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Comparing the Performance of Image Enhancement 
Methods to Detect Microcalcification Clusters in Digital 
Mammography  
Hajar Moradmand1, Saeed Setayeshi1, Ali Reza Karimian2, Mehri Sirous3, Mohammad Esmaeil 
Akbari4 
Abstract  
Background: Mammography is the primary imaging technique for detection and 
diagnosis of breast cancer; however, the contrast of a mammogram image is often 
poor, especially for dense and glandular tissues. In these cases the radiologist 
may miss some diagnostically important microcalcifications. In order to improve 
diagnosis of cancer correctly, image enhancement technology is often used to 
enhance the image and help radiologists. 

Methods: This paper presents a comparative study in digital mammography 
image enhancement based on four different algorithms: wavelet-based 
enhancement (Asymmetric Daubechies of order 8), Contrast-Limited Adaptive 
Histogram Equalization (CLAHE), morphological operators and unsharp masking. 
These algorithms have been tested on 114 clinical digital mammography images. 
The comparison for all the proposed image enhancement techniques was carried 
out to find out the best technique in enhancement of the mammogram images to 
detect microcalcifications. 

Results: For evaluation of performance of image enhancement algorithms, the 
Contrast Improvement Index (CII) and profile intensity surface area distribution 
curve quality assessment have been used after any enhancement. The results of 
this study have shown that the average of CII is about 2.61 for wavelet and for 
CLAHE, unsharp masking and morphology operation are about 2.047, 1.63 and 
1.315 respectively.    

Conclusion: Experimental results strongly suggest that the wavelet transformation 
can be more effective and improve significantly overall detection of the 
Computer-Aided Diagnosis (CAD) system especially for dense breast. Compare to 
other studies, our method achieved a higher CII.  
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Introduction 
Breast cancer is one of the most important causes 

of mortality in women over the world. In the United 
States alone, a most recent research estimated that 
207,090 new cases of breast cancer and 39,840 
deaths occurred during 2010 [1]. 

     Breast cancer in Iran was the second leading 
cause of cancer death after gastric carcinoma, and 
unfortunately in recent years it has become the 
number one for women. At the present time there are 
more than 40,000 cases that have been inflicted with 
breast cancer, and cases will increase more than 

7000 each year; the incidence of breast cancer is 10 
per 100,000 population [2].In recent years more 
young generation are being inflicted than the 
elderly.  According to the latest report of Statistics 
Department of Health of Iran, the age of women with 
breast cancer has been decreased about 7 to 10 
years i.e. age 40 is coming to age 30. This is a 
warning for our society and more research in this 
field seems essential. 

Although, there is no an assured way to prevent 
breast cancer, early detection is the key to improve 
breast cancer treatment. Mammography remains the 
most effective diagnostic technique so far for early 
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breast cancer detection. Mammography can show 
changes in the breast up to two years before a 
physician can feel them.  Masses and 
microcalcifications are the two most important 
mammographic indicators of breast cancer. 
Microcalcifications are tiny specks of calcium in 
breast and may appear alone or in clusters. 
Microcalcification Cluster (MCCs) is an important sign 
for early breast carcinoma. However, MCCs have 
small size (ranging from 0.1mm to 0.7 mm) and low 
contrast, which may be missed or misinterpreted by 
radiologists and the task of mammography screening 
by eye, may be tedious. The American College of 
Radiology (ACR) Breast Imaging Reporting And Data 
System (BIRADS) identifies four major groups for 
classifying breast density: (1) predominantly fat (2) 
fat with some fibroglandular tissue (3) 
heterogeneously dense (4) extremely dense [3].  
Also, in a breast which is considerably dense, the 
sensitivity of mammography is reduced for early 
detection of malignancy due to difficulty to find ill-
defined mass in an opaque uniform background.  

With advances in digital image processing, 
pattern recognition and artificial intelligence, 
radiologists have an opportunity to improve the 
diagnosis with aid of computer systems. Depending 
on radiologist, readers’ sensitivity can be increased 
about 10-15% by using   Computer-Aided Diagnosis 
(CAD) systems. Therefore, a reliable CAD system can 
be very helpful to help radiologists to detect breast 
cancer both for prompting suspect cases and to help 
to make a diagnostic decision as a ‘‘second reading”. 
A CAD system consists of several steps, such as 
preprocessing, segmentation and classification of 
pathological cases [4]. 

 In the preprocessing step, the significant features 
of mammogram are enhanced and most of hidden 
characteristics are recovered and image quality is 
improved. Mainly, image enhancement includes 
intensity and contrast manipulation, noise reduction, 
background removal, edges sharpening, filtering, etc. 
Mammogram enhancement techniques are employed 
for increasing detection, characterization efficiency 
and also as preprocessing stages of CAD schemes 
[5]. Several processing techniques for contrast 
enhancing in the region of microcalcifications have 
been reported in literature, such as global 
enhancement techniques (contrast stretching, 
histogram equalizing) [6], fixed and adaptive local 
enhancement [7], unsharp masking [8], and region 
based enhancement aimed to adjust the contrast of 
ROIs in relation with their surrounding areas [9]. In 
fact, the standard image enhancement methods 
failed to achieve a satisfactory enhancement of MCs, 

which motivated the researchers to develop feature 
based enhancement methods such as locating 
features by extracting local statistical attributes of 
ROIs [10], fuzzy techniques [11], and multiscale 
analysis methods [12]. Other enhancement methods 
such as high-pass filtering using wavelet 
reconstruction [13], fractal modelling [14], and 
morphological operators [15] focus on background 
subtraction to increase the appearance of MCs. 

Although these methods have improved the 
possibility of better view of MCS, but sometime have 
destroyed the shape and appearance of MCs 
leading to a misdiagnosis. Also, many improved 
methods for mammogram cause increasing noise or 
destruction to anatomical structures of image [16]. 
So, in this work the four best image enhancement 
methods were proposed for detection of 
microcalcifications in mammograms. The considered 
methods are: wavelet transformation, Contrast-
Limited Adaptive Histogram Equalization (CLAHE), 
unsharp masking, and morphological operator. These 
methods have been selected based on causing no 
damage on diagnostic result for MCs identification. 
Furthermore, employment of different enhancement 
algorithms in the same mammographic dataset 
provides an additional capability for evaluation of 
clinical data. 

 The aim of this research is to evaluate different 
enhancement methods and determine the 
appropriate one for mammogram enhancement and 
microcalcification detection. It provides a good 
platform for further processing such as classification 
lesions into benign and malignant. The way that these 
methods have been implemented in this paper is 
unique. The effect of enhancement techniques on 
detection performance of the CAD system is 
investigated by means of the following parameters: 
(a) Contrast Improvement Index (CII) and (b) intensity 
surface area distribution curve. Experimental results 
have demonstrated that employment of the wavelet-
based enhancement techniques have improved the 
overall detection performance of the CAD system 
especially for dense breasts. This work can help 
radiologists in making more accurate breast cancer 
diagnosis on mammograms. 

Materials and Methods 
In this paper, four different image processing 

algorithms (unsharp masking, Contrast-Limited 
Adaptive Histogram Equalization (CLAHE), 
morphological operators and wavelet-based 
enhancement) were applied to digital mammogram 
images of 114 histological proven clinical cases.  
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shape of the neighborhood, a morphological 
operation can be constructed that is sensitive to 
specific shapes in the input image. 

In grayscale morphology, images are functions 
mapping a Euclidean space or grid E into, ℝ ∪{∞,−∞} where  is the set of real, is an element 
larger than any real number, and−∞, is an element 
smaller than any real number. Grayscale structuring 
elements are also functions of the same format, 
called "structuring functions". Denoting an image by 
f(x) and the structuring function by b(x), the opening 
and closing are given respectively by Equation(2). ݂ ⊚ ܾ = (݂ ⊖ ܾ)⊕ ܾ, ܽ݊݀ ݂	⨀	ܾ = 	 (݂⨁ܾ)⊖ ܾ 

                                                      (Eq.2)  
In this research morphological reconstruction 

(opening and then closing by reconstruction) has been 
used to clean up the image and smoothing so the 
foreground which contains breast tissue would be 
more recognizable. Comparing reconstruction-based 
opening and closing to standard opening and closing 
are more effective to remove small blemish without 
affecting the whole shapes of the objects. 
Reconstruction is a morphological transformation 
involving two images and a structuring element 
instead of a single image and a structure element. 
One image is the marker for starting point of the 
transformation. The other image is the mask 
containing the transformation. The structure element 
defined the connectivity. If g is the mask and f is the 
marker, the reconstruction of g from f, denotes by Rg 
(f). The high points or peaks in the marker image 
specify where the processing begins and the 
processing continues until the image values stop 
changing [19]. 

Wavelet-based Enhancement 
Wavelet transform is a powerful tool for filtering 

which represents images hierarchically on the basis 
of scale and resolution; it analyzes high-spatial 
frequency phenomena localized in space, thus it can 
effectively extract information derived from 
localized high-frequency signals such as those 
emitted by microcalcification. 

Wavelet transforms are one dimensional but 
easily extend to analyze 2-D discrete signals. 
Separable 2-D wavelet transform of an image is 
constructed by applying 1-D wavelet transform 
along with the image rows and columns. The 2-D 
wavelet and scaling functions derived from 1-D 
wavelet ψ(x) and scaling φ(x) functions, are 
expressed according to the following equation 
(Eq.3): ߮(ݔ, (ݕ =  ,(ݕ)߮(ݔ)߮

߰ு(ݔ, (ݕ = ,ݔ)௏߰ ,(ݕ)߰(ݔ)߮ (ݕ =  ,(ݕ)߮(ݔ)߰
Φ(x, y) represents a 2-D separable low-pass filter 

applied along with the horizontal x vertical y 
directions. ߰ு(ݔ, ,ݔ)௏߰,(ݕ ,ݔ)஽߰,(ݕ  are 2-D (ݕ
separable high-pass filters extracting the signal 
details along with the horizontal, vertical, and 
diagonal directions, respectively. The detailed 
coefficients contain small-scale components of the 
image. In frequency domain analysis, high frequency 
coefficients are detailed. Microcalcifications often 
appear on the mammogram image as fine and 
bright grains in the breast tissue. So, we can assume 
that a wavelet decomposition of mammogram image 
will contain MCCs mostly within the detailed 
coefficients [20]. 

In this research, Five-level discrete wavelet 
decomposition was employed by using Asymmetric 
Daubechies of order 8; it accumulates more energy 
corresponding to the details of the wavelet transform 
and more over it is characterized by symmetry and 
finite length to enhance mammograms. Due to these 
features, they can achieve high correlation with the 
clustered MC; therefore, they can effectively 
enhance MC, so the filtered image is subjected to 
five-level discrete wavelet decomposition. This 
produces an approximation and five sets of 
horizontal, vertical and diagonal detailed 
coefficients and afterwards the contrast enhanced 
mammogram is obtained by reverse wavelet 
transform. 

Results 
The considered enhancement techniques which 

were introduced in this paper have been tested on 
114 mammogram images. The experimental results 
for different density mammograms (BIRADCI-
BIRADCIV) have been shown in Figure 2. 

 
For evaluation of analysis of the proposed 

enhancement algorithm, the Contrast Improvement 
Index (CII) has been used [10] which is defined as 
follows: ܫܫܥ = ஼	௣௥௢௖௘௦௦௘ௗ஼	௢௥௜௚௜௡௔௟ (Eq.4) ܥ	݀݁ݏݏ݁ܿ݋ݎ݌ and ܥ	݈ܽ݊݅݃݅ݎ݋  are the contrast 
value of the processed and original images, 
respectively . The contrast ܥ of a region is defined 
by the following equation: ܿ = ௙ି௕௙ା௕  (Eq.5) 

 ݂	is the mean gray-level value of the foreground 
and ܾ is the mean gray-level value of the 
background. The bigger value of ܫܫܥ shows the 
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better performance of enhancement methods. In 
Table 1 the contrasts of the original and 
enhancements images are given. 

 
 Profile intensity surface area distribution curve 

has been used for quality assessment of an image 
following enhancement.  Granulometry estimates the 
intensity surface area distribution of MCCs as a 
function of size. Granulometry likens image objects to 
stones with sizes which can be determined by sifting 
them through screens of increasing size and collecting 
what remains after each pass. Image objects are 
sifted by opening the image with a structuring 
element of increasing size and counting the remaining 
intensity surface area (summation of pixel values in 

the image) after each opening. Let B be a structuring 
element in a Euclidean space or grid E, and consider 
the family{ܤ௞}, ݇ = 0,1, …given by: ܤ௞ ܤ= ௧௜௠௘௦	ᇣᇧᇧᇧᇤᇧᇧᇧᇥ௞ܤ⊕…⊕    (Eq.6)                     

Where  denotes morphological dilation. By 
convention, ܤ଴ is the set containing only the origin of 
E andܤଵ =  .ܤ

Let X be a set (i.e., a binary image in 
mathematical morphology), and consider the series 
of sets{ߛ௞(ܺ)}, ݇ = 0,1, ௞ߛ … = ܺ ∘  ௞   (Eq.7)ܤ

Where  denotes the morphological opening. 

                                                
 

                                                   
 

                                                 
 

                                                   
        a) Original image      b) Wavelet enhancement          c) CLAHE                d) Unsharp masking     e) Morphology enhancement    
 

Figure 2. Visual contrast enhancement results 
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The granulometry function ܩ௞(ܺ) is the cardinality 
(i.e., area or volume, in continuous Euclidean space, 
ornumber of elements, in grids) of the imageߛ௞(ܺ):   ܩ௞(ܺ) =  ௞(ܺ)|   (Eq.8)ߛ|

The pattern spectrum or size distribution of X is the 
collection of sets {ܲܵ௞(ܺ)}, ݇ = 0,1, … given by: ܲܵ௞(ܺ) 	= (ܺ)௞ܩ	 	−  ଵ(ܺ)   (Eq.9)	ା	௞ܩ	

Parameter k is referred to size, and the 
component k of the pattern spectrum ܲܵ௞(ܺ) 
provides a rough estimate for the amount of grains 
of size ݇	in the imageܺ. Peaks of ܲܵ௞(ܺ) indicate 
relatively large quantities of grains of the 

corresponding size. The intensity curve of a 
mammogram image is shown in Figure 3. This figure 
determines that wavelet transformation has the best 
performance for mammogram enhancement. 

Our method has the best effect on dense 
mammograms. Mammograms which have density 3 
and 4 in breast density rating in the American 
College of Radiology (ACR), are the most difficult 
cases to screen.  

Table 1. CII values of four enhanced mammograms

 Contrast Original Wavelet CLAHE Unsharp Morphology 

 
Image1 

C 0.1412 0.4954 0.3208 0.1959 0.1641 

CII - 3.50 2.27 1.38 1.16 

 
Image2 

C 0.3098 0.7217 0.5707 0.4920 0.4513 

CII - 2.32 1.84 1.58 1.45 

 
Image3 

C 0.2458 0.5560 0.5332 0.4066 0.2848 

CII - 2.26 2.16 1.65 1.15 

 
Image4 

C 0.2297 0.4616 0.4341 0.3496 0.2546 

CII - 2.00 1.88 1.52 1.10 

  
 
 

 

Figure 3. Intensity surface area distribution curve 
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Discussion 
Since many mammograms are low contrast, blur 

and fuzzy, it is difficult to detect the 
microcalcifications. Mammogram enhancement is 
essential for improvement of contrast features and 
suppression of noise. Appropriate image 
enhancement improves the visibility of 
microcalcifications. The essential need in 
mammogram enhancement is to increase the contrast.  

To our knowledge, there are no specific references 
for evaluation of preprocessing techniques in CAD 
schemes for microcalcification detection. However, in 
[22] a set of metrics which measure the quality of 
mammographic image enhancement of masses 
proposed in a CAD frame work. A single quantitative 
measure, which arises from the combination of these 
metrics, suggests reprocessing technique, which results 
in the highest enhancement effect. On the other hand, 
there are several works, which address improvement 
of radiologist’s detection performance by using 
enhancement techniques. Four enhancement 
algorithms (adaptive unsharp masking, CLAHE, 
adaptive-neighborhood contrast enhancement, and 
wavelet approach) were applied to 40 patients who 
had malignant or benign masses and 
microcalcification clusters [23]. The adaptive 
neighborhood contrast enhancement algorithm was 
the most preferred by the radiologists i.e. in 49% of 
the microcalcification interpretations. Wavelet-based 
enhancement was preferred in 28% and the 
unenhanced images in 13% of the microcalcification 
clusters.  Wavelet contrast enhancement methods 
lead to a significant improvement of local contrast 
and noise amplification [24]. Five pre-processing 
methods which can enhance the mammographic 
image were implemented. They were processed by a 
CAD system and they were as follow: the Local 
Range Modification (LRM), Redundant Discrete 
Wavelet (RDW), linear stretching, shrinkage 
algorithms, and CLAHE. The highest performance in 
two mammographic datasets were achieved by LRM 
(AZ= 0.932) and the wavelet-based linear stretching 
(AZ= 0.926) methodology. But still direct comparison 
of efficiency of the enhancement method with the 
results was not possible, since the used CAD systems 
were different and none of the researchers tuned the 
parameters of the system. 

     In this paper, four enhancement methods have 
been tested aiming to improve previously developed 
CAD system [21] for detection of microcalcification 
clusters in digital mammograms. As these 
enhancement methods were selected based on the 
best effect for improvement of mammogram images 
and microcalcifications detection, the results of this 

study are more reliable. Also experimental results 
illustrated that investigated algorithms made a 
higher CII in compare with conventional image 
enhancement methods and reduced noise in high 
noise mammograms [26].  

Although, this study achieved a satisfactory 
performance, further studies should be carried out to 
use efficient enhancement methodologies aiming to 
reduce false objects detection rate. The employment 
of wavelet enhancement techniques, which would 
utilize different weights in each level of image 
decomposition process, can provide more flexible 
and probably more effective enhancement in 
interpretation of digital mammograms. In our future 
research, we would like to investigate whether the 
mammography images are divided in different 
groups according to the ACR tissue density and then 
multiple analyses will be done about enhancement 
methods to get more reliable and useful results. We 
would also like to extend this research for detection 
and classification of other presentations of breast 
cancer such as mass. 

Conclusion 
Image processing methods have different effects 

on digital mammogram images and can make them 
clearer. The results of this study illustrated that the 
wavelet transformation had the highest CII about 
2.61 in average. The CII averages of CLAHE, 
unsharp masking and morphology operation were 
about 2.047, 1.63 and 1.315 respectively. The 
results demonstrated that the wavelet transformation 
with Asymmetric Daubechies of order 8 method was 
an effective way to enhance microcalcifications 
especially for dense breasts and also reduced noise 
in high noise mammograms. It may also be able to 
improve the detection and classification of 
microcalcifications in a computer-aided diagnosis 
system.  
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