
 Open access Proceedings Article DOI:10.1109/FPGA.1994.315609

Comparing the performance of FPGA-based custom computers with general-
purpose computers for DSP applications — Source link

Neil W. Bergmann, J.C. Mudge

Institutions: Flinders University

Published on: 10 Apr 1994 - Field Programmable Gate Arrays

Topics: Reconfigurable computing, Programmer, Software and Field-programmable gate array

Related papers:

 An Assessment of the Suitability of FPGA-Based Systems for Use in Digital Signal Processing

 Software synthesis and code generation for signal processing systems

A General Hardware/Software Co-design Methodology for Embedded Signal Processing and Multimedia
Workloads

 Gabriel: a design environment for DSP

 The Design of an 8-Bit CISC CPU Based on FPGA

Share this paper:

View more about this paper here: https://typeset.io/papers/comparing-the-performance-of-fpga-based-custom-computers-
27clwp09es

https://typeset.io/
https://www.doi.org/10.1109/FPGA.1994.315609
https://typeset.io/papers/comparing-the-performance-of-fpga-based-custom-computers-27clwp09es
https://typeset.io/authors/neil-w-bergmann-56l90qsryn
https://typeset.io/authors/j-c-mudge-4orlqsejly
https://typeset.io/institutions/flinders-university-19pswc6q
https://typeset.io/conferences/field-programmable-gate-arrays-1mxf95oz
https://typeset.io/topics/reconfigurable-computing-k3k3p7je
https://typeset.io/topics/programmer-xbr8amno
https://typeset.io/topics/software-2ejyxl2f
https://typeset.io/topics/field-programmable-gate-array-1w67h42e
https://typeset.io/papers/an-assessment-of-the-suitability-of-fpga-based-systems-for-1ubf9ijkon
https://typeset.io/papers/software-synthesis-and-code-generation-for-signal-processing-1np5sumbnn
https://typeset.io/papers/a-general-hardware-software-co-design-methodology-for-57wfpzjlbp
https://typeset.io/papers/gabriel-a-design-environment-for-dsp-1fg7kx1a6b
https://typeset.io/papers/the-design-of-an-8-bit-cisc-cpu-based-on-fpga-35ejsvmade
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/comparing-the-performance-of-fpga-based-custom-computers-27clwp09es
https://twitter.com/intent/tweet?text=Comparing%20the%20performance%20of%20FPGA-based%20custom%20computers%20with%20general-purpose%20computers%20for%20DSP%20applications&url=https://typeset.io/papers/comparing-the-performance-of-fpga-based-custom-computers-27clwp09es
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/comparing-the-performance-of-fpga-based-custom-computers-27clwp09es
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/comparing-the-performance-of-fpga-based-custom-computers-27clwp09es
https://typeset.io/papers/comparing-the-performance-of-fpga-based-custom-computers-27clwp09es

Comparing the Performance of FPGA-Based Custom Computers
with General-purpose Computers for DSP Applications zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Neil W. Bergmann and J. Craig Mudge

CSIRO/Flinders Joint Research Centre in Information Technology
Flinders University, GPO Box 2100, Adelaide, SA 5001, AUSTRALIA

Tel: 61-8-201-3 109; Fax: 61-8-201-3507
E-mail: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAneil@jrc.flinders.edu.au,

Ab st r ac zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
When FPGA logic circuits are incorporated within a

stored-program computer, the result is a machine where
the programmer can design both the sofhvare and the
hardware that will execute that software. This paper first
describes some of the m r e important custom computers,
and their potential weakness as DSP implementation
platforms. It then describes a new custom computing
architecture which is specifically designed for efficient
implementation of DSP algorithms. Finally, it presents a
simple performance comparison of a number of DSP
implementation alternatives, and concludes that (i) the
new custom computing architecture is worthy of further
investigation, and (ii) that custom computers based only
on FPGA execution units zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshow little performance
improvement over state-of-the art workstations.

1. Custom computing

Field Programmable Gate Arrays are now a popular
implementation style for digital logic systems and sub-
systems [l]. Where the programming configuration is
held in static RAM, the logic function implemented by
those FPGAs can be dynamically reconfigured, in
fractions of a second, by rewriting the contents of the
SRAM configuration memory. When such P G A logic
circuits are incorporated within a stored-program
computer, the result is a machine where the programmer
can design both the software and the hardware that will
execute that software. Such a machine, where the
hardware can be reconfigured and customised on a
program-by-program basis, is called a custom computer

Several researchers report algorithm speed-up rates of
hundreds or thousands of times compared to

P I .

jcmudge@jrc.flinders.edu.au

conventional desktop workstations, and often signifi-
cantly greater than the best reported results using
"conventional" super-computers, especially for those
algorithms which can be decomposed into many, simple,
parallel processing tasks. Many Digital Signal
Processing (DSP) algorithms can be decomposed into
parallel tasks, but each task often involves relatively
complex operations such as a multiply-accumulate. DSP
algorithms are therefore less clearly suitable candidates
for efficient implementation on a custom computer.

This paper surveys some of the most important custom
computers, presents the authors' work on a new custom
computing architecture specifically designed to support
DSP applications, and analyses the performance of
various implementation alternatives for DSP algorithms.

2. Previous methods of customising

computers for DSP

There is a constant tension in computer design
between being general purpose, i.e., doing a wide range
of computational tasks moderately well, and being
application specific, i.e., doing a smaller range of
computational tasks much better, usually at the cost of
either increased system resources or of poorer "general
purpose" performance.

There have been many different approaches
investigated over the years for improving the
performance of a general purpose computer for the
implementation of DSP algorithms. Custom computers
represent the latest technology which shows some
promise for this task.

A common approach to improving the performance of
a general purpose computer for specific applications is
the addition of application specific hardware, such as

164
0-8186-5490-2/94 $03.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1994 IEEE

graphics accelerators for computer displays, or image and
video compression chips for multi-media workstations.
These can provide excellent speedup for that specific
application, but provide no performance improvement
when other applications are run. This approach
represents one extreme of the generality/cost spectrum.

Another common approach, at the opposite end of the
spectrum, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the addition of a general-purpose parallel
processing sub-system to a host processor. Such add-on
parallel processing boards have seemed an obvious and
attractive enhancement to desktop computers for some
time, but they have achieved only limited success in the
marketplace. It is our conjecture that this is because of
difficulty of programming, and high cost resulting from
low sales volumes. Additionally, such parallel
processing systems have commonly been inefficient at
implementing the fine-grain, communications-intensive
parallel algorithms associated with DSP applications.
Recently, general-purpose, Digital Signal Processor chips
such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the TMS32OC40 [3] have become available.
These combine high speed, floating-point arithmetic
performance with high speed interprocessor
communication channels incorporating individual DMA
controllers. Arrays of such chips provide a formidable
challenge for other DSP implementation altematives.

The idea of a computer which can be customised,
under programmer control, on an application-by-
application basis, is not new. A writable control store
within a micro-programmed computer allows the
programmer to design application-specific machine
instructions, which can make better use of the existing
functional units within the computer, and hence improve
the performance of specific applications, including those
within DSP [4]. Such performance improvement has
been limited because of the interpretative nature of
microprogramming.

A custom computer goes one step further than a
writable control store by allowing design of new
functional units, rather than simply making better use of
existing functional units.

3. Some Existing Custom Computers

In this section, we examine three of the best known
custom computers as examples of the current state of the
art in this area.

3.1 SPLASH

SPLASH and SPLASH I1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5] are custom computers
which have been developed at the Supercomputer
Research Corporation, Maryland. The SPLASH I1 pro-
cessor consists of an extendable number of processor

boards, with each board containing 16 Xilinx 4010
FPGAs [6], connected as a linear array, plus an extra
Xilinx 4010 for control, with all of the FFGAs having
some additional interconnections via a central crossbar
switch. The SPLASH boards can communicate with a
SUN Sparcstation host via input and output FIFOs,
which are on an additional interface board connecting
the SUN and SPLASH array.

Once configured, data is streamed through the
SPLASH processor using the systolic array programming
model, with results streaming back to the host. The
SPLASH processor is most suited to simple streaming
operations, and has shown significant speedups over
conventional supercomputers for tasks such as text
searching and genetic database searching.

SPLASH is usually programmed by specifying the
function of the FPGAs using VHDL, which is then
automatically translated into an FPGA configuration file.
Current research [5] is examining the use of other
programming languages, such as data parallel C.

3.2 Programmable Active Memory

The PAM (Programmable Active Memory) has been
under development at DECs Paris Research Labs for
several years zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7], [8]. The latest version, PeRLe-1,
consists of a 5x5 array of Xilinx 3090 FTGAs, connected
to local 32-bit wide RAM banks, and also, via a lOOMB/s
TURBOchannel interface, to a DEC desktop workstation.
The workstation writes data to the RAM banks, which is
processed by the Xilinx array and returned to the RAM
banks, from where the host then retrieves the results.

Programming the PAM consists of designing software
components for the host, and hardware components for
the PAM array. The latter can be done by writing a
program in a conventional programming language (Lisp,
C++, and Esterel are used) using a specialised library.
The program describes logic modules by their bit-level
logic equations, or by using standard library modules
such as adders, and registers.

Ten applications are described in [8], including long
multiplication, RSA cryptography, data compression,
string matching, heat and Laplace equations, a
Boltzmann machine neural network, 3-D graphics
acceleration, and the discrete cosine transform. Results
are very encouraging; e.g., the PAM implementation of
512-bit RSA cryptography was faster than any other
reported implementation in any technology as of
February 1990, and 10 times faster than the next best
reported implementation on a custom VLSI circuit.

165

3.3 The Virtual Computer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The Virtual Computer [9], from the Virtual Computer

Corporation, provides approximately zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA500,000
programmable logic gates, using an array of 52 Xilinx
4010 FPGAs and 24 ICUBE Field Programmable
Interconnect Devices, 8 megabytes of SRAM, and 16k x
16-bit 25ns dual-port RAMs. The system also has 3 x
64-bit 1/0 ports zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- one for hardware configuration / read-
back, and two for general purpose 1/0 such as connection
to a host workstation. The central processing array of 40
Xilinx FPGAs, called the Virtual Array, consists of four
Virtual Pipelines, each with 10 FPGAs connected to
dual-port RAMs at each edge of the pipeline, with the
other port of these dual-port RAMs connected to a
control FPGA with a RAM buffer.

The array is intended to be a flexible computing
resource, with a typical application on a host processor
loading data into SRAM, which is streamed through the
pipeline under local control via the dual-port RAMs.
Results would take the reverse route back to the host. All
of the FPGAs are designed to be reprogrammed in
parallel, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that the function of all 500,000 logic gates
can be changed in 25 ms.

It is intended that programming could be at several
levels. At the highest level, a run-time function library
would be provided. Next would be translation of VHDL
or C++ code into hardware implementations, and at the
lowest level would be full-custom hand placement and
routing. The Virtual Computer is interesting in that it is
designed as a commercial product (initially targetted at
the research community), rather than as a research
vehicle.

4. CC-DSP: A New Custom Computer

4.1 Weaknesses of Existing Custom Computing

Architectures for DSP

It is useful to examine those applications where
custom computing has shown the greatest speedups. In
general, such applications can be decomposed into many
parallel computations, each of which can be implemented
by a low-gate-count processing element. Thus many
such elements are able to be implemented on the
available FPGA resources of a custom computer. Typical
applications in this category include text searching and
genetic database matching.

DSP applications often exhibit a high degree of
potential parallelism, but are less suitable for imple-
mentation on a custom computer because of the high gate
count of the arithmetic operations (addition and
multiplication) typically required for each parallel pro-

cessing element. For this reason, we are now exploring a
new custom computing architecture explicitly targetted at
the efficient implementation of digital signal and image
processing applications.

4.2 Our New Architecture

Our decision to concentrate our efforts on a custom
computing architecture which is specifically designed for
the support of DSP algorithms leads us naturally to the
provision of specific hardware support for the arithmetic
operations which dominate many DSP algorithms, but
which are costly to implement using FPGA
programmable gates.

Our proposed architecture has developed from
previous work into the rapid prototyping of DSP algor-
ithms [lo]. An experimental system was built from an
Algotronix CHS2x4 (Configurable Hardware System)
Ell] PC plug-in board containing 8 CAL1024 chips and
512 kbytes of RAM, plus a second plug-in board with 4
custom VLSI chips, each containing four 16-bit, bit-
serial multiply-accumulate units. The major drawback of
our initial architecture is its reliance on a custom-
designed arithmetic resource chip. Our limited design
and fabrication budget means that such chips have only
moderate arithmetic performance, and even a small array
of such chips will at best be able to match the arithmetic
performance of modem CPU chips. Attempts to code up
simple DSP algorithms for this system, such as FIR
filters, have also demonstrated weaknesses in the data
transfer capability of the CHS2x4 system for
communications-intensive applications.

We have therefore commenced work on a more
ambitious architecture [12], which more closely couples
an arithmetic chip, static RAM, and reconfigurable logic
within a processing node as shown in figure 1. This
node is then replicated a number of times to produce a
complete custom-computing co-processor for a
workstation. It seems likely that this architecture will use
commercially available arithmetic chips, providing of the
order of 20 MFLOPS each. Eight such processing nodes
would give some 160 MFLOPS of processing power.
The architectural and algorithmic challenge then
becomes to ensure that the reconfigurable logic chips and
static RAM chips can store, communicate and organise
operands for these arithmetic chips to allow such a peak
processing performance to be sustained.

It is useful to review our progress in the design of such
a custom computer in the light of the other custom
computing projects underway internationally. In
particular, this paper examines whether such an
architecture does give some performance advantage
compared to the more general-purpose custom computing

166

Data from

neighbour

Aritmetic Chip column

Data from Data to
row Reconfigurable Logic Chip row
neighbour neighbour

Data from RAM Data to RAM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I Data to

column
neighbour

I RAMChip 1 \1

Figure 1: A new custom computing architecture showing (a) processing node structure,
and (b) processing node interconnection. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

architectures described above, for the specific application
area of digital signal processing. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. Other Computing Architectures for DSP

To use for later comparison two more conventional
DSP implementation methods are briefly described
below.

5.1 Alpha-based workstation.

Digital Equipment Corporation's Alpha 21064
processor chip [l5], with a system clock rate of 200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
MHz, is indicative of the current state of the art in
desktop workstation performance. The 21064 chip also
forms the basis for the recently announced massively-
parallel processing (MPP) supercomputer from Cray
Research, Inc [151.

Of particular interest here is the excellent arithmetic
performance of the processor. The 21064's pipelined
ALU can accept new operands on every clock cycle, with
a ten-cycle latency before results appear. It is reasonable
to assume that careful coding of DSP inner loops to
maximise pipeline occupancy is no more difficult than
custom computer hardware design. The peak floating-
point (or integer) computation rate is then 200MFLOPS.
This rate would require operands to be available in
registers, and instructions to be available in the cache to
be sustained. Assumptions about a suitable sustained
computation rate for comparison with custom computing
approaches are given later.

5.2 TMS320C40 Parallel Processing
Development System

The TMS320C40 [3], with a clock rate of 40MHz, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis
indicative of the current state-of-the-art in software-
programmable digital signal processor chips. Important
features of the TMS32OC40 are the ALU design, and the
interprocessor communications design.

The ALU is based on a single-cycle floating-point
unit, which has separate multiplication and addition
units to allow these two operations to be done in parallel.
Single-cycle operation eases programming of inner loops
compared to the Alpha's highly-pipelined unit. Peak
arithmetic performance is then 80 MFLOPS, with a 40
MHz clock.

The TMS320C40 also has six, byte-wide, bi-
directional interprocessor communications ports with a
transfer rate of 20 Mbytesh each. Each port has a
dedicated DMA controller, which relieves the CPU of
much of the burden associated with the high
interprocessor communications in fine-grained, parallel
DSP algorithms.

Texas Instruments market a parallel processing board
based on the TMS32OC40, called the Parallel Processing
Development System (PPDS) [3], which can be attached
to a general purpose workstation. The TMS-PPDS
contains 4 interconnected TMS32OC40 chips, plus global
and local memory banks. Its peak arithmetic computation
rate is then 4 * 80 MFLOPS = 320 MFLOPS. The PPDS
will be used as an element of the performance
comparison in the next section.

167

6. Performance comparison of
programmable DSP Architectures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmentioned previously, the high logical complexity

of the arithmetic operations which are central to many
DSP algorithms suggests that FPGA-based custom
computers may be less suited to the implementation of
such algorithms compared to their demonstrated
performance speedups in other areas.

We therefore present a simple performance analysis of
some DSP implementation alternatives, to test this
assertion. The two key questions in any performance
comparison are what to compare, and how to compare
them.

6.1 What to Compare?

We have chosen to compare DSP implementation
systems which are of the order of a single printed circuit
board, and which might be used to improve the DSP

performance of a desktop computer workstation. The
following six systems will be compared. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Slate-of-the-Art Custom Computers
(i) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA single SPLASH II processor board. Results for
multiboard systems can be extrapolated from this result.
(ii) The DEC PeRLe-1 system
(iii) The Virtual Computer
Specialised DSP Custoni Computer
(iv) CC-DSP: The new (yet to be built) custom computer
described in section 4.2 above is used, referred to as CC-
DSP in this paper. We assume it consists of 8 PE's, each
containing one RAM chip, one arithmetic chip, and one
reconfigurable logic chip. For the arithmetic chip, we
assume an arithmetic perform'mce of one floating-point
multiply-accumulate every lOOns can be sustained, which
is consistent with existing state-of-the-art ALU chips
(e.g. [W .
General-purpose Processors
(v) A TMS-PPDS consisting of four TMS32OC4Os.
(vi) A workstation using a 2OOMHz DEC Alpha 21064
processor.

6.2 How to Compare Them?

The goal of this analysis is to give some ballpark
figures for the various DSP implementation alternatives
to give some insight into their relative merit.

A very straightforward analysis has been undertaken,
based on a number of assumptions which are listed
below. The performance analysis is a static analysis
based on the stated performance of various components.
We have not implemented any benchmark algorithms on

the various alternatives and we have not measured the
actual performance of any of the systems.

Performance is described in terms of millions of
multiply-accumulate operations per second
(megaMAC/s) for the case of both floating-point and
fixed-point arithmetic, for each of the "single-board-
sized systems.

An attempt is also made to calculate the cost of each
board, using a simple measure of "number of chips" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas
the cost. This gives the performance measure of

megaMAC/s/chip. For this measure, only processing and
interprocessor communication chips are counted.
Memory chips, and host-interface chips are not counted.

Details of the individual performance calculations are
given in section 6.4, below.

6.3 Assumptions

Assumption 1. The limiting factor in DSP performance
is the computation of multiply-accumulate operations,
which dominate many DSP algorithms, such as digital
filters, linear transforms, matrix multiplications, and
artificial neural networks.

Assumption 2. For the previously-mentioned con-
ventional custom computing architectures, which all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuse
Xilinx FPGAs, the cost of a fixed-point multiplication is
based on a recent design by Casselman [13]. This 24-bit
fractional multiplier requires 48 CLBs (configurable
logic blocks) within a 4000 series Xilinx FPGA, and
produces a result in 16 clock cycles at 16 MHz. We
assume that a fixed-point addition can be done in the
Same time using an extra 2 CLB's for a total of 50 CLB's
for a fixed-point multiply-accumulate operation, at 1
million operations per second.

Assumption 3. For the same conventional custom
computing architectures, the cost of a floating-point
multiplication is based on the same design by Casselman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[131. A single-precision floating point multiplier
requires 60 CLBs within a 4000 series Xilinx FPGA, and
produces a result in 16 clock cycles at 16 MHz. We
estimate, given some experience with previous floating-
point operator designs [14], that a floating-point adder
requires a similar-sized circuit to a floating-point
multiplier, which would give a total of 120 CLB's for
both. We can assume some saving for a combined
floating-point multiply-accumulate operator, and so we
will assume 100 CLB's are required. Operating speed is
again 1 million operations per second.

For the same conventional custom
computing architectures, it is assumed that 25% of chip
area is required for control, and other overhead hardware
such as multiplexers and registers. Most of the systems
described use Xilinx 4010 FPGAs, with 400 CLB's.

Assumption 4.

168

Accounting for the 25% overhead leaves 300 CLB's for
the multiply-accumulate operations. Hence we assume
that a Xilinx 4010 can provide a performance of 6
megaMAC/s (fmed-point) or 3 megaMAC/s (floating-
point). We further assume that the Xilinx 3090s used in
the DEC PeRLe-1 can provide the same performance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Assumption 5. For our new CC-DSP architecture, we
assume 8 processing nodes, where each node is provided
with a custom arithmetic support chip providing 10
million multiply-accumulate operations per second zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(80
million multiply-accumulate operations per second for
the system). We assume that the reconfigurable logic
chips in the system are used to control data flow to
ensure that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFPUs are kept busy, but do not provide
any additional multiply-accumulate resources.

Assumption 6. For the DEC Alpha 21064
workstation, Linpack 1OOOxlOOO results [15] suggest a
best-case sustained computation rate of 75% of the peak
rate. Reducing this to 50% to account for general
algorithm and system overheads, this gives 50 million
multiply-accumulate operations per second. A nominal
chip count of 10 is assigned to the Alpha-based
workstation to account for the support chips needed for
this processor.

Assumption 7. The TMS-PPDS has a peak processing
rate of 4 * 80MFLOPS (each chip can do parallel
floating-point multiply and add operations at 40 MHz).

Since the processors have to deal with overhead
instructions, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas well as the floating-point operations, we
suggest the same average floating-point computation rate
as in assumption 6, i.e., 50% of the peak.

6.4 Performance and Cost Estimates

SPLASH II: A SPLASH I1 board consists of 16 Xilinx
4010 chips, a crossbar switch controlled by another
Xilinx, plus some memory and interface circuitry. The 16
Xilinx chips provide 16*6 = 96 megaMAC/s fixed-point,
and 16*3 = 48 megaMAC/s floating-point. The cost of
the system is considered to be the 16 FPGAs plus another
16 chips for the crossbar switch and its control, giving a
total cost of 32 chips. Performance/cost is 96/32 = 3
megaMAC/s/chip (fixed-point) and 48/32 = 1.5
megaMAC/s/chip (floating-point).

DECPeRLe-1: The DEC P e w - 1 co-processor board
consists of 25 Xilinx 3090 chips for the programming
core, four RAM banks, plus additional FPGAs and logic
circuits to control the RAM banks and general purpose
interconnect. The 25 Xilinx chips provide 25*6 = 150
megaMAC/s fixed-point, and 25*3 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA75 megaMAC/s
floating-point. We assign a total cost of 40 chips, giving
performance/cost of 150/40 = 3.75 megaMAC/s/chip

(fixed-point) and 75/40 = 1.9 megaMAC/s/chip (floating-
point).

Virtual Computer: The Virtual Computer contains a
total of 52 Xilinx 4010 FPGAs and 24 ICUBE FPICs, 8
megabytes of SRAM, and 16k x 16-bit 2511s dual-port
RAMS. 40 Xilinx chips are available for arithmetic
operations, giving 40*6 = 240 megaMAC/s fmed-point,
and 40*3 = 120 megaMAC/s floating-point. The cost of
the system is considered to be 52+24 = 76 chips, giving
performance of 240/76 = 3.1 megaMAC/s/chip (fixed-
point) and 120/76 = 1.6 megaMAC/s/chip (floating-
point).

CC-DSP: Our new custom computing architecture for
DSP has 8 nodes, with each node consisting of one
FPGA, one arithmetic chip of 10 megaMAC/s
performance, and one RAM chip. Total performance is
then 80 megaMAC/s, fixed- or floating-point. Cost,
excluding RAM, is 16 chips, giving 5 megaMAC/s/chip,
fixed- or floating-point.

TMS-PPDS: The peak performance of the 4-processor
system is 4 * 40 = 160 megaMAC/s. With a sustained
rate of 50% of the peak this gives 80 megaMAC/s.
Examination of the PPDS shows about four extra support
chips (excluding RAM) for each processor chip, giving a
total cost of 20 chips, and hence 4 megaMAC/s/chip
fixed- or floating-point.

Alpha 21064 Workstation: The peak performance of
this system is 200MFLOPS = 100 megaMAC/s. With a
sustained rate of 50% of the peak this gives 50
megaMAC/s. With a nominal workstation motherboard
cost of 10 chips (excluding RAM), this gives 5
megaMAC/s/chip fixed- or floating-point.

These calculations are summarised in Table 1 below.

6.5 Conclusions

Two conclusions can be drawn from the above, simple
analysis.

The first is that our CC-DSP architecture gives a
moderate performance improvement over other custom
computing approaches for floating-point DSP
applications, on a computation-per-chip basis, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso is
worthy of further investigation. There is an insignificant
(in terms of the resolution of this analysis) performance
improvement for fixed-point DSP operations.

The second conclusion is that, for DSP applications,
single-board custom computing approaches (including
our CC-DSP) do not give any performance/cost

169

I # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof chips megah4ACIs megah4ACIsl chip megah4ACIs
System (# of Xilinx) (fixed-point) (fixed-point) (floating-point)

megaMACls1chip

(floating-point) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SPLASH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 board I 32 (16) 96 I96 3 48 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 48

improvement over the conventional parallel processing
and uniprocessor approaches. The major reason for this
is that both the TMS32OC40 and Alpha 21064 have
high-performance hardware support for floating-point
arithmetic. Custom computers provide the best speedups
compared to conventional workstations when they can
implement in parallel hardware what the workstation
needs to implement in serial software. DSP does not
immediately appear to be such an application area.

The reason for the poor performance of the CC-DSP
architecture is the unavailability of single chip ALVs
which can match the floating-point performance of
modem processors. The single-chip ALUs are largely
limited by their ability to transfer operands and results to
and from the chip, compared to the processors whose
ALUs transfer data to and from local registers.

Finally, a general comment on the long-term
sustainability of special purpose, or custom, architectures
can be made. The TMS-PPDS and the Alpha
workstation described here are both general purpose
systems. Hence their technology progress functions will
approximate that of logic technology. The new custom
computing architecture presented here, because i t is
special purpose, will be manufactured in lower volumes
and hence will tend to have a less steep technology
progress function. Thus, it will be challenging for the
custom architecture to sustain a competitive position. It
is necessary that the arithmetic, SRAM and FPGA
operand-handling components have the same slope of
progress function as the general purpose systems.
Furthermore, we require that the operand handling
architecture built from FPGAs be scalable, so as to avoid
a data communications bottleneck which will prevent full
utilisation of the technology progress functions of these
individual components.

We plan further work in this area to:
(a) get better performance measures than those used in

the simple analysis presented in Table 1,
(b) decide on the best method to provide arithmetic

resources for DSP within a custom computing
architecture, and

1.5

(c) discern a demonstrably scalable design which can
utilise the technology progress function of the individual
components of our CC-DSP architecture.

DECPeRLe- 1

Virtual Computer
Our CC-DSP
TMS-PPDS

Alpha Workstation

7. Acknowledgments

40 (25) 150 I 150 3.75 75 I 75 1.9

16 80 1 80 5 80 I 80 5

20 801 160 4 801 160 4

10 {nominal) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 0 / 100 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA501 100 5

76 (40) 240 1 240 3.1 120 1 120 1.6

This work is supported by the Australian Research
Council under Grant A49132307. Thanks to Lui Cirocco
for his assistance in the design of our next generation
CC-DSP architecture.

References

J. Rose, A. El Gamal, and A. Sangiovanni-Vincen-
telli, "Architecture of Field-Programmable Gate
Arrays," Proceedings of the IEEE, 81(7), July

Proceedings of IEEE Workshop on FPGA's for
Custom Computing Machines, Napa, April, 1993. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TMS320C4x Technical Brief, Texas Instruments,

L. R. Morris, and J.C. Mudge, "Speed Enhance-
ment of Digital Signal Processing Software via
Microprogramming a General Purpose Minicom-
puter," Proceedings of ICASSP '77, 1977.

M. Gokhale, R. Minnich, "FPGA Computing in
Data Parallel C," Proceedings of IEEE Workshop
on FPGAs for Custom Computing Machines, Napa
Valley, April, 1993.

The XC4000 Data Book, Xilinx, Inc., San Jose,
1992.

P. Bertin, D. Roncin, J. Vuilemin, "Introduction to
Programmable Active Memories", DEC Paris
Research Labs, Research Report #3, June, 1989.

P. Bertin, D. Roncin, J. Vuilemin, "Programmable
Active Memories: a Performance Assessment",
DEC Paris Research Labs, Research Report #24,
1993.

1 9 9 3 , ~ ~ 1013-1029.

1991, pp 6.5-6.8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

170

[9] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS . Casselman, "Virtual computing", zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProceedings of
IEEE Workrhop on FPGA's for Custom Computing
Machines, Napa Valley, April, 1993.

[lo] N.W. Bergmann, H. Wong, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. Sutton, "A Rapid
Prototyping and Implementation Method for Sys-
tolic Array Digital Signal Processors", Proceedings
of 1991 Microelectronics Conference, Melbourne, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[113 CHS2x4 User Manual, Algotronix Ltd, Edinburgh,
Scotland, February, 1992.

[12] N.W. Bergmann, J.C. Mudge and L.R. Cirroco,
"FPGA-Based Custom Computers", 1993
Australian Conference on Microelectronics, Gold
Coast, October 1993.

[131 S . Casselman, "F'PGA multiplier", info-fpga elec-
tronic mail posting fi-om sc@vcc.com, October,
1993.

pp 91-93, 1991.

[14] D. Giarola & N.W. Bergmann, "Design and
Testing of a Bit-Serial Floating Point Adder", &
"Design and Testing of a Bit-Serial Floating Point
Multiplier", University of Queensland, Electrical
Engineering Dept., Internal Reports No. EE8915 &
EE89l9, May, 1989.

[15] E. McLellan, "The Alpha AXP Architecture and
21064 Processor", IEEE Micro, 13(3), June 1993,

[16] M. Birman, A. Samuels, G. Chu, T Chuk, L. Hu, J.
McLeod, J. Barnes, "Developing the
WTL3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA170/3 17 1 Sparc Floating-Point Coproces-
sors", IEEE Micro, 10(1), pp. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA55-65, February,
1990.

~ ~ 3 6 - 4 7 . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

171

mailto:sc@vcc.com

