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Abstract

Cheminformatics datasets used in classification problems, especially those related to biological or physicochemical proper-

ties, are often imbalanced. This presents a major challenge in development of in silico prediction models, as the traditional 

machine learning algorithms are known to work best on balanced datasets. The class imbalance introduces a bias in the 

performance of these algorithms due to their preference towards the majority class. Here, we present a comparison of the 

performance of seven different meta-classifiers for their ability to handle imbalanced datasets, whereby Random Forest is 

used as base-classifier. Four different datasets that are directly (cholestasis) or indirectly (via inhibition of organic anion 

transporting polypeptide 1B1 and 1B3) related to liver toxicity were chosen for this purpose. The imbalance ratio in these 

datasets ranges between 4:1 and 20:1 for negative and positive classes, respectively. Three different sets of molecular 

descriptors for model development were used, and their performance was assessed in 10-fold cross-validation and on an 

independent validation set. Stratified bagging, MetaCost and CostSensitiveClassifier were found to be the best performing 

among all the methods. While MetaCost and CostSensitiveClassifier provided better sensitivity values, Stratified Bagging 

resulted in high balanced accuracies.
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sd  Standard deviation
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SMOTE  Synthetic minority over-sampling technique

SVM  Support vector machines

Introduction

A wide range of classification and regression methods have 

been applied in QSAR studies. However, many classification 

methods assume that datasets are balanced in terms of the 

number of instances of each class and thus give equal impor-

tance to all classes, often resulting in classification models 

of poor accuracy [1, 2]. A major problem that arises in this 

context is class imbalance, i.e. the number of instances of 

one class substantially differ from those of the other classes. 

Especially in the field of drug discovery, imbalanced data-

sets [2–4] need to be frequently dealt with [2]. Character-

istically, a classifier developed on an imbalanced data set 

shows a low error rate for the majority class and a high error 

rate for the minority class [5, 6]. Nevertheless, a few studies 

pointed out that the class imbalance is not a main obstacle 

in learning [7, 8], and several methods have been developed 

to address this issue. These methods can be broadly divided 

into (1) data-oriented/re-sampling techniques; (2) algorithm-

oriented methods; and (3) combinatorial/ensemble/hybrid 

techniques [2, 3, 7, 9, 10].

Several studies compared classifiers that handle imbal-

anced datasets. Schierz et al. [11] compared four WEKA 

classifiers (Naïve Bayes, SVM, Random Forest and J48 tree) 

and reported SVM and J48 to be the best performing for bio-

assay datasets. Lin and Chen in 2013 found SVM threshold 

adjustment as the best performing classifier (among linear 

discriminant analysis, Random Forest, SVM and SVM-

threshold adjustment) to deal with imbalanced HTS datasets 

[9]. Later, Zakarov et al. used under-sampling and thresh-

old selection techniques on several imbalanced PubChem 

HTS assays to test and develop robust QSAR models in the 

program GUSAR [12]. In a recent study, Razzaghi et al. 

reported multilevel SVM-based algorithms to outperform 

conventional SVM, weighted SVM, neural networks, linear 

regression, Naïve Bayes and C4.5 tree using public bench-

mark datasets having imbalanced classes and missing values 

and real data in health applications [13].

A comprehensive comparison of the performance of dif-

ferent meta-classifiers on datasets with different levels of 

class imbalance, which would provide guidance for choos-

ing the appropriate method for an imbalanced dataset, has 

not been attempted so far. Herein, we evaluated the perfor-

mance of seven distinct meta-classifiers from the three afore-

mentioned categories on four datasets from the toxicology 

domain. The imbalance ratio of the datasets ranges from 

1:4 to 1:20 for the positive and the negative class, respec-

tively. The meta-classifiers were applied to build classifi-

cation models based on three different sets of descriptors. 

Considering its wide applicability in modeling imbalanced 

datasets, Random Forest was used as the common base-clas-

sifier for all models [14–18]. Further, we discuss the reasons 

behind the superior performance of certain meta-classifiers 

in comparison to the others while explaining their intrinsic 

limitations.

Methods

Training datasets

Four different datasets from the biomedical sciences domain 

were used in this study. Two of these are the OATP1B1 and 

OATP1B3 inhibition datasets consisting of 1708 and 1725 

compounds, respectively. Both were compiled and used in 

our previous study that reported classification models for 

OATP1B1 and 1B3 inhibition [19]. The other two datasets 

come from the toxicology domain and are related to drug-

induced cholestasis for human data and animal data which 

comprise 1766 and 1578 compounds, respectively. Both 

datasets were published in a previous study that reported 

computational models for hepatotoxicity and other liver tox-

icity endpoints [20].

External test datasets

The external test sets for OATP1B1 and 1B3 inhibition 

from our previous study served as test datasets in this study 

[19]. The test set for human cholestasis was compiled in 

two stages from two previous studies [21]. The positives for 

human cholestasis were compiled from literature [22–25] 

and from the SIDER v2 database [26, 27]. As cholestasis is 

one of the three types of drug induced liver injury (DILI), 

and the compounds that are negative for DILI will also be 

negative for cholestasis, the negatives for drug-induced liver 

injury compiled in a previous study [21] were used as nega-

tives for cholestasis. Overall, the external human cholestasis 

dataset consisted of 231 compounds. No data were available 

for animal cholestasis to be used as an external test data-

set. The composition and degree of class imbalance of each 

training and test dataset is presented in Table 1.

The chemotypes in the datasets were curated using the 

following protocol:

– Removed all inorganic compounds according to chemical 

formula in MOE 2014.09 [28].

– Removed salts and compounds containing metals and/or 

rare or special atoms.

– Standardized chemical structures using Francis Atkinson 

Standardiser tool [29].

– Removed duplicates and permanently charged com-

pounds using MOE 2014.09 [28].
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– 3D structures were then generated using CORINA (ver-

sion 3.4) [30], and energy minimized with MOE 2014.09 

[28], using default settings (Forcefield MMF94x, gradi-

ent 0.05 RMS kcal/mol/A2, preserving chirality).

Molecular descriptors

Three different sets of descriptors were calculated for each 

of the datasets:

1. All 2D MOE [28] descriptors (192 descriptors in total).

2. ECFP6 fingerprints (1024 bits) calculated with RDKit 

[31].

3. MACCS fingerprints (166 bits), calculated with PaDEL 

software [32].

Machine learning methods

Random Forest [33] implemented in the WEKA software 

suite [34, 35] was used as a base-classifier along with all the 

meta-learning methods evaluated in this study. The number 

of trees was arbitrarily set to 100 (default), since it has been 

shown that the optimal number of trees is usually 64–128, 

while further increasing the number of trees does not neces-

sarily improve the model’s performance [36]. The following 

meta-classifiers were investigated: (1) Bagging, (2) Under-

sampled stratified bagging, (3) Cost-sensitive classifier, (4) 

MetaCost, (5) Threshold Selection, (6) SMOTE and (7) 

ClassBalancer.

1. Bagging (Bootstrap AGGregatING) [37] is a machine 

learning technique that is based on an ensemble of mod-

els developed using multiple training datasets sampled 

from the original training set. It calculates several mod-

els and averages them to produce a final ensemble model 

[37]. A traditional bagging method generates multiple 

copies of the training set by selecting the molecules 

with replacement from training set in a random fashion. 

Because of random sampling, about 37% of the mol-

ecules are not selected and left out in each run. These 

samples create the “out-of-the-bag” sets, which are used 

for testing the performance of the final model. A total 

of 64 models were used for our analysis, since it was 

shown in an earlier study by Tetko et al. [38] that larger 

numbers of models per ensemble (e.g. 128, 256, 512 

and 1024) did not significantly increase the balanced 

accuracy of models.

2. Under-sampled stratified bagging [2, 8, 38] In this 

method, the total bagging training set size is double the 

number of the minority class molecules. Although a 

small set of samples was selected each time, the major-

ity of molecules contributed to the overall bagging pro-

cedure, since the datasets were generated randomly. The 

performance of the developed models is tested with mol-

ecules from the “out-of-the-bag” set [38]. Since only one 

way of stratified learning, i.e., under-sampling stratified 

bagging, was used in the study, we refer to it as “Strati-

fied Bagging”.

  Bagging and Stratified Bagging were used as imple-

mented in the Online Chemical Modeling Environ-

ment (OCHEM) [39, 40]. For other meta-classifiers, 

WEKA(v. 3-7-12) [34, 35] was used.

3. Cost sensitive classifier [2–4, 10, 11] is a meta-classi-

fier that renders the base classifier cost-sensitive. Two 

methods can be used to introduce cost-sensitivity: (i) 

reweighting training instances according to the total cost 

assigned to each class, i.e. the weights are applied dur-

ing learning, or; (ii) predicting the class with minimum 

expected misclassification cost (rather than the most 

likely class), i.e. the “cost-sensitive” is introduced in 

the test phase. In our case, the cost sensitivity was intro-

duced according to method (i) using the CostSensitive-

Classifier from the set of meta-classifiers of the WEKA 

software [34, 35].

4. MetaCost [41] is another application that provides the 

methodology to perform cost-sensitive training of a clas-

sifier in a generalized meta-learning manner independent 

of the underlying classifier. It is a combination of Cost-

Table 1  An overview of the training and test datasets used in this study

Dataset name Total number of 

compounds

Number of 

positives

Number of 

negatives

Imbalance ratio (nega-

tives: positives)

Source

OATP1B1 inhibition training 1708 190 1518 8:1 Kotsampasakou et al. [19]

OATP1B1 inhibition testing 201 64 137 2:1 Kotsampasakou et al. [19]

OATP1B3 inhibition training 1725 124 1601 13:1 Kotsampasakou et al. [19]

OATP1B3 inhibition testing 209 40 169 4:1 Kotsampasakou et al. [19]

Cholestasis human training 1766 347 1419 4:1 Mulliner et al. [20]

Cholestasis human testing 231 53 178 3:1 Kotsampasakou et al. [21]

Cholestasis animal training 1578 75 1503 20:1 Mulliner et al. [20]
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sensitive meta-classifier and Bagging [37]. The algo-

rithm uses class-relabeling, i.e. it modifies the original 

training set by changing the class labels to the so-called 

“optimal classes”. The classifier is then trained on this 

modified training set, which results in having the error 

rate minimized according to the cost matrix provided 

to the MetaCost algorithm. This implementation uses 

all bagging iterations when reclassifying training data. 

MetaCost is advantageous as, unlike CostSensitiveClas-

sifier, a single cost-sensitive classifier of the base learner 

is generated, thus giving the benefits of fast classifica-

tion and interpretable output (if the base learner itself is 

interpretable). MetaCost further differs from traditional 

bagging by the fact that the number of examples in each 

resample may be smaller than the training set size. This 

variation improves the efficiency of the algorithm. More 

details about the method can be found in [41].

  For both CostSensitiveClassifier and MetaCost, sev-

eral trials of different cost matrices were applied, until 

a satisfactory outcome was retrieved.

5. ThresholdSelector [42] is a meta-classifier implemented 

in WEKA [34, 35] that sets a threshold on the probabil-

ity output of a base-classifier. Threshold adjustment for 

the classifier’s decision is one of the methods used for 

dealing with imbalanced datasets [2, 43]. By default, the 

WEKA probability threshold to assign a class is 0.5, i.e. 

if an instance is attributed with a probability of equal or 

less than 0.5, it is classified as negative for the respec-

tive class, while if it is greater than 0.5, the instance is 

classified as positive. For our study, the optimal thresh-

old was selected automatically by the meta-classifier by 

applying internal fivefold cross validation to optimize 

the threshold according to FMeasure (Eq. 7), a measure 

of a model’s accuracy which considers both precision 

and sensitivity [44].

6. SMOTE [45] (Synthetic minority over-sampling tech-

nique) increases the minority class by generating new 

“synthetic” instances based on its number of nearest 

neighbours. SMOTE, as implemented in WEKA, was 

used to generate synthetic examples. For our study, five 

nearest neighbours of a real existing instance (minor-

ity class) were used to compute a new synthetic one. 

For different datasets, different percentages of SMOTE 

instances were created, which can be found in the sup-

plementary information (Table S1). The complete algo-

rithm is explained in [45].

7. ClassBalancer [34, 35, 46] reweights the instances so 

that the sum of weights for all classes of instances in 

the data is the same, i.e. the total sum of weights across 

all instances is maintained. This is an additional way to 

treat class imbalance, unlike CostSensitiveClassifier or 

MetaCost, which try to minimize the total misclassifica-

tion cost.

With respect to parameters, not for all classifiers a param-

eter optimization was performed. For instance, no parameters 

were adjusted for ClassBalancer since it automatically reas-

signs weights to the instances in the dataset such that each 

class has the same total weight [46]. For Bagging and Strati-

fied Bagging, the only parameter to optimize would be the 

number of bags. In our case, the number of bags was adjusted 

to 64 as a previous study [38] suggests that generation of 64 

models provides satisfactory results without exponentially 

increasing the computational cost. In case of ThresholdSe-

lector, an optimal threshold was selected automatically via 

fivefold cross-validation before selecting the final model on 

the basis of FMeasure. For both CostSensitiveClassifier and 

MetaCost, the cost for misclassification was initially applied 

in accordance with the imbalance ratio, which, in case it did 

not provide a sensitivity of at least 0.5, was further increased 

to arrive at the final model. In case of SMOTE, similar prin-

ciples were applied: initially, the number of the synthetic 

instances created was set to a number that balances the two 

classes. If insufficient, it was further increased until no fur-

ther improvement in sensitivity (with no reduction in speci-

ficity) was observed. The detailed parameter settings of the 

best performing models for each method are provided in the 

supplementary material (Table S1).

Validation

All models were evaluated in a 10-fold cross-validation fol-

lowed by an external validation performed on independent 

test sets, except for Bagging and Stratified Bagging. For 

Bagging and Stratified Bagging, since multiple training data-

sets were generated by selecting the molecules with replace-

ment from training set in a random fashion, this leaves out 

about 37% of the instances in each run. Therefore, these 

molecules that constitute the ‘out-of-the-bag’ sets are later 

used for testing the performance of the final model.

Model performance assessment: selection 
of the optimal method

Prior to identifying the best performing method, an opti-

mal model for each meta-classifier was selected. The best 

parameters for the model were selected using linear search 

(as explained in the “Methods” section). For all models, dif-

ferent performance measures including sensitivity (Eq. 1), 

specificity (Eq. 2), accuracy (Eq. 3), balanced accuracy 

(Eq. 4), Matthews correlation coefficient (MCC, Eq. 5), area 

under the curve (AUC) and precision (Eq. 6) were calculated. 

A model was considered eligible for selection if the 10-fold 

cross-validation provided a sensitivity value of at least 0.5 

and a specificity value not less than 0.5. As the datasets are 

relevant to different toxicological endpoints, sensitivity was 
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considered more important. For a highly imbalanced data-

set, accuracy may be misleading. Therefore we considered 

balanced accuracy (which considers both sensitivity and 

specificity) as a more appropriate performance measure to 

compare different classifiers for their ability to handle imbal-

anced datasets. If two models provided the same sensitivity, 

the model that demonstrated higher balanced accuracy was 

prioritized for selection. Furthermore, 20 iterations were per-

formed by varying the seed for cross validation [by assigning 

values from 1 (default) to 20]. For Bagging and Stratified 

Bagging, the 20 iterations were performed by changing the 

random seed for the Random Forest generation by assigning 

values from 1 (default) to 20. After cross-validation, average 

values for different performance measures were calculated 

and compared. The best method was then evaluated by per-

forming a statistical t-test in R [47], as well as on the basis of 

the performance on external test sets. The individual settings 

used in selecting the best model for each meta-classifier can 

be found in the supplementary information (Table S1).

(1)Sensitivity =
TP

(TP + FN)

(2)Specificity =
TN

(TN + FP)

(3)Accuracy =
(TP + TN)

(TP + FP + TN + FN)

(4)Balanced Accuracy =
1

2

(

(TP)

(TP + NP)
+

(TN)

(TN + FP)

)

(5)

MCC =
{(TP × TN) − (FP × FN)}

{(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)}1∕2

TP: true positives; TN: true negatives; FP: false positives; 

FN: false negatives.

Results and discussion

Tables S2–S5 in the supplementary material report the per-

formance measures for predictions on all datasets used in 

this study. The performance values of the base-classifier 

(Random Forest) are also reported to facilitate a comparison 

with the investigated methods. For each dataset, the mean 

and the standard deviation values of performance of the best 

performing models (based on 20 iterations) were calculated 

and are reported in Tables S6–S9 (supplementary material). 

Figure 1a–c, Figure S1(a–d) in the supplementary material 

provide a comparison of performances of different meta-

classifiers on the three test datasets (no test set available for 

animal cholestasis) and four training sets respectively.

Irrespective of the dataset and the descriptor set used, 

Random Forest was found to be the weakest performing clas-

sifier as anticipated. Except on the test dataset for human 

cholestasis, Random Forest alone did not yield a sensitivity 

greater than 0.5, which indicates that assistance of a meta-

classifier indeed consistently improves performance when 

handling imbalanced datasets. Among the Meta-Classifier 

based methods, bagging provided the lowest performance. 

A simple reason behind the failure of Bagging is that it only 

(6)Precision =
(TP)

(TP + FP)

(7)FMeasure =
2TP

(2TP + FP + FN)

Fig. 1  Comparison of performances of different meta-classifiers on 

test sets a OATP1B1 inhibition b OATP1B3 inhibition c human chol-

estasis. x-axis corresponds to the sensitivity and on the y-axis is the 

specificity. The squares correspond to MOE descriptors, the trian-

gles correspond to ECFP6 fingerprints and the circles correspond to 

MACCS fingerprints. Each classifier is depicted in a different color: 

red for RF standalone, green for Bagging, blue for Stratified Bagging, 

dark pink for CostSensitiveClassifier, cyan for MetaCost, yellow for 

ThresholdSelector, orange for SMOTE and dark violet for ClassBal-

ancer. Please note that the scaling for the two axes are different



588 Journal of Computer-Aided Molecular Design (2018) 32:583–590

1 3

does resampling without any effort to balance or weight the 

two classes.

Threshold Selection was frequently found to be among 

the good performing methods. In many cases, this classifier 

could handle imbalance very well. However, the sensitivity 

measures were poor in comparison to other classifiers. This 

could be due to the fact that the thresholds were selected 

on the basis of FMeasure, as accuracy and specificity are 

not suitable due to the high impact of the majority class. If 

the selection of best models is done purely on the basis of 

sensitivity, this classifier yields very good sensitivity val-

ues (0.8–1.0), however with a radical decrease in specificity 

(0.2–0). Notably, Threshold Selection provided better results 

in combination with a second meta-classifier. But since the 

aim of the study was to compare the classifiers individually, 

this trend was not investigated further.

Stratified Bagging, CostSensitiveClassifier and Meta-

Cost were consistently the best performing classifiers in 

both cross-validation and test set validation for all the data-

sets (see Fig. 1, Figure S1 in the supplementary material). 

Further, the t-test on the basis of 95% confidence interval 

(exact p-values not shown here) indicated a statistically 

significant difference in performance between the selected 

methods (meta-classifiers). The statistical test was per-

formed pair-wise for all the obtained performance meas-

ures, with more stress on sensitivity and balanced accuracy. 

Both MetaCost and CostSensitiveClassifier tended to yield 

higher sensitivities while Stratified Bagging, on the other 

hand, was found to be superior in terms of MCC, balanced 

accuracy and AUC. An advantage of Stratified Bagging is 

that it is a straightforward method with only one parameter 

to optimize, i.e. the number of bags. On the other hand, cost-

sensitive approaches tend to give more weight to sensitivity 

when needed, which is an advantage for toxicity prediction. 

Although both methods provided comparable performances, 

the cost that had to be applied was greater in case of Cost-

SensitiveClassifier in comparison to MetaCost. This is due 

to the fact that the latter is a hybrid classifier which com-

bines Bagging with the application of a cost, thus equili-

brating the dataset more easily. It should further be noted 

that the computational cost for MetaCost is higher than that 

for CostSensitiveClassifier. On the other hand, Stratified 

Bagging is not computationally demanding (for the optimal 

parameter of 64 bags). Since each bag is double the size of 

the minority class, the calculation of models using Stratified 

Bagging requires less computational time, compared to the 

models built using Bagging (the bags are of the same size 

as the training set) and MetaCost (includes both bagging 

and weighting).

SMOTE and ClassBalancer were only in a few cases able 

to provide a sensitivity of at least 0.5 in both cross-validation 

and test set evaluation. Considering its reputation in han-

dling such problems, the poor performance of SMOTE was 

quite surprising. We assume that the small size of the data-

sets could be the primary reason behind SMOTE’s poor per-

formance. The datasets used in this study are much smaller 

in size compared to the HTS datasets in which the minority 

class has enough instances for SMOTE to generate synthetic 

instances, although the overall imbalance ratio is typically 

in the range of 100:1 [12, 45, 48].

With respect to the different sets of descriptors used, the 

performance of the classifiers on different datasets remained 

almost the same. Of all the descriptors, 2D MOE descrip-

tors and MACCS fingerprints provided the best performance 

across many of the datasets, while ECFP6 fingerprints 

consistently performed lower. Considering the amount of 

information encoded in ECFP6 (1024 bits) in comparison 

to MACCS fingerprints (166 bits) and the MOE descriptors, 

it might be assumed that the poor performance of ECFP6 

is subject to the individual datasets in this study. This also 

highlights the fact that sometimes simple set of descriptors 

could provide better results than complex and highly popu-

lated descriptors. Moreover, in other recent studies [49–51] 

different descriptor and fingerprint combinations did not 

demonstrate significant differences in performance.

Overall, the best classifiers performed well regardless of 

the type of data (toxicity endpoint or a general or specific 

in vitro endpoint), the type and number of descriptor sets 

used, or the degree of class imbalance. However, there were 

instances where a dataset related to in vivo toxicity (animal 

cholestasis) could not be successfully handled by the best 

classifiers. Finally, highly sophisticated meta-classifiers 

such as Stratified Bagging and MetaCost, that combine re-

sampling and a way to weight the two classes, performed in 

principle better than Bagging and ClassBalancer.

Conclusions

In this study, we compared the performance of seven differ-

ent meta-classifiers for their ability to handle imbalanced 

datasets. We demonstrated that, for all datasets used in the 

study, Stratified Bagging performed at least as good as cost-

sensitive approaches such as MetaCost and CostSensitive-

Classifier and in most cases outperformed them. Random 

Forest (as a standalone classifier) and Bagging were unable 

to address the imbalance issue. Interestingly, the choice of 

descriptors did not play a substantial role in ranking the 

performance of different classifiers. Thus, considering that 

Stratified Bagging can be directly used in combination with 

any machine-learning method without parameter optimiza-

tion, a general recommendation for handling imbalanced 

datasets is to wrap the modeling process in the stratified bag-

ging loop. However, one should also consider the computa-

tional cost, as extensive re-sampling can be computationally 

expensive. Therefore, a method that balances between the 
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complexity of the algorithm and computational cost would 

be an ideal choice to obtain optimal results.
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