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Abstract. Time dependant models have been intensively studied for
many reasons, among others because of their applications in software
verification and due to the development of embedded platforms where
reliability and safety depend to a large extent on the time features. Many
of the time dependant models were suggested as real-time extensions of
several well-known untimed models. The most studied formalisms include
Networks of Timed Automata which extend the model of communicat-
ing finite-state machines with a finite number of real-valued clocks, and
timed extensions of Petri nets where the added time constructs include
e.g. time intervals that are assigned to the transitions (Time Petri Nets)
or to the arcs (Timed-Arc Petri Nets). In this paper, we shall semi-
formally introduce these models, discuss their strengths and weaknesses,
and provide an overview of the known results about the relationships
among the models.

1 Introduction

In formal modelling and verification of software and hardware systems there is an
obvious need for considering time features and hence the study of so-called time
dependant models has become increasingly important. The overall research in
this area is motivated, among others, by the development of embedded platforms
which use time features and should be reliable and correct [53].

As mentioned in [83], majority of these formalisms rely on the assumption
of orthogonality between discrete and continuous (time delay) changes which
significantly simplifies the underlying semantics of time dependant models. A
run of the system can be then seen as a sequence of steps where continuous time
progress and discrete events alternate. We are going to adopt such an approach
also in this paper.

In what follows, we shall take a closer look at three prominent examples
of time dependant systems, namely Networks of Timed Automata (NTA), Time
Petri Nets (TPN) and Timed-Arc Petri Nets (TAPN). These models have existed
for a relatively long period of time but they have been developed to a large extent
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independently of each other, even though they share many common features. Cit-
ing [21]:“In spite of many technical resemblances and their overlapping applica-
tion domains, few material was available until recently comparing expressiveness
of these ... models.” Fortunately, there has recently been a growing interest in
mutual comparisons of different models that include real-time constructs. One
reason for this development could be the recent availability of efficient verifica-
tion tools for timed automata, which stimulates the translation approaches from
TPN and TAPN to TA, rather than the development TPN/TAPN verification
techniques that resemble those already available for timed automata.

In this paper we will, by means of examples, introduce the models of timed au-
tomata, time Petri nets and timed-arc Petri nets. Then we provide an overview of
decidable and undecidable problems related to these models and present a sum-
mary of their strengths and weaknesses. Finally, we give an up-to-date overview
of work that aims at comparing the relative expressive power of these models. In
the last section we finish with a few concluding remarks and the possible future
development in this area.

2 Time Dependant Models

Time dependant models are often obtained by extending the untimed ones with
time constructs that enable to manipulate in different ways the passing of time.
Two well-studied approaches include the extension of finite automata resp. net-
works of communicating finite automata with a number of real-valued clocks and
different timed extensions of Petri nets.

2.1 Timed Automata and Networks of Timed Automata

Timed Automata. Timed automata were introduced by Alur and Dill [6, 7] and
have by now been recognized as one of the classical formalisms for modelling
real-time systems with dense time.

A timed automaton (TA) is a finite-state machine extended with a finite
number of synchronous clocks. Transitions in the automaton are conditioned on
the clock values and taking a transition can affect (reset) the values of selected
clocks. A typical transition in a timed automaton looks like

`
g,a,r−→ `′

where ` and `′ are locations (or states) of the automaton, g is a clock guard, a
is a label (or action) of the transition, and r is a subset of clocks that are reset
when the transition is taken. Guards are defined by the abstract syntax

g ::= x ./ k | x− y ./ k | g ∧ g

where x, y are elements from a given finite set of clocks, k is an integer, and
./ ∈ {≤, <,≥, >, =}. A timed automaton which does not contain any guard of
the form x− y ./ k is called diagonal-free.



Guards can be also associated with locations and then they are called in-
variants. Invariants restrict the amount of time that can be spent in a given
location and we usually consider only invariants given by the abstract syntax:
g ::= x ≤ k | x < k | g ∧ g.

A configuration of a timed automaton is a pair of a location and a clock
valuation, which is a function assigning to each clock a nonnegative real number
(the time that has elapsed since the last clock reset). Consider an example of a
timed automaton in Figure 1 where `0 is a given initial location.
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Fig. 1. Example of TA

Starting from the configuration (`0, [x = 0]) where the value of the clock x
is zero, we can delay for any nonnegative real number d and reach the valua-
tion (`0, [x = d]). This is called a time elapsing step. As long as we are in the
configuration where d ≤ 1, we can also perform a discrete step by taking the
transition labelled by a. This is because the guard x ≤ 1 is satisfied. We then
reach the configuration (`1, [x = d]). In the location `1 we can now delay for at
most 3−d time units because of the invariant x ≤ 3 associated with the location
`1. As soon as the value of the clock x is at least 2 we can also take the discrete
transition labelled with b and return to the initial configuration (`0, [x = 0])
because the value of the clock x is reset to 0 by taking this transition.

Networks of Timed Automata. Single timed automata can be also run in parallel.
A network of timed automata (NTA) is a parallel composition of a finite number
of timed automata where the actions are partitioned into the set of output
(suffixed with !) and input (suffixed with ?) actions. A component in the parallel
composition can make a discrete step under an action a! only if there is another
component ready to make a discrete step under the complementary action a?. In
this case the two parallel components perform a handshake synchronization and
move simultaneously to their new locations. Other types of synchronization, e.g.
in the style of Arnold-Nivat [10] via synchronization functions, are also possible
and studied. The parallel components may also perform a time elapsing step
and in this case all the clocks age in a synchronous manner. Networks of timed
automata are not more expressive than a single timed automaton (which can
be shown by a standard product construction) but they are exponentially more
concise.



2.2 Petri Nets

Untimed Petri Nets. Petri nets (PN) were first suggested in early sixties by Carl
Adam Petri in his PhD thesis [73] and have since then become a popular and
wide-spread model of distributed systems with many applications and a large
number of academic as well as industrial tools (see [51] for an updated list). One
of the main advantages of this model is its intuitive graphical representation.
Consider an example of a Petri net in Figure 2.
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Fig. 2. Example of PN

The circles are called places, boxes are called transitions and arrows (also
called arcs) can connect only a place to a transition, or a transition to a place.
The dot in the place p1 is called a token and it is connected with the behaviour
of the net. One place can hold several tokens. A token assignment to the places
is called a marking. A transition t, in a given marking, that has a token in every
of its input places (those connected to t by an arc) is called enabled and can
fire by consuming one token from every of its input places and producing a new
token to every of its output places (having an incoming arc from the transition
t).

In our example the transition t1 is enabled and when it fires it consumes the
token in the place p1 and produces two new tokens, one into the place p2 and
the other into the place p3. Now either the transition t2 can fire and return the
net to its initial marking, or the transition t3 can fire, consume the token from
p3, and produce a new token into the places p3 and p4. Now the transition t3
can fire again, leaving the token in p3 and producing a second token into the
place p4. It is easy to see that by repeatedly firing the transition t3, an arbitrary
large number of tokens will be placed into p4. This net is hence an example of
so-called unbounded net.

Formally, a net is called bounded or safe if the number of tokens in all reach-
able markings is bounded by some a priori given constant. A special case when
every place in any reachable marking contains at most one token is called 1-safe.



Remark 1. Despite the infinite state-spaces of unbounded Petri nets, several
properties like marking reachability, coverability, boundedness and others are
still decidable (for an overview see e.g. [47, 46]), while strong bisimilarity and
some other related problems are undecidable [54]. In order to compare the expres-
sive power of Petri nets (and their extensions with time) with finite automata-
based models, we usually consider only bounded nets. They are still useful for
modelling and analyzing many real-life problems (for an overview of different
case studies see e.g. [52]).

Extending Petri Nets with Time. Unlike timed automata, Petri nets offer several
options where the time constructs can be associated to. For example timed tran-
sitions Petri nets were proposed in [76] where transitions are annotated with
their durations. A model in which time parameters are associated with places is
called timed places Petri nets and it was introduced in [82]. For an overview of
the different extensions see e.g. [32, 88, 72].

In this paper we shall focus on two other, perhaps the most studied, exten-
sions called Time Petri Nets of Merlin and Faber [66, 67] introduced in 1976
and the model of Timed-Arc Petri Nets first studied around 1990 by Bolognesi,
Lucidi, Trigila and Hanisch [26, 50].

2.3 Time Petri Nets

In Time Petri Nets (TPN) [66, 67] each transition has an associated time interval
which gives the earliest and latest firing time of the transition since it became en-
abled. One can think of this as every transition having an associated real-valued
clock, which gets initialized at the moment the transition becomes enabled. The
transition can fire as soon as the clock value reaches the earliest firing time and
it must fire no later than the latest firing time, unless the transition got disabled
by the firing of some other transition. This means that TPN can express urgent
behaviour (also called the strong semantics). The precise semantics of the be-
haviour is, however, not completely obvious and several different variants can be
considered [17]. It seems that the intermediate semantics is the most often used
one. Here all transitions disabled after consuming the tokens of the transition
being fired, as well as the firing transition itself, are reinitialized.

Consider the following example of TPN presented in Figure 3. It uses the
underlying untimed net from Figure 2 enriched with time intervals on transitions.
Assume that the clocks x1, x2 and x3 are associated to the transitions t1, t2 and
t3, respectively. In the initial marking the clock x1 gets initialized to the value 0
and as the firing interval of t1 is [2, 4], the only possible behaviour of the net is to
delay any time between 2 and 4 time units and then fire the transition t1. This
produces two new tokens into p2 and p3 and the clocks x2 and x3 get initialized
at the same time. Now the net has to wait for another 3 time units and latest by
4 time units the transition t2 must fire and we reach the initial marking. This
implies that t3 is never firable and unlike the underlying untimed net, the TPN
in our example is bounded and even 1-safe. Assume now that the time interval
[5, 7] associated with t3 is replaced by [2, 8]. Now after firing t1 and starting the
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Fig. 3. Example of TPN

clocks x2 and x3, the transition t3 is ready to fire already after two time units,
and after another 1 time unit both t2 and t3 are enabled. Note that after firing
t3 both x2 and x3 get reinitialized to 0 because we adopted the intermediate
semantics. In other semantics the clock x2 might not get restarted.

2.4 Timed-Arc Petri Nets

The last extension of Petri nets that we consider in this paper is called Timed-Arc
Petri Nets (TAPN) [26, 50]. Here the time entity (also called age) is associated
with tokens. We can think of this as if every token in the net had its own private
clock. The arcs from places to transitions are labelled by time intervals which
restrict the age of tokens that can be used to fire a given transition. When new
tokens are produced, their age is set by default to 0. The usually considered
semantics is non-urgent (or weak), which means that tokens can grow older even
if this disables the firing of certain transitions (sometimes for ever). Consider
the following TAPN in Figure 4 with the same underlying untimed net as in
Figure 2.

In the initial marking there is one token of age 0 in the place p1. As the age
of the token does not belong to the interval [2, 4], the transition t1 is not enabled
yet, but only after two time units. Then anytime within another 2 units the
transition can fire and produce two new tokens of age 0 into the places p2 and
p3. Note, however, that due to the non-urgent semantics it is possible that the
age of the token in p1 grows beyond 4 and hence the transition t1 gets disabled
for ever. Should this happen, the token in the place p1 is called dead. Assume
now that we are in a marking with two tokens of age 0 in the places p2 and p3.
After waiting for two time units, the transition t3 becomes enabled and if it fires
it resets the age of the token in the place p3 to 0 and produces a new fresh token
into the place p4. By waiting for another two time units the age of the token in
the place p2 reaches the value 4 and the tokens in the places p3 and p4 will be
of age 2. Now, for example, the transition t2 can fire, consuming the tokens in
places p2 and p3 and producing a fresh one into the place p1. Another possible
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Fig. 4. Example of TAPN

behaviour (due to the non-urgent semantics) is that the transition t3 keeps firing
for ever after arbitrary delays between 2 and 8 time units. This shows that our
TAPN is unbounded and moreover every token in the place p4 will have its own
unique age. This demonstrates that unlike for TA and TPN, we cannot rely only
on a finite number of clocks associated with a given automaton/net.

Our example also shows that every time the transition t3 fires, the age of
the token in p3 is reset to 0. In some applications this might be undesirable and
hence in [84] the model was extended with so-called read-arcs, which allow to
test for a presence of a token in a certain place but do not change its age. It was
later shown in [30] that this extension is not only convenient from the modelling
point of view but it also extends the expressiveness of the model.

3 Overview of Known Decidability Results

In this section we shall mention a selection of positive and negative decidability
results for our three time dependant models.

3.1 Networks of Timed Automata

The region graph construction provides a universal tool for arguing about the
decidability of several problems on timed automata [6, 7]. Using this technique
it was shown, e.g., that reachability is decidable in PSPACE for TA [7] as well as
for NTA [5], untimed language equivalence for TA is decidable in PSPACE [7],
and untimed bisimilarity for TA is decidable in EXPTIME [59]. Practically more
efficient algorithms are usually achieved by considering zones instead of regions
(see e.g. [16]). Somewhat surprisingly even timed bisimilarity for timed automata
is decidable. Using region graphs on a product construction, timed bisimilarity
was shown to be decidable in EXPTIME [41].

Unfortunately, timed language equivalence for timed automata is undecid-
able [7]. In fact, even the universality problem (whether a given timed automaton
generates all timed traces) is undecidable.



3.2 Time Petri Nets

It is known that even very simple classes of timed nets extended with the notion
of urgency have the full Turing power [55] (can simulate e.g. Minsky two-counter
machines) and hence most of the verification problems for TPN like reachability
and boundedness are undecidable. For additional remarks see also [23, 74].

On the other hand, for bounded nets the state class method [24] can be
often used to derive decidability results. Regarding the complexity, it is known
that reachability (and also TCTL model-checking) of bounded TPN is PSPACE-
complete [27].

3.3 Timed-Arc Petri Nets

In spite of the fact that reachability is decidable for ordinary Petri nets [65],
it is undecidable for timed-arc Petri nets [78], even in the case when tokens in
different places are not required to age synchronously [69]. On the other hand,
coverability, boundedness and other problems remain decidable for TAPN [77, 3,
1], which are also known to offer ‘weak’ expressiveness, in the sense that TAPN
cannot simulate Turing machines [25]. Coverability is decidable even for TAPN
extended with read-arcs [30]. These results hold due to the monotonicity property
(adding more tokens to the net does not restrict the possible executions) and
the application of well-quasi-ordering (for a general introduction see [48]) resp.
better-quasi-ordering [2] techniques.

When we consider the subclass of 1-safe TAPN, it is known that the reach-
ability problem is no more difficult than in untimed 1-safe Petri nets and hence
it is decidable in PSPACE [84]. This is the case also for 1-safe TAPN with
read-arcs.

4 Strengths and Weaknesses of the Models

This section aims at providing a comparison of the three models w.r.t. to their
modelling capabilities and their applicability for verification purposes.

4.1 Networks of Timed Automata

Pros. Timed automata are nowadays a widely used modelling formalism with
rich theoretical foundations and a number of developed verification tools like
UPPAAL [58], KRONOS [37], IF [38] and CMC [57]. A number of case studies
(see e.g. [9, 14] for an overview) demonstrate that timed automata are a suitable
formalism for modelling of systems of industrial sizes and the tools have already
reached a reasonable degree of maturity and efficiency. A combination of an
easily understandable syntax and semantics together with the support for C-
like constructs and data structures (e.g. in the tool UPPAAL) makes this a
widely applicable and successful approach to modelling and verification of time
dependant systems.



Cons. On the other hand, timed automata are less convenient for modelling
of certain types of applications like work-flow management systems, production
lines with shared resources and other systems which require e.g. a dynamic cre-
ation of new processes. Here models based on Petri nets are most commonly used.
It is also known that e.g. TPN are exponentially more concise than NTA [31, 29],
so even though timed automata are as expressive as bounded Petri net based
models, the size of TA models for certain time dependant systems might be un-
necessarily large. As claimed in [45] timed automata also lack a support for high
level composable graphical patterns to support systematic design of complex
systems. The explicit use of invariants in timed automata also causes problems:
during the design of a specification it is easy to introduce time deadlocks (time
cannot progress and no transition is firable). This is usually interpreted as an
inconsistency of the specification and should be avoided. However, such specifi-
cation errors cannot occur neither in TPN (urgency is applicable only as long as
some discrete transitions are still enabled) nor in TAPN (time is always allowed
to progress). For further discussion on this issue see [83].

4.2 Time Petri Nets

Pros. The model of TPN has been around for several decades and it has proven
to be useful for modelling of a wide range of real-time systems including work-
flow processes, scheduling problems and others [15, 11, 75, 68]. It has an implicit
notion of urgency suitable for modelling many real-life problems and implicitly
avoids the construction of ill-defined timed systems. There are available a few
public verification tools like TINA [22] and ROMEO [81].

Cons. Unbounded TPN are too expressive (have full Turing power) and are
hence unsuitable for automatic verification. This means that most of the ver-
ification approaches are limited to bounded nets. Also the modelling power is
restricted as TPN cannot model some useful features like e.g. a dynamic creation
of new processes which carry their own time information. In fact the number of
time clocks (associated to the transitions) is limited in advance by the structure
of the net and lacks more flexibility. Last, the exact semantics is not only more
difficult to understand than for the other two models but it also offers several
variants [17]. Different papers use different variants of the semantics, though the
intermediate semantics described also in this paper seems most common. This is
in contrast with the conclusion drawn in [17] where the authors give arguments
why other policies like e.g. the persistent atomic semantics should be preferred
over the intermediate semantics. The current TPN tools are relatively new, have
a limited number of constructs like data structures which include e.g. arrays,
and they lack hierarchical modelling features.

4.3 Timed-Arc Petri Nets

Pros. TAPN are particularly suitable for modelling of manufacturing systems,
work-flow management and similar applications. It is the author’s opinion that



TAPN offer a more intuitive semantics than TPN; at least there are no compet-
ing variants of the semantics. TAPN provide an easy to understand interplay
between the token game and the associated time features. For modelling of cer-
tain applications, especially systems where a number of identical time processes
share the same pattern of behaviour [3, 4] but also others [70, 79, 80, 71], TAPN
provide a convenient modelling formalism. By simply adding more and more
tokens to the net, more and more processes (each carrying its own clock) can
be modelled without any change to the net itself. Neither TPN nor NTA pro-
vide this feature. As several problems like e.g. coverability are decidable even for
unbounded TAPN, a parametric reasoning is possible [3].

Cons. One of the major weaknesses of TAPN is the lack of the possibility to
model urgent behaviour. This might be one of the reasons, together with the fact
that the model was introduced much later than TPN, why TAPN deserved less
attention among the scientists. Currently there are no publicly available tools,
though some prototype implementations already exist.

5 Relationships Among the Models

In this section we will provide an overview of the expressiveness results for the
studied models. As already mentioned, unbounded TPN and TAPN generate
infinite state-spaces and e.g. the reachability problem is undecidable for both of
them. Hence to draw a fair comparison between the nets and timed automata,
most of the work focuses on the relationship between bounded or 1-safe nets
and timed automata. There are some exceptions like e.g. the work in [40] which
translates unbounded TPN into UPPAAL-like NTA extended with unbounded
integer arrays.

From TA/NTA to TPN. A translation from diagonal-free TA without invari-
ants and strict constraints to 1-safe TPN preserving weak timed bisimulation
was suggested by Haar et al. in [49]. In the paper they, however, consider only
weak (non-urgent) semantics for TPN. Bérard et al. give in [18] a linear transla-
tion from diagonal-free TA with invariants to 1-safe TPN up to timed language
equivalence. They also show that TA are strictly more expressive than TPN
w.r.t. weak timed bisimilarity and in [19] (see also a forthcoming journal arti-
cle [20]) they identify a strict subclass of TA which is equivalent with bounded
TPN w.r.t. weak timed bisimilarity. In [21] Berthomieu et al. suggest to extend
the TPN model with priorities and show that this is enough to establish an
equivalence with NTA w.r.t. weak timed bisimilarity. Another reduction from
TA to TPN, which includes also diagonal constraints and updates to integral
values, was presented by Bouyer et al. in [31]. The reduction preserves timed
language equivalence and works in linear resp. quadratic time, depending on
what features of TA are included. This work, however, does not include invari-
ants in TA. In [31] the authors also provide a translation from NTA to TPN,
which preserves timed language equivalence, but introduces new deadlocks into
the system behaviour.



From TPN to TA/NTA. Haar et al. provided in [49] a translation from 1-safe
TPN to TA preserving weak timed bisimilarity. It improved the complexity of
the previously known work based on enumerative methods [23, 24] and their
translation is polynomial but only in the size of the TPN reachability graph.
On the other hand, they allow only non-strict intervals and consider the weak
(non-urgent) semantics for TPN, while the other papers focus on the standard
strong (urgent) semantics. Another approach by Lime and Roux [62] extends
these results to bounded TPN but also requires first a construction of the state
class graph of the given bounded TPN. An extended version of their paper [63]
provides an efficient reduction technique to decrease the number of clocks in the
resulting timed automaton. A structural translation from TPN to NTA preserv-
ing weak timed bisimilarity, which does not require the construction of the state
class graph, was proposed by Cassez and Roux in [40]. Their reduction uses NTA
extended with arrays of (unbounded) integers and enables to translate even un-
bounded TPN into the extended NTA. If the input net is bounded, the values
in the integer arrays are bounded too and automatic verification is hence pos-
sible. An implementation of the translation is available as a part of the TPN
tool Romeo [81] and the results seem promising as documented on several case
studies [40]. A possible problem with this approach is a potentially high number
of clocks in the produced NTA. Recently D’Aprile et al. suggested in [44] an al-
ternative technique for the translation from TPN to TA. Their method bypasses
the construction of the state class graph (as used e.g. in [49, 62]) by considering
only the underlying untimed reachability graph. It preserves timed bisimulation
and TCTL properties. According to the experiments carried out by the authors,
it is competitive with the other approaches on a number of case studies. On the
other hand, it requires the underlying untimed net to be bounded, while the
other approaches require only TPN boundedness. Empirical methods to deal
with this limitation are outlined in the paper. Yet another approach is presented
in [43] by Cortés et al. where the authors translate a more general model of TPN
called PRES+ into UPPAAL-like timed automata, suggest several optimizations
of the reduction, and provide two case studies. Their reduction works only for
1-safe nets and unfortunately there is no argument about the correctness of the
translation.

From TA/NTA to TAPN and Backwards. The first result (we are aware of)
which compares the expressive power of TA and TAPN is by Sifakis and Yovine
[83] from 1996. They provide a translation of 1-safe timed-arc Petri nets (with
urgent behaviour) into timed automata (with invariants) which preserves strong
timed bisimilarity but their translation causes an exponential blow up in the
size. Srba established in [84] a strong relationship (up to isomorphism of timed
transition systems) between NTA without invariants and a superclass of 1-safe
TAPN extended with read-arcs. When we are interested only in the reachabil-
ity questions, the reductions work in polynomial time. Recently Bouyer et al.
in [30] presented a reduction from bounded TAPN (with read-arcs) to 1-safe
TAPN (with read-arcs) which preserves timed language equivalence (over fi-
nite words, infinite words and non-Zeno infinite words). This demonstrates that



NTA without invariants and bounded TAPN with read-arcs are timed language
equivalent. The authors in [30] also provide a number of expressiveness results
for several subclasses of TAPN with read-arcs.

From TPN to TAPN and Backwards. We are aware of only few detailed studies
comparing TPN and TAPN. In [42] Cerone and Maggiolio-Schettini study several
timed extensions of bounded Petri nets w.r.t. language equivalence. Regarding
the two classes of our main focus they show that TPN and TAPN are language
equivalent w.r.t. weak (non-urgent) semantics and that TPN form a subclass of
TAPN when considering the strong (urgent) semantics. In [35] Boyer and Verna-
dat show that the inclusion of TPN in TAPN is strict (in the strong semantics).
A further comparison of the different classes w.r.t. weak timed bisimilarity is
provided in [34]. We should note that all the work mentioned so far in this para-
graph uses the so-called single server semantics [36] for TAPN where the timing
information to be remembered in every marking is constant. However, TAPN
are mostly studied with the multi-server semantics where each token carries its
own timing information. In this case, as concluded in [33], TPN express timed
behaviour and TAPN express time behaviour and time constraints.

6 Conclusion

We have introduced three popular models of time dependant systems, compared
their relative strengths and weaknesses and presented an overview of the known
relationships across these models. Even though these formalisms share many
common features and there exist mutual translations between the models, it is
hard to say what should be the model for time dependant systems. Different
applications might be modelled in different modelling formalisms with a very
varying effort for a human modeller to create such models. We should also note
that due to their complexity, the modelling tricks used in the translations be-
tween the different models are often unsuitable for a direct use by a human
modeller. Nevertheless, the possibility of automatically translating all the time
dependant models studied in this paper to e.g. a network of timed automata of-
fers the option of creating hybrid tools that will enable to enter real-time models
(or even their subparts) in all kinds of different formalisms, depending on the
preference of the human modeller, and still have a clearly defined semantics and
a support for automatic verification.

The tools for timed automata verification seem to be most developed at the
moment. So while adding additional modelling features to Petri net based mod-
els, researchers should check whether these features can be translated to their
TA counter-parts and the verification techniques/tools can be reused for them,
rather than rediscovered. For example in the theory of TA there has been re-
cently lots of research on extending timed automata with price/cost [60, 8, 28]
and studying timed games [64, 39, 13, 12] as well as on-line testing [56, 61].
There is also a tool support implementing many of these theoretical results.
Let us mention e.g. the tool UPPAAL-CORA [85] for cost-optimal reachability,



UPPAAL-TIGA [86] for timed games and UPPAAL-TRON [87] for on-line test-
ing. It is likely that the existing translations from TPN and TAPN to NTA can
be extended with such features and a future research might focus on studying
efficient translation approaches that include several of these new aspects.
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