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Abstract

Background: Recently, rapid improvements in technology and decrease in sequencing costs have made RNA-Seq a
widely used technique to quantify gene expression levels. Various normalization approaches have been proposed,
owing to the importance of normalization in the analysis of RNA-Seq data. A comparison of recently proposed
normalization methods is required to generate suitable guidelines for the selection of the most appropriate
approach for future experiments.

Results: In this paper, we compared eight non-abundance (RC, UQ, Med, TMM, DESeq, Q, RPKM, and ERPKM) and
two abundance estimation normalization methods (RSEM and Sailfish). The experiments were based on real
Illumina high-throughput RNA-Seq of 35- and 76-nucleotide sequences produced in the MAQC project and
simulation reads. Reads were mapped with human genome obtained from UCSC Genome Browser Database. For
precise evaluation, we investigated Spearman correlation between the normalization results from RNA-Seq and
MAQC qRT-PCR values for 996 genes. Based on this work, we showed that out of the eight non-abundance
estimation normalization methods, RC, UQ, Med, TMM, DESeq, and Q gave similar normalization results for all data
sets. For RNA-Seq of a 35-nucleotide sequence, RPKM showed the highest correlation results, but for RNA-Seq of a
76-nucleotide sequence, least correlation was observed than the other methods. ERPKM did not improve results
than RPKM. Between two abundance estimation normalization methods, for RNA-Seq of a 35-nucleotide sequence,
higher correlation was obtained with Sailfish than that with RSEM, which was better than without using abundance
estimation methods. However, for RNA-Seq of a 76-nucleotide sequence, the results achieved by RSEM were similar
to without applying abundance estimation methods, and were much better than with Sailfish. Furthermore, we
found that adding a poly-A tail increased alignment numbers, but did not improve normalization results.

Conclusion: Spearman correlation analysis revealed that RC, UQ, Med, TMM, DESeq, and Q did not noticeably
improve gene expression normalization, regardless of read length. Other normalization methods were more
efficient when alignment accuracy was low; Sailfish with RPKM gave the best normalization results. When alignment
accuracy was high, RC was sufficient for gene expression calculation. And we suggest ignoring poly-A tail during
differential gene expression analysis.
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Background
Bioinformatics studies over the past few decades have
shed light on topics such as sequence analysis, structural
analysis, and network and systems biology [1, 2]. In recent
years, rapid improvements in technology and decreased
sequencing costs have made next-generation sequencing
possible, facilitating millions of short sequence reads that
have broad genomic research applications [3–5]. Using
next-generation sequencing to study the RNA in a sample
(i.e., RNA-Seq) allows for whole transcriptome shotgun
sequencing, which is useful in analyses such as gene
expression analysis [6, 7], single nucleotide variation dis-
covery [8], and fusion gene detection [9, 10]. In our work,
we focused on accurately quantifying gene expression
levels using deep-sequencing methods. An advantage of
RNA-Seq is that it overcomes many of the limitations of
previous microarray technologies, such as the dependence
on prior knowledge of hybridization, limitations to meas-
urement accuracy and, particularly, low sensitivity for
transcript detection [11–13]. However, the estimation of
mRNA abundance from RNA-Seq data is not a simple
task because the sequence data produced are numerous
and complicated, and cannot be directly interpreted.
Therefore, similar to other high-throughput technologies,
the analysis methodology is critical for accurate data inter-
pretation. Even though various technologies have been
proposed in recent years for RNA-Seq analysis, it is a
technology that is still being actively developed.
In general, the RNA-Seq pipeline for differential ex-

pression analysis contains five steps [14, 15]. First, long
RNA samples are fragmented into short complementary
DNA (cDNA) fragments, and are then sequenced on a
high-throughput platform such as Illumina. The result-
ing short sequence reads are then mapped back to the
reference genome or transcriptome. After that, the gene
expression level is estimated for each gene or isoform.
The summarized data are then normalized using statistical
approaches or machine learning algorithms to identify dif-
ferentially expressed genes. Finally, the significance of the
data is determined in a biological context.
As with microarrays [16, 17], various artifacts and biases

affect quantification results. Therefore, normalization is
an essential step in analyzing differential expression of
genes from RNA-Seq data [18]. Many non-abundance
estimation normalization methods have been proposed to
correct biases between and within samples. Raw count
(RC), upper quartile (UQ), and median (Med) make up
the general descriptive statistical methods that are widely
used in capturing data characteristics. Other inter-sample
normalization methods calculate scale factors according
to library size, which is the total number of mapped reads.
Trimmed mean of M-values (TMM) normalization is a
simple and effective method for estimating relative RNA
production levels from RNA-Seq data [19]. The TMM

method estimates scale factors between samples, and can
be incorporated into currently used statistical methods for
differential expression analysis. DESeq is based on nega-
tive binomial distribution, with variance and mean linked
by local regression, and presents an implementation that
also gives scale factors [6]. Quantile (Q) was first proposed
in the context of microarray data; it is a normalization
method that involves matching distributions of gene
counts across runs [20]. Reads per kilobase per million
mapped reads (RPKM) is the most widely used
method in next-generation sequencing research for
length normalization. This approach was initially
introduced to facilitate comparisons between genes
within a sample, and combines inter- and intra-sample
normalization, because it rescales gene counts to cor-
rect for differences in both library size and gene
length [21]. ERPKM is an improvement on RPKM be-
cause it uses an effective read length.
In addition to previously introduced traditional

normalization methods, two abundance estimation
normalization methods have recently been developed
for accurate estimation: RNA-Seq by Expectation-
Maximization (RSEM) [22] and Sailfish [23]. These
methods are completely different from the previously
proposed methods because they use machine learning
algorithms to conduct abundance estimation. For ex-
ample, RSEM proposes a statistically directed graph
model and uses the expectation–maximization algo-
rithm to estimate abundances at the gene level consid-
ering multiple variables derived from RNA-Seq and
transcript data, including library sizes and gene lengths.
Sailfish is another new approach for quantifying abun-
dance; it avoids mapping reads to reference transcripts
and uses counts of k-mers to estimate transcript cover-
age. This method makes an innovative step by eliminat-
ing the need for alignment, and may save a great deal
of time in the matching step.
Among the various normalization methods, the one that

produces the best results must be determined. A compari-
son of the recently proposed normalization methods will
provide clearer guidelines for future analyses. In a previ-
ous study [24], several methods were compared and useful
suggestions made; however, comparisons were not made
with the recent abundance estimation approaches, which
have proven to be quite efficient.
In this study, for gene expression analysis, we first

compared eight non-abundance estimation normalization
methods (RC, UQ, Med, TMM, DESeq, Q, RPKM, and
ERPKM) and then compared two abundance estimation
normalization methods (RSEM and Sailfish) by combining
them with the non-abundance methods. The experiments
are based on real Illumina high-throughput RNA-Seq data
used in the MicroArray Quality Control (MAQC) project
from two RNA samples of brain tissue and a mixture of
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tissue types, with read lengths of 35 and 76 nucleotides.
Simulation data were also obtained using a model derived
from RNA-Seq data with a sequence length of 76 nucleo-
tides by RSEM simulator. Reads are aligned with human
genome data obtained from the University of California
Santa Cruz (UCSC) Genome Browser Database. First,
large-scale distribution and detail alignment results were
represented. Then, we analyzed Spearman correlation coef-
ficients between the normalization results from RNA-Seq
and the results of MAQC TaqMan quantitative reverse
transcription polymerase chain reaction (qRT-PCR) of two
samples for 996 genes. We have provided a detailed com-
parison of results among the different normalization
methods. In addition, the impact of the poly-A tail was
verified by adding 0, 5, 10, 15, 20, or 25 adenine bases
to the end of the transcript data. Based on this study,
we propose practical recommendations on the appro-
priate normalization method to use, and determine the
effect of adding a poly-A tail to gene expression
analyses.

Results and discussion
Alignment
For real reads of 35 nucleotides, the range of alignment
counts was from 0 to approximately 9,000,000. For
approximately 70 % of the genes, the alignment count was
between 1000 and 100,000. Only 14 genes had a count
number greater than 1,000,000. In one respect, this proves
that only a small number of genes can be differentially
expressed. For each run, the total number of reads was ap-
proximately 11,000,000–16,000,000.

The number of reads with at least one alignment (with
no poly-A tail) was approximately 500,000–700,000
(about 5 % of the total reads), and the number with total
alignment was approximately 1,500,000–5,000,000.
For real reads of 76 nucleotides, the number of reads

with at least one alignment (with no poly-A tail) was ap-
proximately 300,000–500,000 (about 3 % of the total
reads). The number of alignments decreased as read
length increased. This proves that longer reads give
more accurate alignment results.
The low rate of alignment arose because we only

used 996 genes. If we had used full human genes as
references, this would have been very different. For
example, on real reads of 35 nucleotides, the align-
ment rate was approximately 55 %, and on real reads
of 76 nucleotides, the alignment rate was around
65 %.
Detailed alignment results for each accession can be

found in Additional file 1.
After alignment we removed reference transcripts with

no mappings for each accession.

Comparison of normalization methods
We investigated Spearman correlation coefficients be-
tween normalization results from RNA-Seq using each
normalization method and the values from qRT-PCR.
Table 1 gives the Spearman correlation coefficient results

for eight non-abundance estimation normalization methods
(not applying abundance estimation normalization). Table 2
gives Spearman correlation coefficient results for two abun-
dance estimation methods (RSEM and Sailfish) combined
with RC and RPKM.

Table 1 Spearman correlation results of eight non-abundance estimation normalization methods

Accession RC UQ Med TMM DESeq Q RPKM ERPKM

Reads with length of 35 nucleotides, p-value < 2.2e-16

SRX016359 0.563 0.561 0.563 0.563 0.563 0.563 0.560 0.560

SRX016366 0.562 0.560 0.563 0.563 0.563 0.562 0.559 0.559

SRX016367 0.622 0.621 0.622 0.622 0.622 0.622 0.639 0.639

SRX016368 0.621 0.620 0.622 0.621 0.621 0.621 0.639 0.639

SRX016369 0.626 0.625 0.626 0.626 0.626 0.626 0.646 0.646

SRX016370 0.635 0.635 0.635 0.635 0.635 0.635 0.657 0.657

SRX016371 0.632 0.631 0.632 0.632 0.630 0.632 0.652 0.651

SRX016372 0.641 0.641 0.641 0.6401 0.641 0.640 0.662 0.662

Reads with length of 76 nucleotides, p-value < 2.2e-16

SRX080222 0.695 0.653 0.650

SRX080223 0.686 0.642 0.640

SRX080224 0.713 0.695 0.693

SRX080225 0.712 0.693 0.692

Simulated-HBR 0.670 0.669 0.670 0.670 0.670 0.670 0.624 0.621

Simulated-UHR 0.708 0.708 0.707 0.708 0.708 0.708 0.685 0.683
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All the Spearman correlation coefficient results were
larger than 0, indicating that the results from all the RNA-
Seq normalization methods were positively correlated
with the qRT-PCR values. Furthermore, all p-values were
< 2.2e-16 and the null hypothesis was rejected, which
proves that all the results of the normalization methods
correlated with the qRT-PCR gene expression values. In
another aspect, the RNA-Seq data were compatible with
the real time PCR for gene expression analysis.
As can be seen in Table 1, the Spearman correlation

coefficients for RC, Med, TMM, and DESeq were all
0.563 for accession SRX016359, and for Med, TMM, and
DESeq they were 0.563 for SRX016366. For other acces-
sions, RPKM and ERPKM generated results that corre-
lated more than those from the other methods; RPKM
gave correlations of 0.639, 0.639, 0.646, 0.657, 0.652, and
0.662 for accessions SRX016367, SRX016368, SRX016369,
SRX016370, SRX016371, and SRX016372, respectively.
This proves that consideration of the transcript length in
normalization is quite effective. However for SRX080222,
SRX080223, SRX080224, and SRX080225, RC achieved
better correlation than RPKM and ERPKM. Moreover,
simulated data correlations did not increase after
normalization methods were applied, and for RPKM and
ERPKM correlation actually decreased. For all accessions,
ERPKM did not achieve better results than RPKM. Using
an effective transcript length obviously does not improve
normalization results.
Table 2 reveals that for all eight accessions with a read

length of 35 nucleotides, Sailfish with RPKM achieved the
best Spearman correlation coefficient results, followed by
RSEM, which also improved a great deal on the results for

RC when no abundance-estimation normalization method
was used. For accession SRX016372, a highest correlation
of 0.819 was achieved, which shows that RNA-Seq can
precisely predict gene expression levels. In practice,
Sailfish with RPKM could almost replace qRT-PCR
measurements. However, for sequence data on 76-
nucleotide sequences, RC with no abundance-estimation
normalization method applied achieved the best results,
followed by RSEM with similar correlations; Sailfish gen-
erated much worse correlation values.
From the comparison results shown above, normalization

methods are not necessary for all sequence data. Inter-
sample normalization methods, such as TMM, DESeq, and
Q, which scale sample size, do not noticeably improve gene
expression, regardless of read length. However, RPKM is
likely to be more efficient when alignment accuracy is low.
Similarly, for read data on lengths of 35 nucleotides, of the
two abundance estimation normalization methods, Sailfish
with RPKM, which is also quite an efficient combination
because it is alignment-free, gave better normalization re-
sults than RSEM. However, when alignment accuracy is
high, RC seems to be adequate for gene expression calcula-
tions in real experiments.
For all details of the Spearman correlation coefficient

results, please download Additional file 2.

Comparison of poly-A tails
To determine whether a poly-A tail can affect the align-
ment results, we evaluated the results of accession
SRX016359 with the addition of various poly-A tail
lengths to the end of the reference transcript data. Be-
cause the read length was 34 nucleotides, we used poly-A

Table 2 Spearman correlation results of two abundance estimation methods combined with RC and RPKM

Accession RC RPKM RSEM + RC RSEM + RPKM Sailfish + RC Sailfish + RPKM

Reads with length of 35 nucleotides, p-value < 2.2e-16

SRX016359 0.563 0.560 0.690 0.692 0.696 0.694

SRX016366 0.562 0.559 0.689 0.691 0.700 0.695

SRX016367 0.622 0.639 0.755 0.778 0.752 0.797

SRX016368 0.621 0.639 0.755 0.777 0.752 0.797

SRX016369 0.626 0.646 0.770 0.794 0.748 0.806

SRX016370 0.635 0.657 0.778 0.802 0.766 0.815

SRX016371 0.632 0.652 0.773 0.795 0.760 0.811

SRX016372 0.641 0.662 0.781 0.804 0.772 0.819

Reads with length of 76 nucleotides, p-value < 2.2e-16

SRX080222 0.695 0.653 0.691 0.650 0.570 0.583

SRX080223 0.686 0.642 0.682 0.639 0.555 0.575

SRX080224 0.713 0.695 0.711 0.693 0.535 0.602

SRX080225 0.712 0.693 0.709 0.690 0.530 0.597

Simulated-HBR 0.670 0.624 0.667 0.622 0.557 0.579

Simulated-UHR 0.708 0.685 0.705 0.683 0.558 0.629
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tail lengths of 0, 5, 10, 15, 20, and 25 adenines. Table 3
shows the alignment count numbers for each run. When
the length of the poly-A tail was increased, the alignments
were also increased by a small number (relative to the total
number). In other words, more reads can be mapped to a
reference transcript by increasing the poly-A tail length.
Table 4 shows Spearman correlation coefficient results

for the eight non-abundance estimation normalization
methods with different poly-A tails. Correlations were
either unchanged or minimally decreased when compar-
ing 0 adenines with 5, 10, 15, 20, and 25 adenines. The
data show that by adding a short poly-A tail, few relative
alignments are necessary but, compared with the total
alignment number, the number was so small that
normalization results could not be improved. Adding
poly-A tails that were too long caused irrelevant align-
ments to be included, which negatively impacted the
normalization results. In summary, choosing appropriate
poly-A tail lengths may improve differential analysis;
however, based on the minimal effect observed in this
study, poly-A tail length can probably be ignored.

Conclusions
Normalization has proved to be important in the ana-
lysis of gene expression using RNA-Seq technology.
Recently, various normalization approaches have been
developed to accurately identify differentially expressed
genes. To provide a guideline for choosing among these
methods, we compared eight non-abundance estimation
normalization methods (RC, UQ, Med, TMM, DESeq,
Q, RPKM, and ERPKM) and two abundance estimation
normalization methods (RSEM and Sailfish) in this
study. The experiments were based on the real Illumina
high-throughput RNA-Seq data used in the MAQC pro-
ject on two RNA samples, brain tissue (HBR) and a mix-
ture of tissue types (UHR), with read lengths of 35 and
76 nucleotides. Simulated data were obtained using an
RSEM simulator with parameters derived from real data
with a length of 76 nucleotides. Reads were mapped with
human genome data using the Bowtie tool. First, we
showed a large-scale and detailed distribution of all align-
ments. We then investigated the Spearman correlation

coefficient between the normalization results of each
method and the values of MAQC TaqMan qRT-PCR. For
accessions with a read length of 35 nucleotides, of the
eight non-abundance estimation normalization ap-
proaches, RPKM achieved a higher correlation value than
RC, UQ, Med, TMM, or Q, proving that consideration of
the transcript length in normalization is quite effective. By
using effective transcript lengths, ERPKM did not improve
the normalization results compared with RPKM. After
combining the abundance estimation normalization
methods, the normalization results were improved. In
particular, Sailfish with RPKM, which we recommend re-
searchers use as a normalization method in future analyses,
can almost replace qRT-PCR, as a correlation of nearly 0.8
was observed. Moreover, Sailfish is alignment-free and
more time-efficient than RSEM. RSEM also produced good
results. However, for data with read lengths of 76 nucleo-
tides, none of the normalization methods improved the
correlation results. Therefore, we conclude that when align-
ment accuracy is high, RC is sufficient for gene expression
calculation in real experiments. In addition, the impact of
poly-A tail was determined by adding adenines (0–25) to
the transcript data. The results showed that by adding short
poly-A tails, few relative alignments were required, but lon-
ger poly-A tails caused irrelevant alignments to be included.
However, our results were not improved. Thus, choosing
appropriate poly-A tail lengths may improve differential
analysis, but did not appear to have an impact in this study.
Therefore, we suggest that researchers do not need to con-
sider ploy-A tails in the normalization step in gene differen-
tial expression analysis.

Methods
Reference transcript data
Human genome data (hg19, GRCh37) were obtained
from the UCSC Genome Browser Database (http://geno-
me.ucsc.edu/) for use as reference transcript data [25].
These data were first pre-processed at the gene level.
The authors of previous studies have reported that reads
extending into poly-A tails are challenging to align at
the genome level [22, 26]. To determine whether a poly-
A tail does or does not affect normalization results, we

Table 3 Total alignment numbers with different poly-A tail lengths on run SRX016359

Accession Runs 0A 5A 10A 15A 20A 25A

SRX016359 SRR035678 4,373,013 4,373,128 4,373,220 4,373,338 4,374,306 4,840,614

SRR037439 2,028,240 2,028,376 2,028,503 2,028,622 2,028,900 2,069,175

SRR037440 4,385,598 4,385,761 4,385,880 4,386,034 4,386,793 4,794,397

SRR037441 2,161,858 2,162,012 2,162,156 2,162,303 2,162,646 2,205,932

SRR037442 4,840,368 4,840,534 4,840,669 4,840,802 4,841,777 5,319,375

SRR037443 2,043,229 2,043,370 2,043,531 2,043,665 2,043,916 2,070,547

SRR037444 1,939,846 1,939,970 1,940,096 1,940,204 1,940,597 1,988,929
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added different poly-A tails (0, 5, 10, 15, 20, and 25 ade-
nines) to the reference transcript data for accurate
comparison.

Real RNA-Seq data
High-throughput RNA-Seq data were collected from the
Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.
gov/sra) [27]. Data with a read length of 35 nucleotides
were obtained from accession number SRA010153.1.
Data with a read length of 76 nucleotides were obtained
from accession number SRA039286. Raw data were
generated from samples used in the MAQC project
on two RNA samples, brain tissue (HBR) and a mixture
of tissue types (UHR), through an Illumina genome
analyzer.
As shown in Table 5, two types of biological samples

(HBR and UHR) were assayed in MAQC-2, each using
seven lanes distributed across two flow cells. In MAQC-
3, four different UHR library preparations were assayed
using 14 lanes from two flow cells, and each library
preparation was assayed on only one of the flow cells.
For accession number SRA039286, two types of bio-
logical sample (HBR and UHR) were used, and each had
just a single run.

Simulated RNA-Seq data
We simulated 5-reads data for brain tissue and UHR
separately (data from a total of 10 reads), which con-
sisted of 20 million single-end reads with quality scores
each using the RSEM simulator. We derived model
parameters when calculating RSEM expression levels
from SRX080222 for human brain simulated data, and
from SRX080224 for human UHR simulated data. The
parameters used in the simulation are given in the fol-
lowing command.
./rsem-simulate-reads REF/hg uhr_RSEM.stat/uhr_

RSEM.model uhr_RSEM.genes.results 0.2 20000000
uhr_read

MAQC TaqMan qRT-PCR data
MAQC TaqMan qRT-PCR is the benchmark for detecting
and quantifying RNA targets [28]. It can be downloaded
from the Gene Expression Omnibus with GSE5350 on
platform GPL4097 (GEO; http://www.ncbi.nlm.nih.gov/
geo/) [29], and comprises 1044 genes from two samples
(HBR and UHR). We matched the GEO genes with the
UCSC genes and removed gene IDs with duplicate gene
names in qRT-PCR. Ultimately, 996 genes were selected
for evaluation. For accessions SRX016359, SRX016366,

Table 4 Spearman correlation results of eight non-abundance estimation normalization methods by adding a poly-A tail

Accession RC UQ Med TMM DESeq Q RPKM ERPKM

SRX016359-0A 0.563 0.561 0.563 0.563 0.563 0.563 0.560 0.560

SRX016359-5A 0.563 0.561 0.563 0.563 0.563 0.563 0.560 0.560

SRX016359-10A 0.563 0.561 0.563 0.563 0.563 0.563 0.560 0.560

SRX016359-15A 0.563 0.561 0.563 0.563 0.563 0.563 0.560 0.560

SRX016359-20A 0.563 0.560 0.563 0.563 0.563 0.562 0.560 0.559

SRX016359-25A 0.544 0.536 0.551 0.544 0.543 0.544 0.537 0.536

Table 5 RNA-Seq data description

Accession Description Sample Read length Runs Size

SRX016359 MAQC Brain exp 2 using phi X control lane HBR 35 nucleotides 7 3 Gb

SRX016366 MAQC Brain exp 2 using auto calibration HBR 35 nucleotides 7 3 Gb

SRX016367 MAQC UHR exp 2 using phi X control lane UHR 35 nucleotides 7 3.4 Gb

SRX016368 MAQC UHR exp 2 using auto calibration UHR 35 nucleotides 7 3.4 Gb

SRX016369 MAQC UHR exp 3 library prep S3 UHR 35 nucleotides 4 1.7 Gb

SRX016370 MAQC UHR exp 3 library prep S4 UHR 35 nucleotides 3 1.6 Gb

SRX016371 MAQC UHR exp 3 library prep S5 UHR 35 nucleotides 4 1.8 Gb

SRX016372 MAQC UHR exp 3 library prep S6 UHR 35 nucleotides 3 1.7 Gb

SRX080222 GSM747473: human_maqc-brain1 HBR 76 nucleotides 1 697.3 Mb

SRX080223 GSM747474: human_maqc-brain2 HBR 76 nucleotides 1 669.5 Mb

SRX080224 GSM747475: human_maqc-UHR1 UHR 76 nucleotides 1 676.7 Mb

SRX080225 GSM747476: human_maqc-UHR2 UHR 76 nucleotides 1 659.9 Mb
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SRX080222, and SRX080223, we used qRT-PCR values of
HBR samples, and for the other eight accessions, we used
qRT-PCR values of UHR samples.

Alignment tool
Bowtie is widely used in genome sequencing studies for
aligning short DNA sequence reads to large genomes be-
cause of its fast and memory-efficient alignments [30].
Bowtie version 0.12.9 was used here to map RNA-Seq
reads to regions in the genome. After building an index
using human reference transcript data, alignments were
performed allowing two mismatches in . SAM format.
We allowed multiply mapped reads. We then removed
genes with no alignment for accurate evaluation of the
normalization methods. The output file was arranged by
gene IDs, and because we wanted accurate alignment,
we considered any splice-aware mapper.

Normalization methods
Eight non-abundance and two abundance estimation
normalization methods were evaluated in this paper, and
calculations were performed on each gene. We defined
the gene count of one gene as all the mapped reads of
each run.
RC, UQ, and Med use simple descriptive statistical

methods that were also widely used in other areas for
capturing data characteristics. TMM, DESeq, and Q are
proposed for differential gene expression. They are
inter-sample normalization methods that give a scaling
factor, which scales sample size for each sample. Here,
we treated runs in one accession as samples. RPKM does
not just consider sample size, but also read length. Here,
we treated one run in one accession as one sample.
Therefore, for real data with a length of 76 nucleotides,
because they only have one run, only RC, RPKM, and
ERPKM were applied. A detailed description of each
method is as follows.
RC: The raw count for each gene was the sum of gene

counts of all runs.
UQ: The upper quartile was calculated by applying the

upper quartile of 0.75 to the gene counts of all runs.
Med: The median was calculated as the median of

gene counts of all runs.
TMM: The trimmed mean of M-values is a scaling

normalization method proposed for differential expres-
sion analysis of RNA-Seq data [19]. This normalization
method was implemented within the edgeR Bioconduc-
tor package. Scaling factors were calculated using the
calcNormFactors function in the package, and then
rescaled gene counts were obtained by dividing gene
counts by each scaling factor for each run. TMM is the
sum of rescaled gene counts of all runs.
DESeq: DESeq is a differential gene expression analysis

method based on a negative binomial distribution model,

with variance and mean linked by local regression, and
presents an implementation that also gives scale factors
[6]. It is within the DESeq Bioconductor package, and with
the estimateSizeFactorsForMatrix function, scaling factors
can be calculated for each run. After dividing gene counts
by each scaling factor, DESeq values were calculated as
the total of rescaled gene counts of all runs.
Q: Quantiles has been previously used to normalize

single channel or A-value microarray intensities between
arrays [20]. The NormalizeQuantiles function in the Bio-
conductor package limma [31] normalizes the columns
of a matrix to have the same quantiles. Here, we set the
total value of function output as the normalization value
of the quantiles.
RPKM: This approach quantifies gene expression from

RNA-Seq data by normalizing for the total transcript
length and the number of sequencing reads. RPKM
values can easily be calculated using the definition:

RPKM ¼ 109
reads mapping to transcript
total reads � transcript length ð1Þ

ERPKM: Since reads have a non-zero length, and the
read probabilities depend on an effective length [32], we
calculated the effective reads per kilobase per million
mapped reads (ERPKM) using an effective transcript
length:

effective transcript length
¼ transcript length − read length þ 1 ð2Þ

Thus, ERPKM
¼ 109 reads mapping to transcript

total reads�effective transcript length

(3)

All calculation of non-abundance estimation normalization
methods was carried out using R language. R code is provided
in Additional file 3.
RSEM and Sailfish are abundance estimation normalization

methods. They estimate read count by machine learning
methods.
RSEM: RSEM is different from previous normalization

methods. It proposes a directed graph model combined
with an expectation–maximization algorithm to estimate
abundances. RSEM provides a software package for
quantifying gene abundances from RNA-Seq data, so we
generate a reference index by preparing reference tran-
script data and calculated RSEM values by inputting
RNA-Seq data. The following are the two steps including
parameters used in calculating RSEM values:

1. Prepare reference

./rsem-prepare-reference-no-polyA-no-bowtie referen-
ce.fa reference_path

2. Calculate RSEM values
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./rsem-calculate-expression-sam-p 8 alignmentResults.sam
reference_path output_path
Sailfish: Sailfish was introduced to be alignment-free in

abundance estimation. It uses the concept of k-mer to
index and count RNA-Seq reads. Here, we used the
estimated number of k-mers after bias as an estimated
count. The following are the two steps including param-
eters used in computing Sailfish values:

1. Prepare reference

./sailfish index−t reference.fa−o reference_path−k 20

2. Calculate Sailfish values

./sailfish quant−i reference_path−l “T = SE:S = U”−r
sequence.fastq−o output_path
Because abundance estimation normalization methods

give count estimations for each alignment, RSEM and
Sailfish were evaluated by combining with RC and RPKM.

Statistical analysis
The distribution of qRT-PCR values and all normalization
results were tested using the Shapiro-Wilk normality test.
According to test results with p-values < 0.05, both qRT-
PCR values and normalization results were not normally
distributed. For the characterization of data, we used
Spearman’s rank correlation coefficients to evaluate per-
formance by calculating the similarity between RNA-Seq
abundance predictions of each normalization method and
the measured qRT-PCR values.
The Spearman correlation coefficient is widely used

because it measures linear dependence between two
variables as a non-parameter method [33]. It is calcu-
lated as the Pearson’s correlation coefficient on the ranks
of the data. For a group of genes of size n and the
corresponding n raw data, variable X is the qRT-PCR
gene expression value, variable Y is the result of the
normalization method, and the correlation rs is calcu-
lated as:

rs ¼ 1−
6
X

d2i
n n2−1ð Þ ð4Þ;

where
X

d2i ¼
X

i ¼ 1

n
R xið Þ‐R yið Þ½ �2 (5), R(xi) is the

rank of the ith observed value of X, and R(yi) is the rank
of the ith observed value of Y.
The Spearman correlation coefficient will generate a

value between +1 and −1, where +1 indicates a total posi-
tive correlation, 0 indicates no correlation, and −1 indicates
a total negative correlation. Values closest to +1 or −1
indicate the highest correlation and, therefore, the best
normalization results. In this study, the Spearman

correlation coefficient was executed by R using the
cor.test function.
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