.90 16.11 0.74 15.20 0.87 15.39 0.50

Collaborative (Total) 19.43 0.54 18.40 0.71 18.18 0.58 18.67 0.36

Tool-use 19.60 0.79 17.13 1.26 18.19 0.84 18.31 0.57

No-tool-use 19.27 0.73 19.66 0.66 18.17 0.80 19.03 0.43
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Another aspect of conceptual knowledge was intuitive knowledge (see Table 6). Both
math grade and time-on-task covaried with intuitive knowledge, therefore they were entered
as covariates.

The ANCOVA showed that students in the collaborative learning setting obtained higher
scores with respect to intuitive knowledge (F (1,201)=70.46, p<.001). Also, an interaction
was observed between setting and format (F (2,201)=3.22, p<.05) (see Fig. 12). The
interaction indicates that individual students with an arithmetical representational tool
obtained higher intuitive knowledge scores than other individuals.

Procedural knowledge

The mean scores on procedural knowledge items are displayed in Table 7. Here, both math
grade and time-on-task covaried with procedural knowledge, so they were entered as
covariates.

The ANCOVA indicated no significant differences between setting, format, and tool-use.
Only one, rather complicated interaction was observed between setting, format, and tool-
use (F (2,201)=4.22, p<.05). This interaction is possibly caused by a relatively high score
of individuals in the arithmetical condition who used the tool and the relatively low scores
of collaborating students in the same condition who used the tool. No main effect of format
was found, so the hypothesized beneficial effect of constructing an arithmetical
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setting and tool use regarding the
post-test overall score

Table 5 Conceptual knowledge score (max. 4 points)

Representational format

Conceptual
(indiv. n=33)
collab. n=44)

Arithmetical
(indiv. n=30)
collab. n=38)

Textual
(indiv. n=32)
collab. n=40)

Total
(indiv. n=95)
collab. n=122)

M SD M SD M SD M SD

Individual (Total) 3.52 0.62 3.53 0.57 3.59 0.56 3.55 0.58

Tool-use 3.65 0.61 3.50 0.55 3.93 0.26 3.74 0.50

No-tool-use 3.37 0.62 3.54 0.59 3.29 0.59 3.42 0.60

Collaborative (Total) 3.64 0.49 3.55 0.65 3.28 0.85 3.49 0.68

Tool-use 3.60 0.50 3.25 0.89 3.22 0.88 3.39 0.75

No-tool-use 3.67 0.48 3.63 0.56 3.32 0.84 3.55 0.64
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representation on the acquisition of procedural knowledge was not confirmed by the data.
In general, equal levels of procedural knowledge can be obtained with other formats.

Situational knowledge

The post-test scores on situational knowledge are displayed in Table 8. Neither math grade
nor time-on-task covaried here, so they were left out of the ANOVA.

The analysis indicated a significant difference between settings (F (1,205)=8.00,
p<.01), formats (F (2,205)=4.22, p<.05), and tool-use (F(1,205)=5.02, p<.05). Students
in the collaborative setting obtained higher situational knowledge scores compared to
individuals; students in the arithmetical condition outperformed students in the textual
condition; and students who used a tool to externalize, obtained significantly higher scores
than students who did not use a tool. Furthermore, an interaction between setting and tool-
use was observed (F (1,205)=10.12, p<.01) (see Fig. 13). The interaction shows that
students in the individual learning setting who used a representational tool obtained higher
situational knowledge scores than individuals who did not and their scores were equal to
those of tool-users in the collaborative setting.

The main effect observed for format of the representational tool was significant, yet it
disconfirmed the hypothesis that creating a textual representation would enhance situational
knowledge more than constructing an arithmetical or conceptual representation.
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Table 6 Intuitive conceptual knowledge score (corrected for math grade and time-on-task; max. 8 points)

Representational format

Conceptual
(indiv. n=33)
collab. n=44)

Arithmetical
(indiv. n=30)
collab. n=38)

Textual
(indiv. n=32)
collab. n=38)

Total
(indiv. n=95)
collab. n=120)

M SE M SE M SE M SE

Individual (Total) 5.62 0.21 6.46 0.28 5.70 0.22 5.92 0.14

Tool-use 5.93 0.30 6.72 0.49 5.74 0.32 6.13 0.22

No-tool-use 5.31 0.31 6.19 0.25 5.66 0.30 5.72 0.17

Collaborative (Total) 7.72 0.18 7.39 0.24 7.38 0.20 7.50 0.12

Tool-use 7.81 0.27 7.45 0.43 7.38 0.29 7.54 0.19

No-tool-use 7.63 0.25 7.33 0.23 7.39 0.27 7.45 0.15
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Discussion and conclusion

In (collaborative) inquiry learning, students plan and execute inquiry processes and
select, process, analyze, interpret, organize, and integrate information into meaningful
and coherent knowledge structures. Expressing and externalizing one’s ideas and
understandings, for example in the form of constructing a domain representation, have
been found to foster these processes. One of the questions addressed in the current
study was: does creating a domain representation affect learning outcomes in
collaborative inquiry learning? Second, the nature of the domain representations can
be quite different, depending on the representational format used (e.g., circles, arrows,
and keywords in concept maps; words in written summaries; numbers, formulas, and
equations in arithmetic). The next research question was: does the format used to
create a domain representation differentially affect students’ domain understanding by
emphasizing or de-emphasizing aspects of the learning materials? And third, does the
representational format have differential effects on students’ inclination to construct a
representation? These questions were explored in the domain of combinatorics and
probability theory. Three different representational tools were developed, each
designed to constrain the format students could use to construct a domain
representation.
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Table 7 Procedural knowledge (corrected for math grade and time-on-task; max. 10 points)

Representational format

Conceptual
(indiv. n=33)
collab. n=44)

Arithmetical
(indiv. n=30)
collab. n=38)

Textual
(indiv. n=32)
collab. n=38)

Total
(indiv. n=95)
collab. n=120)

M SE M SE M SE M SE

Individual (Total) 3.97 0.38 4.28 0.50 3.71 0.38 3.99 0.24

Tool-use 4.22 0.53 4.86 0.87 3.50 0.55 4.20 0.39

No-tool-use 3.72 0.54 3.69 0.44 3.92 0.52 3.77 0.30

Collaborative (Total) 4.57 0.32 3.87 0.43 4.50 0.35 4.32 0.21

Tool-use 4.65 0.48 2.70 0.75 4.93 0.50 4.09 0.34

No-tool-use 4.49 0.44 5.04 0.40 4.08 0.48 4.54 0.26
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The first research question focused on the effects of collaborative inquiry learning with
representational tools on learning outcomes. In order to test whether collaborative aspects
influence inquiry learning with representational tools, the learning outcomes of students in a
collaborative learning setting were compared to learning outcomes of students in an individual
learning setting. Following existing literature on the comparison learning outcomes in
individual and collaborative learning settings (e.g., Lou et al. 2001; Slavin 1995; van der
Linden et al. 2000), it was hypothesized that learning outcomes in the collaborative learning
setting would be higher than those in the individual learning setting. Our data were in line
with findings reported in other studies: in the collaborative inquiry learning setting the overall
learning results were significantly higher than in the individual setting, regardless of whether
or not the dyads had used a representational tool to externalize their knowledge. In the
individual inquiry learning setting, tool-use did make a difference. The post-test overall
performance of individuals who externalized their knowledge was close to the performance of
collaborating students, whereas the overall performance of individuals who had not engaged
in externalization was significantly lower.

Collaborative learners outperformed individuals in particular on intuitive knowledge and
situational knowledge. The observation that collaborative learners (regardless of whether or
not they constructed a representation) outperformed individuals (even those who did
construct a representation), implies that, in this study, intuitive knowledge is enhanced by
collaborative learning and not by constructing representations per se. Intuitive knowledge is
particularly fostered by interpretation and sense-making processes (Gijlers and de Jong

Table 8 Situational knowledge score (max. 4 points)

Representational format

Conceptual
(indiv. n=33)
collab. n=44)

Arithmetical
(indiv. n=30)
collab. n=38)

Textual
(indiv. n=32)
collab. n=40)

Total
(indiv. n=95)
collab. n=122)

M SD M SD M SD M SD

Individual (Total) 2.93 0.20 3.17 0.26 3.01 0.18 2.93 0.13

Tool-use 3.41 0.28 3.67 0.46 3.07 0.29 3.38 0.21

No-tool-use 2.46 0.29 2.68 0.24 2.30 0.28 2.47 0.16

Collaborative (Total) 3.50 0.17 3.71 0.23 3.01 0.18 3.41 0.11

Tool-use 3.55 0.25 3.75 0.40 2.73 0.26 3.34 0.18

No-tool-use 3.46 0.23 3.66 0.21 3.28 0.25 3.47 0.13
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submitted; Reid et al. 2003; Zhang et al. 2004), which suggests that collaboration stimulates
these processes in a way that goes beyond the effects of externalizing knowledge by means
of a representational tool alone.

Situational knowledge, which is a prerequisite for going beyond the superficial details of
problems in order to recognize the concepts and structures that underlie the problem (e.g.,
Fuchs et al. 2004), was also fostered by collaboration, although not exclusively: here
collaboration, the format of representational tools, and tool-use all contributed to the
acquisition of situational knowledge. Apparently all forms of externalization help to gain
understanding of problem structures in this domain.

The second research question focused on the influence of representational format used to
construct a representation on knowledge construction and domain understanding. Creating a
conceptual representation like a concept map was hypothesized to enhance knowledge about
the conceptual aspects of the domain, rather than procedural or situational aspects. Constructing
representations in an arithmetical format was assumed to foster the acquisition of procedural
knowledge and using a textual format was assumed to improve students’ attention to situational
knowledge. The results show that there is no evidence for this hypothesized mapping between
representational format and the enhancement of a specific kind of understanding. For example,
constructing a concept map does not enhance conceptual understanding. The mapping that was
observed however, was in an unexpected direction: students who constructed an arithmetical
representation showed enhanced levels of situational knowledge on the post-test compared to
students who created a textual representation. Furthermore, an interaction effect indicated that
individuals creating an arithmetical representation also showed enhanced levels of intuitive
conceptual knowledge compared to other individuals.

Although the arithmetical format was the only representational format that could be
directly linked to the enhancement of a specific type of knowledge (situational
knowledge) and in the case of learning in an individual setting also to higher levels of
intuitive conceptual knowledge, this representational format turned out to have some
disadvantages as well. These came to light when answering the third research question:
does the representational format have differential effects on students’ inclination to
construct a representation? In the case of concept maps it was assumed that participants
would be inclined to use it. This representational format is relatively easy to understand
and use, especially if there are not too many concepts and relations (van Drie et al.
2005). Regarding arithmetical formats it was hypothesized that students would have
difficulty constructing them (cf. Tarr and Lannin 2005), however, discussing the
arithmetical aspects of the domain with a peer in a collaborative learning setting was
assumed to have a beneficial effect on students’ inclination to use this representational
format. The third format for constructing a domain representation considered here was a
textual format. The current domain could easily be described in terms of everyday life
contexts and situations. It was expected that students would not experience much
difficulty with using the textual format. Overall, this is one of the most commonly used
formats inside and outside educational settings. Therefore, it was assumed that many
participants would be inclined to use this representational tool.

In both the collaborative setting and the individual setting the formats of the tools did
not lead to differential effects on the quality of the constructed representations, these were
similar across settings and formats. The results did show differences with regard to
students’ inclination to use a representational tool. Clarebout and Elen (2006, 2009a, b; see
also: Jiang et al. 2009) observed that tools, which are integrated into learning environments
are often used inadequately or not at all by students. The current study added to this insight
that the format of representational tools affects the students’ inclination to use a tool and
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engage in constructing a domain representation. About 20% of the students provided with
the arithmetical representational tool used it. Representational tools with a conceptual or
textual format were found to be used substantially more by students to engage in
constructing a representation (around 50% use). This behavior turned out to be consistent in
both settings. The usage percentages were remarkably similar in both the individual and the
collaborative learning setting. Possibly, the arithmetical format is more difficult to use to
construct a domain representation. Another possibility is that students failed to view
mathematical symbols as reflections of principles and structures, but rather perceived them
as indicators of which operations need to be performed (Atkinson et al. 2003; Cheng 1999;
Greenes 1995; Nathan et al. 1992; Niemi 1996; Ohlsson and Rees 1991). This would mean
that the textual and the conceptual format are more close to the code in which students can
explain the domain to themselves, or maybe students consider those formats more suited to
express their knowledge to the outside world. A complementary explanation could be that
the use of arithmetical formats requires more advanced levels of domain understanding. To
domain experts (e.g., teachers, university students of mathematics) the arithmetical
representational format might be a convenient and efficient way of expressing and
externalizing knowledge. Perhaps in the case of novices, still at the stage of trying to get
some grip on the subject matter, it might not be an easy and straightforward representational
format to express oneself and to externalize one’s knowledge.

Some of the limitations of the current study will be discussed below along with some
suggestions for future research. The quantitative approach used in the study showed how
representational format affects students’ inclination to use a representational tool. A
qualitative research methodology (e.g., case-studies, interviews with participants) in a next
study can possibly help to understand the motives of students to use or not use a certain
representational format. A second point is the constraining of the format in the current
study. In a next study, it could be useful to investigate the effects of allowing students to
express and externalize their knowledge without being constrained to using a specific
representational format. Another suggestion is to explore whether specific representational
tools can be used in a complementary fashion, for example to support different stages or
tasks during the learning process. For example, using concept maps in the early stages to
help students identify key concepts, using textual representations to situate the identified
concepts in contexts, and using an arithmetical format in the final stages of the learning task
to stimulate students to express their knowledge in a more abstract way.

Another issue is the communication between students. The analyses did not include the
actual communication between students. Maybe this would have shed some light on
additional effects of representational tools and their formats on collaboration. In studies by
Suthers and Hundhausen (2003) and van Drie et al. (2005) for example, it was found that
the format of representational tools influenced communication and the activities performed
by collaborating students.

Another question regarding collaborative inquiry learning concerns the medium through
which students communicate with each other. In the current study, students worked in a
face-to-face setting, sitting next to each other. Face-to-face communication is considered to
be rich in the sense that it provides both verbal and non-verbal information (e.g., gesturing,
nodding, pointing, facial expressions, and intonation of speech), but it also allows students
to communicate faster and much more elaborate, which can be crucial in the case of
interpretation and sense-making. There is no guarantee that the results of the current study
would have been found in a setting in which students communicated through chat. Chat
communication in collaborative settings is known to put some constraints on communi-
cation. For example, in chatting, students tend to be much more succinct, to focus more on
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technical and organizational issues instead of domain aspects, and to easily jump from topic
to topic. This can have positive effects (e.g., brainstorming), but can also be detrimental
when the situation requires students to focus on one topic (Strømsø et al. 2007; Kerr and
Murthy 2004; Anjewierden et al. 2007). In this case, a shared representational tool may not
only stimulate interpretation and conclusion activities, but also serves as an additional channel
for communication and reasoning. This is in line with Van Drie et al. (2005) who remarked that
(when students communicate via chat) a “representational tool does not only function as a
cognitive tool that can elicit elaborative activities, but also as a tool through which students
communicate” (p. 598). It would be interesting to explore the relation between mode of
communication, externalization, and the effects on knowledge acquisition in a future study.
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Appendix

Table 9 Rubric for scoring the quality of constructed representations

Represented? Conceptual tool Arithmetical tool Textual tool PNT

A The concept of
“Replacement”

-Literally, or descriptive Two formulas or
calculations in which
“replacement” varies

-Literally, or descriptive 1

Examples: Examples: Examples:

-“Replacement” -“(1/n) × (1/n) × (1/n) =
P (1/n) × (1/(n-1)) ×
(1/(n-2)) = P”

-“Replacement”

-“Category 1: without
replacement; order
important”

-“1/5 × 1/4 × 1/3 1/5 ×
1/5 × 1/5”

-“Category 1: without
replacement; order
important”

-...[Runners, BK]... then
you have to do 1/7 ×
1/6 × 1/5 because each
time there is one
runner fewer”

-“p=1/10 × 1/10 × 1/10
p=1/5 × 1/4 × 1/3”

-“...If there are 7 runners,
then the chance is 1
out of 7 (1/7), if that
runner passes the
finish, then there are 6
runners left, then there
is a chance of 1 out of
6 (1/6), and so on.

B The concept of
“Order”

-Literally, or descriptive Two formulas or
calculations in which
“order” varies

-Literally, or descriptive 1

Examples: Examples: Examples:

-“Order” -“(1/n) × (1/n) × (1/n)
(k/n) × ((k-1)/n) × ((k-2)/n)”

-“Order”

-“Category 1: without
replacement; order
important”

-“1/5 × 1/4 × 1/3 3/5 ×
2/4 × 1/3”

-“Category 1: without
replacement; order
important”
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Table 9 (continued)

Represented? Conceptual tool Arithmetical tool Textual tool PNT

-“...If there are 7 runners
and you predict the top
3 without specifying
the positions of
specific runners in the
top 3...”

-“...At a game of Bingo,
order is not important”

C Calculation -Formal, literally,
descriptive, or a
concrete calculation

Formal (formula) or a
concrete calculation

-Formal, literally,
descriptive, or a
concrete calculation

1

Examples: Examples: Examples:

-p = acceptable
outcomes/possible
outcomes

-“(1/n) × (1/n) × (1/n)” -p = acceptable
outcomes/possible
outcomes

- 1/5 × 1/4 × 1/3 -“1/5 × 1/4 × 1/3” - 1/5 × 1/4 × 1/3

-... when you also bet on
the order in which the
marbles will be
selected, your chance is:
1/5 and 1/4 is 1/20...”

-... when you also bet on
the order in which the
marbles will be
selected, your chance is:
1/5 and 1/4 is 1/20...”

D Probability -Literal reference to the
term “probability”/p,
or a description of the
concept

-Literal reference to the
term “p”

-Literal reference to the
term “probability”/p,
or a description of the
concept

1

-Expression of a
concrete probability
(e.g. a fraction), but
then it need to be made
clear in the context
(e.g. by a calculation)
where the probability
comes from

-Expression of the
outcome of a calculation

-Expression of a
concrete probability
(e.g. a fraction), but
then it need to be made
clear in the context
(e.g. by a calculation)
where the probability
comes from

Examples: Examples: Examples:

-“In order to calculate "p"
the chances need to be
multiplied.”

-“p = (1/n) × (1/n) × (1/n)” -“In order to calculate "p"
the chances need to be
multiplied.”

-p = 1/5 × 1/4 × 1/3 -“p = 1/5 × 1/4 × 1/3” -p = 1/5 × 1/4 × 1/3

-“...In that case [student
refers to a situation
outlined earlier], the
probability is 1/10”

-“1/5 × 1/4 × 1/3 = 1/60” -“...In that case [student
refers to a situation
outlined earlier], the
probability is 1/10”

E Effect of n on
probability

-Descriptive or on basis
of calculations
showing the effect (in
the latter case, k needs
to be constant)

A formula or a series of
calculations showing
the effect (in the latter
case, k needs to be
constant)

-Descriptive or on basis
of calculations
showing the effect (in
the latter case, k needs
to be constant)

1

Examples: Examples: Examples:

-“fewer options = higher
chance”

-“(1/n) × (1/n) × (1/n)=1/n3” -“If the number of
elements you can choose
from increases, the
chance will be smaller
that you will select a
specific element”
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Table 9 (continued)

Represented? Conceptual tool Arithmetical tool Textual tool PNT

-“If fewer runners attend
the race, the chance
your prediction is
correct will
increase”

-“1/5 × 1/4 × 1/3=1/60 -“If fewer runners attend
the race, the chance
your prediction is
correct will
increase”

1/6 × 1/5 × 1/4=1/120”

F Effect of k on
probability

-Descriptive or on basis
of calculations
showing the effect (in
the latter case, n needs
to be constant)

A formula or a series of
calculations showing
the effect (in the latter
case, k needs to be
constant)

-Descriptive or on basis
of calculations
showing the effect (in
the latter case, n needs
to be constant)

1

Examples: Examples: Examples:

-“with 1 choice →
1/possible outcomes;
with more choices →
number of choices/
possible outcomes”

-“(1/n) × (1/n)=1/n2

(1/n) × (1/n) ×
(1/n)=1/n3”

-“When your prediction
is less elaborate, the
probability that your
prediction will be
correct increases”

-“If you only predict
who will win the race
and not the top 3, then
the chance is greater
that your prediction
will be correct”

-“1/5 × 1/4=1/20 1/5 ×
1/4 × 1/3=1/60”

-“If you only predict
who will win the race
and not the top 3, then
the chance is greater
that your prediction
will be correct”

G Effect of
replacement on
probability

-Descriptive or on basis
of calculations
showing the effect (in
the latter case, n and k
need to be constant)

A series of formulas or
calculations showing
the effect, but the
outcome (p) needs to
be represented as well
and n and k need to be
constant

-Descriptive or on basis
of calculations
showing the effect (in
the latter case, n and k
need to be constant)

1

Examples: Examples: Examples:

-“If it is a matter of
replacement, your
chances will decrease”

-“(1/n) × (1/n)=1/n2

(1/n) × (1/(n-1))=
1/(n2−n)”

-“If it is a matter of
replacement, your
chances will decrease”

-“...if you have 10
different cell phones
and you need to select
one, your chance will
be 1 out of 10, if you
put the phone back
your chance will be 1
out of 10 again, but if
you leave it out your
chance will increase
that you will select the
next phone as
predicted”

-“1/5 × 1/4 × 1/3=1/60
1/5 × 1/5 × 1/5=1/125”

-“...if you have 10
different cell phones
and you need to select
one, your chance will
be 1 out of 10, if you
put the phone back
your chance will be 1
out of 10 again, but if
you leave it out your
chance will increase
that you will select the
next phone as
predicted”

H Effect of order
on probability

-Descriptive or on basis
of calculations
showing the effect (in
the latter case, n and k
need to be constant)

A series of formulas or
calculations showing
the effect, but the
outcome (p) needs to
be represented as well
and n and k need to be
constant

-Descriptive or on basis
of calculations
showing the effect (in
the latter case, n and k
need to be constant)

1
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