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ABSTRACT 

 

The ability to accurately model and predict the ambient concentration of Particulate Matter (PM) is essential for 

effective air quality management and policies development. Various statistical approaches exist for modelling air pollutant 

levels. In this paper, several approaches including linear, non-linear, and machine learning methods are evaluated for the 

prediction of urban PM10 concentrations in the City of Makkah, Saudi Arabia. The models employed are Multiple Linear 

Regression Model (MLRM), Quantile Regression Model (QRM), Generalised Additive Model (GAM), and Boosted 

Regression Trees1-way (BRT1) and 2-way (BRT2). Several meteorological parameters and chemical species measured 

during 2012 are used as covariates in the models. Various statistical metrics, including the Mean Bias Error (MBE), Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), the fraction of prediction within a Factor of Two (FACT2), 

correlation coefficient (R), and Index of Agreement (IA) are calculated to compare the predictive performance of the 

models. Results show that both MLRM and QRM captured the mean PM10 levels. However, QRM topped the other 

models in capturing the variations in PM10 concentrations. Based on the values of error indices, QRM showed better 

performance in predicting hourly PM10 concentrations. Superiority over the other models is explained by the ability of 

QRM to model the contribution of covariates at different quantiles of the modelled variable (here PM10). In this way QRM 

provides a better approximation procedure compared to the other modelling approaches, which consider a single central 

tendency response to a set of independent variables. Numerous recent studies have used these modelling approaches, 

however this is the first study that compares their performance for predicting PM10 concentrations. 

 

Keywords: Performance evaluation; Multiple linear regression; Quantile regression model; Generalised additive model; 

Boosted regression trees. 

 

 

 

INTRODUCTION 

 

The main objectives of modelling air quality are to 

obtain air quality forecasts, quantify air pollutants temporal 

trends, increase scientific understanding of the underlying 

mechanisms for production and destruction of pollutants, 

and estimate potential air pollution related health effects 

(e.g., Baur et al., 2004). 

Many previous investigations have used statistical 

modelling techniques and machine learning methods to 

analyse and predict concentrations of Particulate Matter 

(PM) with an aerodynamic diameter of up to 10 µm (PM10). 

Aldrin and Haff (2005) used generalised additive modelling 

to relate traffic volumes, meteorological conditions, and 
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time-related variables to model five pollutants separately, 

one of which was PM10 concentrations. Aldrin and Haff 

(2005) concluded that the most important predictors for 

modelling PM10 were related to traffic volume, wind vector 

and relative humidity. Grivas and Chaloulakou (2006) used 

both Neural Networks (NN) and Multiple Linear Regression 

(MLR) models for predicting hourly PM10 concentrations. 

They related PM10 concentration to input variables, such as 

lagged PM10, wind conditions, day of the week, and hour 

of the day. More recently, Munir et al. (2013a) modelled 

PM10 concentrations with the aid of meteorological variables 

and traffic-related air pollutant concentrations, such as 

Carbon Monoxide (CO), Sulphur Dioxide (SO2), Nitric Oxide 

(NO), Nitrogen Dioxide (NO2), and lagged PM10, employing 

generalised additive models. They identified that 

meteorological variables, such as temperature and wind 

speed largely controlled PM10 concentrations. McKendry 

(2002) employed artificial neural networks relating PM10 and 

PM2.5 concentrations to meteorological variables, persistence, 

and co-pollutant data. Mckendry (2002) found that 
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meteorological variables (e.g., wind speed and temperature), 

persistence (which is likely to reflect the multiday synoptic 

time scales that modulate dispersion conditions), and co-

pollutants (e.g., Ozone (O3) and Nitrogen Oxide (NOx)) 

were useful for predicting PM. 

Furthermore, a number of studies have compared the 

performance of various modelling approaches to determine 

the best model for the prediction of PM10 in different 

locations. Kukkonen et al. (2003) compared the performance 

of NN, linear regression model, and a deterministic 

modelling system in the prediction of both PM10 and NO2 

concentrations in Helsinki. Chaloulakou et al. (2003), 

Papanastasiou et al. (2007), and Ul-Saufie et al. (2011), 

comparing MLR with NN models for the prediction of 

PM10, have concluded that non-linear NN method showed 

better performance. Alternatively, Pires et al. (2008) 

investigated the performance of five linear models: MLR, 

principal component regression, independent component 

regression, quantile regression, and partial least squares 

regression. The study showed that the dataset size was a 

critical parameter in the evaluation of models for predicting 

daily mean PM10 concentrations; and concluded that 

independent component regression was more efficient when 

using a smaller dataset, whereas partial least squares 

regression was more efficient when using a larger dataset. 

In addition, Westmoreland et al. (2007) assessed the 

performance of GAM with dispersion modelling approach 

(ADMS-Urban) and favoured the use of GAM, whereas 

Baur et al. (2004) compared the performance of Quantile 

Regression Model (QRM) with MLRM, where QRM 

significantly outperformed MLRM for predicting O3 

concentrations. Carslaw et al. (2009) suggested the use of 

Boosted Regression Trees (BRT) model for predicting NOx 

concentration at mixed source location. 

Despite the extensive research on comparing different 

modelling techniques (e.g., Kukkonen et al., 2003; 

Paschalidou et al., 2011; Ul-Saufie et al., 2011), no specific 

research has been devoted into comparing a number of 

linear and non-linear models for predicting PM10 levels. 

Authors (e.g., El-Assouli, 2010; Seroji, 2011; Seroji, 2012; 

Habeebullah, 2013; Munir et al., 2013a, b) have analysed 

the levels, composition, and toxicity of airborne PM in 

Makkah, particularly during the peak season of Hajj 

(Pilgrimage) when millions of Muslims visit Makkah. 

PM10, with the fine and coarse particle fractions combined, 

is a highly toxic traffic-related pollutant; in a number of 

studies (Jaecker-Voirol and Pelt, 2000; Pires et al., 2008; 

Pisoni and Volta, 2009; Pai et al., 2011; Habeebullah, 2013) 

both short-term and long-term exposures to PM10 have 

been identified to have negative consequences on public 

health. Health damages associated with exposure to PM10 

have urged decision makers to act accordingly, however 

this requires better understanding of the different factors 

influencing PM10 levels and accurate forecasting of its 

atmospheric concentrations, employing different modelling 

approaches. The comparison of the operational performance 

of different models pertinent to local conditions is required 

so that the model with better performance can be identified. 

This paper intends to compare the performance of five 

statistical models: MLR, GAM, QRM, and BRT with 1-

way (BRT1) and 2-way (BRT2) variable interaction to 

identify the best approach for modeling the atmospheric 

PM10 concentrations. This is the first study on this topic 

and the findings would be helpful for better air quality 

management in Makkah and elsewhere. 

 

METHODOLOGY 

 

Study Site and Data Used 

The City of Makkah, one of the large cities in the 

Kingdom of Saudi Arabia (KSA), exhibits special features 

in comparison to other cities in the world in terms of its 

location, its environment, and its significance to a significant 

number of the world population. Makkah is located to the 

West of Riyadh, the capital of KSA, and is surrounded by 

the Red Sea to the west. Characterised by its mountainous 

terrain and harsh topography, Makkah suffers from a major 

challenge limiting its expansion and leading to dense urban 

areas within. Nevertheless, due to the existence of Masjid 

Al Haram (the Holy Mosque), the City of Makkah with a 

population of 7,026,805 in 2010 (Central Department of 

Statistics and Information, 2010) holds large-scale religious 

events such as Hajj and Umrah which attract millions of 

visitors each year; in particular it attracted approximately 3 

million people in October 2012 (Central Department of 

Statistics and Information, 2012). This, inevitably, leads to 

extremely high traffic demand and unusual demand patterns 

in comparison to other normal cities and consequently exerts 

higher pressure on the environment and on air quality, in 

particular. 

The Hajj Research Institute (HRI) at Umm Al-Qura 

University runs several air quality and meteorology 

monitoring stations in Makkah, where several air pollutants 

and meteorological parameters are measured continuously. 

Hourly concentrations of CO, SO2, NO, NO2, and PM10 are 

amongst the pollutants’ parameters measured at the 

monitoring site, selected for this study. In addition, wind 

speed, wind direction, temperature, relative humidity, 

rainfall, and pressure are also continuously monitored at 

the Presidency of Meteorology and Environment (PME) 

monitoring site. 

The PME site is situated near the Holy mosque to its 

East. Al Masjid Al Haram road, Ar-Raqubah minor road, 

and King Abdul Aziz road are located 0.2 km east, 0.25 km 

northwest, and 0.45 km south of the monitoring site, 

respectively. In addition to the local road traffics, potential 

sources of particle emissions include the construction site 

to the northwest, and the two bus stations along Al Masjid 

Al Haram road. More detailed information about the site can 

be found in Munir et al. (2013a, b). Furthermore, Makkah 

being a part of a tropical arid country, the pollution levels 

are also affected by the harsh meteorological conditions 

with high temperatures, frequent sand storms, and very low 

rainfall. 

PM10 concentration levels are monitored using a Dust 

Beta-Attenuation Monitor (BAM 1020, supplied by Horiba), 

which provides each 30 minute concentration levels in the 

units of µg/m3. BAM consists of a paper band filter located 
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between a source of beta rays and a radiation detector, 

where a pump draws ambient air through the filter and the 

reduction in intensity of beta-radiation measured at the 

detector is proportional to the mass of particulate deposited 

on the filter. The sample flow is 16.7 L/m (adjustable within 

the range of 0 to 20 L/m) and not heated, no correction was 

thus applied. The temperature range is 0 to +50°C. Also, 

the filter tape is changed every two months; the inlet filter 

is cleaned every two months or after a rainfall event. The 

lower detection limit is about 1.4 µg/m3 with a range of 

1000 µg/m3. As for the calibration checks of the continuous 

monitoring system, automatic hourly zero/span adjustments 

are performed. 

A summary of the dataset (January to December, 2012) 

used in this paper is shown in Table 1. 

 

Selection of Predictor Variables 

Road transport is considered a major source of primary 

PM. In this study, data on traffic flow and speed is not 

available; therefore, CO and NOx are considered as surrogates 

for the traffic conditions variables (Pont and Fontan, 2000). 

On the other hand, monitored SO2 and NOx are included in 

the model as a source of secondary PM10 (Kim et al., 2000; 

Sawant et al., 2004). 

Since pressure is rather static and rainfall is zero 

throughout the study period (2012), therefore only four 

meteorological variables were included in the model, which 

are wind speed ( U ), wind direction (∅), Temperature (T), 

and Relative Humidity (RH). Wind speed and wind 

direction play a significant role in the transport, dilution, 

and re-suspension of soil particles as indicated in a number 

of studies such as Harrison et al. (1997) and Godish (1997), 

while temperature and relative humidity are reported to 

have a strong impact on PM10 concentration (Branis and 

Vetvicka, 2010; Barmpadimos et al., 2011). 

In addition to the above predictors, lag_PM10 (PM10 

concentration of the previous day) is also added as a 

covariate in the model, since fine and ultrafine particles 

stay in the atmosphere for long time and contribute to the 

measured concentrations hours or even days later (Baur et 

al., 2004; AQEG, 2005; Munir et al., 2013a). 

 

Data Processing and Model Evaluation 

The one year (2012) data are split into two subsets: 

training dataset and testing dataset. The training dataset is 

used for model development, whereas the testing dataset is 

used to validate the model. The testing dataset is thus an

independent set not used in the model development process. 

Specifically, data corresponding to one month (June) are 

used as the independent testing dataset, whereas the remaining 

11 months are used as the training dataset. All the results 

presented accordingly are obtained through the analysis of 

an independent data to the model development process and 

this ultimately provides the real forecasting ability of the 

models. 

The five models are developed using the training dataset 

and their predictive performance is assessed using the testing 

dataset. To conduct a thorough and insightful evaluation 

and comparison of the five different models, a range of 

statistic indicators is necessary. Hence, the predictive 

performance of the MLRM, GAM, QRM, BRT1, and 

BRT2 models are compared through the calculation of a 

selected number of statistical parameters, as suggested by 

Martins et al. (2009), Derwent et al. (2010), and Carslaw 

(2011). These are the Mean Bias Error (MBE), Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), 

the fraction of predictions within a Factor of two (FACT2), 

the Pearson correlation coefficient (R) and the Index of 

Agreement (IA). Equations for each of the metrics are 

provided in Table 2. While the MBE provides an indication 

of whether the predictions are over or under estimated, 

MAE, RMSE, and FACT2 provide a good indication of 

how close the modelled and observed values are (Martins et 

al., 2009; Carslaw, 2011). A negative MBE value indicates 

underestimation, whereas a positive MBE indicates an 

overestimation of the predicted PM10 concentrations. Higher 

MAE and RMSE values indicate higher error, which shows 

poorer agreement of the modelled and observed values. 

FACT2 values closer to one indicate closer match between 

observed and modelled values and thus indicate better model 

performance. The correlation coefficient provides a measure 

of deviation between modelled and observed values. 

Furthermore, a dimensionless index to illustrate the error 

amount is also needed and this is addressed by the IA 

parameter as suggested by different researchers, such as 

Chaloulakou et al. (2003) and Paschalidou et al. (2011). In 

addition to the abovementioned parameters, the Standard 

Deviation (SD) has also been used as a measure to check 

difference in the ability of models in capturing the variability 

of original data; therefore SD calculated for both measured 

and predicted data are compared. 

Furthermore, a non-parametric Wilcoxon Signed Rank 

Test is performed to test whether the difference in the mean 

values of the modelled and observed PM10 concentrations

 

Table 1. Data summary for key monitored variables, Makkah – 2012. 

Variables Mean Median 
Percentile Data Capture 

(%) 25th 75th 95th 

PM10 (µg/m3) 157.1 123.0 79.0 195.0 402.0 92.8% 

CO (mg/m3) 1.1 1.0 0.8 1.3 2.2 95.4% 

SO2 (µg/m3) 11.0 8.0 5.0 16.0 30.0 87.5% 

NOx (µg/m3) 42.6 33.0 21.0 52.0 107.0 98.9% 

Relative Humidity (%) 32.9 31.1 18.5 45.3 61.8 99.8% 

Temperature (°C) 31.6 32.0 27.1 35.9 40.4 99.8% 

Wind Speed (m/s) 1.2 1.1 0.8 1.5 2.0 99.8% 
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is significant. This test is normally used to avoid the 

assumption of normality of the data. PM10 concentration is not 

normally distributed and rather is positively (right) skewed 

as clearly indicated by the fact that mean (157.1 µg/m3) is 

significantly greater than the median (123.0 µg/m3) as shown 

in Table 1. The test allows us to study the differences in the 

mean values of the predictions in more details and thus allows 

us to make comparison between the predictive performances 

of the models, which is useful for determining the best 

model out of these five for predicting PM10 concentrations 

in Makkah. 

 

Model Development 

Multiple Linear Regression Model (MLRM)  

MLRM is probably the most widely used technique for 

the modelling of air pollution levels; however, the method 

has several limitations. Hao and Naiman (2007) and Ul-

Saufie et al. (2012) have explicitly explained its limitations 

in terms of its inability to extend the response to non-central 

locations of explanatory variables as well as its inability to 

meet the model assumptions, such as homoscedasticity. On 

the other hand, several authors have compared MLRM with 

other models and have concluded (e.g., Baur et al., 2004) 

that non-linear and learning machine methods outmatched 

the linear regression methods. Nevertheless, the method is still 

in use due to its simplicity and easiness. For modelling PM10, 

several authors have used linear statistical models and 

compared them with other potential models (e.g., Mckendry, 

2002; Chaloulakou et al., 2003; Grivas and Chaloulakou, 

2006). The dependent variable (here PM10) is obtained by 

additive associations of a number of explanatory/predictor 

variables. The measured dependent variable (Eq. (1)) and 

the predicted variable (Eq. (2)) can be expressed as given 

below: 
 

1

  
k

o i i

i

Y P P X 


     (1) 

 

1

 ˆ
k

o i i

i

Y P P X


    (2) 

 
where Y is the dependent variable, Xi is the ith independent 

variable. Pi s are the regression parameters which are 

calculated by minimising the sum of square errors through 

Eq. (3), k is the number of independent variables, and ε is 

the associated regression error (Martins et al., 2009). 
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1
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k
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i

P Y Y

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Based on the above, the MLRM model used in this study 

is expressed as follows: 
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CO SO NO Lag_PM U

T RH

oY P P P P P P

P P P 
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 (4) 

 
Generalised Additive Model  

GAM is a statistical modelling technique developed by 

Wahba (1990), and Hastie and Tibshirani (1990) as an 

extension of the Generalised Linear Models (GLM). The 

method has become quite popular since then and has been 

effectively applied in different research areas, such as 

ecology, aquatic sciences, medical sciences, and 

environmental sciences (Guisan et al., 2002). The method 

allows for non-parametric adjustments of the non-linear 

confounding effects of variables (Dominici et al., 2002). 

While Carslaw et al. (2007) and Westmoreland et al. (2007) 

used GAM for modelling the concentrations of various air 

pollutants, such as NO2 and NOx, Aldrin and Haff (2005), 

Barmpadimos et al. (2011), and Munir et al. (2013a) used 

GAM for modelling the concentration of PM10. 

GAMs extend traditional GLMs by replacing linear 

explanatory variables of the form 
1

k

i i iP X
  with 

 
1

k

i i if x
  where fi(xi) are unspecified nonparametric 

functions. The estimation procedure for a GAM requires 

iterative approximation to deduce the optimal estimates, 

unlike linear regression models, which are fitted by using 

the weighted least squares method (Wood, 2001). The 

additive model in a general form can be described as follows:  

 

Y = s1(X1) + s2(X2) + … + sn(Xn) (5) 

 

where Y is the response variable (PM10) and s୧ is the 

unspecified smoothing function which corresponds to an 

associated explanatory variable (Xi). Using this model, its 

simplest form has been considered where interaction 

between variables has not been accounted for. 

Based on the above, the GAM model used in this study 

is as follows: 
 

       
       

1 2 2 3 x 4 10

5 6 7 8

Y s CO s SO s NO s LagPM

s U s s T s RH

   

    
  (6) 

 
Quantile Regression Model 

QRM allows the covariates to have different contribution 

at different quantiles of the modelled variable distribution 

and is robust (insensitive) to departures from normality and 

to skewed tails. Readers are referred to Cade and Noon 

(2003) Koenker (2005), and Hao and Naiman (2007) for 

further details on QRM; and to Baur et al. (2004), Sousa et 

al. (2008), and Munir et al. (2012) for the applicability of 

QRM to ground-level O3concentrations. QRM has also 

been used by Carslaw et al. (2013) on emission data for the 

first time in order to explain the emission characteristics of 

petrol and diesel cars. Carslaw et al. (2013) explained the 

advantage of using this method in comparison to other 

regression methods which consider the mean response 

only. However, Ul-Saufie et al. (2012) have used QRM for 

modelling PM10 concentration and compared it performance 

with MLRM. Modelling a dependent variable (Y) against a 

set of independent variables, MLRM regression specifies 

the conditional mean function, whereas QRM specifies the 

conditional quantile function. 
 

(p) (p) (p) (p) (p)

0 1 1 2 2 n n iY β β (X ) β (X ) β (X ) ε       (7) 
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In Eq. (7) β0 represents the intercept, β1 to βn the slopes 

(gradients) of the covariates and ε୧ the error term. The p 

shows the pth quantile and its value lies between 0 and 1. 

Eq. (7) can have numerous quantiles and will require a 

separate equation for each quantile and therefore will produce 

numerous coefficients for each variable. This study adopts 

10 quantiles and therefore 10 equations will generate the 

same number of quantile regression coefficients (β1
0.1, β1

0.2, 

…, β1
0.9β1

0.99)  for each covariate. The equidistant quantiles 

make them easier to interpret, however they do not have to 

be at equal intervals (Hao and Naiman, 2007). 

Based on the above, the QRM model used in this study 

is as follows: 

 
(p) (p) (p) (p) (p)

0 1 2 2 3 x 4 10

(p) (p) (p) (p) (p)

5 6 7 8 2 i

Y β β CO β SO β NO β LagPM

β U β β T β RH ε

    

     
  (8) 

 

QRM makes several predictions, one for each quantile 

and therefore the metrics used for assessing the model 

performance can be calculated for each quantile. These 

metrics are called local metrics, e.g., local RMSE, and 

local MBE etc. The local metrics cannot be compared with 

the metrics estimated for the other models, as they have 

different nature and have different methods of calculation. 

Therefore, global metrics need to be estimated for QRM to 

take account of all quantiles and make them comparable 

with other models. To estimate global metrics for QRM, 

this study adopts the Amalgamated Quantile Regression 

Model (AQRM) technique suggested by Baur et al. (2004). 

However, Baur et al. (2004) study is limited to only 

coefficient of determination, whereas this study has extended 

the concept to several statistical metrics. The first step is to 

run QRM and determine quantile regression coefficients 

for all the quantiles used in the model. QRM will normally 

give numerous predictions according to the number of 

quantiles. To turn that into one global prediction, the dataset is 

divided into the same number of subsets as the number of 

quantiles and then the model for that respective quantile is 

used to predict PM10 concentration which is then re-

integrated in such a way that it corresponds to the observed 

concentrations in the exact order. This ultimately produces 

a global prediction which takes into account all quantiles. 

Boosted Regression Tree Model 

Classification and regression trees have offered new 

methods for analysis and prediction in a number of fields. 

BRT is one of them and is explored and applied mainly by 

ecologists (Cappo et al., 2005; Moisen et al., 2006; De’ath, 

2007; Elith et al., 2008). The method combines the strengths 

of two algorithms: regression trees models that relate a 

response to its predictors by recursive binary splits; and 

boosting method that combines many simple models to 

give improved predictive performance (Elith et al., 2008). 

Carslaw and Taylor (2009) have developed a BRT model 

for hourly concentrations of NOx close to the international 

Heathrow airport in order to understand the influence of 

different covariates and distinguish the complex interactions 

between different sources. BRT approach consists of many 

simpler models, which describe the relationship between the 

dependent and independent variables, while the boosting 

algorithm uses an iterative method for developing a final 

model, progressively adding trees to the method, and re-

weighting the data to address poor prediction cases by 

previous trees (Leathwick et al., 2006; Carslaw and Taylor, 

2009). Learning machine methods, especially the BRT can 

be time consuming, however what distinguishes BRT from 

previously explained models is the way it handles non-

numerical variables and the way it deals with interactions 

between variables; unlike the other models, interactions are 

not predetermined for the BRT method. 

Unlike the other models (described above), a number of 

parameters need to be specified before determining the BRT 

model that best reduces the error. These are the learning rate 

(lr), interaction depth (tc), and trees number (nt), as defined 

by Ridgeway (2012). The learning rate is a shrinkage 

parameter applied to each tree during the expansion process 

to shrink the contribution of each tree as it is added to the 

model, while the interaction depth is the maximum depth 

of variable interactions controlling the size of the trees. 

Generally, an interaction depth of 1 implies an additive 

model where each tree consists of a single node, 2 implies 

a model with up to 2-way interactions indicating the usage 

of two nodes in each tree and so on. Based on these two 

parameters, the tree number required for optimal prediction 

is determined (Elith et al., 2008) using one of the three known 

methods: Independent Test set (test); Out-of-Bag (OOB) 

estimation; and ݒ-fold cross validation (CV). In order to 

determine the optimal number of trees, model fit statistics, 

such as squared error are calculated using the CV method. 

The CV method has the advantage of using all the data for 

both training and validation by repeating the process v-times 

on different combinations of subsamples and calculating 

the mean performance of the v-models. It partitions the 

data into v-subsets where v-models are built based on the 

′v–1′ subsets and model performance is tested based on the 

last remaining subset (Ridgeway, 2007). This is repeated݊ݐ 
times until the input parameter for the number of trees is 

reached and the optimum number of trees with the minimal 

error is subsequently determined. BRT also allows the use 

of a random component to improve the prediction 

performance; this is achieved using a bag fraction of the 

training dataset, randomly selected to fit each consequent 

tree (Friedman, 2002). A Gaussian distribution is assumed 

and a bag fraction of 0.5 is used for both models. A 1-way 

BRT model uses an interaction depth value of 1, while a 2-

way BRT model uses 2 as an interaction depth to account 

for interactions between variables. As for the selection of lr 

and nt parameters, many simulations with different 

combination of lr (0.1 to 0.001) and nt (1,000 and 50,000) 

have been tested, especially for their least square errors, 

while considering that an lr between 0.01 and 0.001, and nt 

above 3,000 are recommended (Ridgeway, 2007). Using 

10-fold cross validation, the two models with the optimal 

parameters’ values are developed using the training data only 

(11 months data) and then applied on the testing dataset for 

measuring its predictive performance and comparing them 

with the other models. 

MLRM, GAM, QRM and 1-way and 2-way BRT models 
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are fitted in statistical software R programming language 

(R Development Core Team, 2012) and its packages ‘gbm’ 

or ‘generalised boosted machine’ package (Ridgeway, 2012), 

‘mgcv’ package (Wood, 2011) and the ‘quantreg’ package 

(Koenker, 2013) for BRT, GAM and QRM, respectively. 

No specialised package is required for fitting MLRM and 

rather is fitted by the core installation packages in R. 

 

RESULTS AND DISCUSSION 

 

Models Evaluation 

Using the testing dataset for each of the developed 

models PM10 concentrations were predicted, a summary of 

the observed and predicted PM10 concentrations for the 

month of June is presented in Fig. 1. The Boxplot summarises 

PM10 model predictions. While the bottom and top of the 

box show the 25th and 75th percentiles, respectively, the 

whiskers present the 1.5 times the inter-quartile range of 

the data. Generally, the Boxplot shows lowest variation 

between results from the QRM model and the observed 

PM10 concentrations. 

The mean observed PM10 concentration for the testing 

dataset is 224.3 µg/m3. All five models approach this value 

in a numerical range of 3.2 to 43.9 µg/m3. The difference 

between average predicted and observed values is referred 

to by MBE, indicating whether a model under-predicts or 

over-predicts the observations. QRM showed lowest 

difference between the mean predicted and observed values. 

QRM under-predicted the mean value by only 3.2 µg/m3, 

while the other models largely under predicted the mean 

observed values: MLRM by 31.1 µg/m3; 2-way BRT by 

41.1 µg/m3; GAM by 41.7 µg/m3; 1-way BRT by 43.9 µg/m3. 

The non-parametric Wilcoxon test has been performed to 

check if there is a significant difference between the observed 

and the modelled mean PM10 concentrations of each 

model. P-values lower than 0.01 are obtained for GAM, 

BRT1, and BRT2 models. This shows that these three 

models show a significant difference between mean values 

of the observed and modelled mean PM10 concentrations at 

1% significant level (p-value = 0.01). However, the test on 

both MLRM and QRM yielded p-values greater than 0.01, 

showing an insignificant difference between the observed 

and predicted PM10 concentration levels. 

SD (as illustrated in both the Boxplot and Table 2) for 

the observed PM10 concentrations (141.3 µg/m3) is greater 

than that for the predicted PM10 concentrations by all the 

models, except QRM (160.8 µg/m3), which has an SD 

higher than that of the observed values. Nevertheless, the 

absolute difference in SD is lowest for QRM (19 µg/m3), 

for the other models it ranges from 60 to73 µg/m3. 

The scatter plots of modelled versus observed values are 

displayed in Fig. 2. A 1:1 line is added on each graph to 

facilitate the comparison to the ideal model, and a factor of 

two scatter is indicated by the dashed 1:2 and 2:1 lines 

(Chaloulakou et al., 2003; Barmpadimos et al., 2011; 

Paschalidou et al., 2011). The Pearson correlation coefficients 

are also added on the graphs to measure the strength of the 

linear relationship between the observed and modelled 

values (Carslaw, 2011). The scatter plots give some insight 

into the model performance during high PM10 concentration 

levels. As shown in Fig. 2, all the models, except QRM seem 

to under-predict higher values. Fig. 3 plots both observed and 

modeled PM10 concentrations of each model versus time 

and depicts the under-prediction of PM10 at higher values. 

Table 2 summarises quantitatively the performance of 

the models in terms of MBE, MAE, RMSE, FACT2, and 

IA. As indicated by the error indices, QRM model seems to 

outclass the other linear and non-linear models. The MAE 

 

 

Fig. 1. Boxplot summarizing PM10 model predictions on the testing dataset; the bottom and top of the box show the 25th 

and 75th percentiles respectively, whiskers present the 1.5 times the interquartile range of the data, and notches on either 

side of the median gives an estimate of the 95% confidence interval of the median. SD is the standard deviation in µg/m3 

and µ is the mean in µg/m3. 



 
 

 

Sayegh et al., Aerosol and Air Quality Research, 14: 653–665, 2014 659

Table 2. Model evaluation parameters for each of the five models under study. 

Parameter GAM MLRM QRM BRT1 BRT2 

Mean Bias Error (MBE) –39.9 –29.3 –1.4 –43.9 –41.1 

Mean Absolute Error (MAE) 74.3 80.0 61.0 75.6 80.4 

Mean Absolute Percentage Error (MAPE - %) 33.1 35.7 27.2 33.7 35.8 

Root Mean Squared Error (RMSE) 120.1 123.8 95.6 121.1 125.6 

Relative RMSE - % 53.5 55.2 42.6 54.0 56.0 

FACT2 0.89 0.87 0.96 0.88 0.87 

Correlation Coefficient (R) 0.60 0.51 0.81 0.61 0.54 

Index of Agreement (IA) 0.65 0.61 0.89 0.66 0.66 

Standard Deviation (SD) 68.8 70.2 160.8 69.8 81.5 

* Parameter calculation equations: 
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for the QRM model is 27.2% of the arithmetic mean (224.3 

µg/m3) of the observed concentration, whereas that of the 

MLRM, GAM, 1-way BRT, and 2-way BRT models are 

35.6%, 33.1%, 33.7%, and 35.8%, respectively. This is 

referred to in Table 2 as the Mean Absolute Percentage 

Error (MAPE). This indicates that QRM has the lowest 

deviation relative to the mean value in comparison with 

other models. 

As a result of the power term, RMSE is more appropriate to 

illustrate the presence of significant under or over-

predictions. Similar to MAE results, QRM performs better 

in terms of RMSE. RMSE values (µg/m3) for MLRM, 

GAM, QRM, 1-way BRT, and 2-way BRT models are 124, 

120, 96, 121, and 126, respectively. The percentages of the 

RMSE over the mean value of the observations for the test 

set, which is referred to as Relative RMSE, are 55% for 

MLRM, 54% for GAM, 43% for QRM, 54% for the 1-way 

BRT, and 56% for the 2-way BRT model. In addition, 

percent difference between RMSE for QRM and the other 

models is calculated. RMSE of QRM is 23%, 20%, 21%, 

and 24% lower than that of MLRM, GAM, 1-way BRT 

model, and 2-way BRT model, respectively. This shows that 

QRM prediction is significantly better that the predictions 

of the other models.  

Scatter plots in Fig. 2 clearly show that most of the 

QRM predictions lie within a factor of two of the observed 

values. Calculation of FACT2 reveals that 96% of the 

QRM predictions are within a factor of two of the observed 

PM10 concentrations, whereas for the rest of the models 

FACT2 values ranged from 87% to 89%. 

Based on the Pearson correlation coefficient (R), QRM 

with R value of 0.81 topped the other models, exhibiting R 

values less than 0.61. Furthermore, in terms of the 

dimensionless index (IA) QRM has shown the same patterns 

of superiority over the other models. QRM has an IA value 

of 0.89, whereas MLRM, GAM, BRT1, and BRT2 have IA 

values of 0.61, 0.65, 0.66, and 0.66, respectively. 

It is important to mention that in 2012 the Hajj event 

took place during the last week in October, which was used 

in the training data and not in the testing data. However, 

due to effective traffic management, which include blocking 

of several roads near Al-Haram, and banning of outside-

traffic to enter the Makkah City during the Hajj (Park and 

Ride services were available), the PM levels in the month 
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Fig. 2. Observed versus modelled PM10 concentration for the validation period, month of June, by each of the models (a) 

GAM, (b) MLRM, (c) QRM, (d) 1-way BRT model, (e) 2-way BRT model. 

 

of October were not significantly higher than the other 

months. Therefore, the models, particularly QRM was able 

to capture the variation in PM10 caused by the Hajj season. 

Moreover, despite the fact that the 2-way BRT model 

accounts for interactions between independent variables, 

the predictive performance of the model did not show any 

improvement in comparison to the 1-way BRT model as 

shown by calculated statistical metrics. This shows that the 

main effects’ modelling of PM10 concentrations performs 

better compared to modelling with interaction, predetermined 

in this case. 

The three models: MLRM, GAM, and BRT (both 1-way 

and 2-way) have yielded very similar results in terms of 

statistical metrics that indicate their predictive performance. 

(a) (b)

(c) (d)

(e) 
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Fig. 3. Time series comparison of observed versus modelled PM10 concentration levels of (a) GAM, (b) MLRM, (c) QRM, 

(d) 1-way BRT, and (e) 2-way BRT on the testing dataset. 

(a)

(b)

(c)
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Fig. 3. (continued). 

 

The above results indicate that QRM, which estimates the 

conditional quantiles of the PM10 distribution, has outclassed 

the rest of the three models. First, while MLRM captures the 

mean value of PM10 concentration levels, only QRM captures 

both the mean value and variability of PM10 concentration 

levels. Chaloulakou et al. (2003) using NN and multiple 

regression models identified the capturing of the mean 

value as a typical observation for the MLRM model, since it 

attempts to approximate an average behavior and thus fails 

to capture the variations in the response variable. Also, 

BRT which applies boosting to regression problems attempts 

to estimate the mean of the response. According to Zheng 

(2012), this is considered a weakness compared to QRM 

since BRT does not use quantiles and this is why Quantile 

Boosted Regressions have been proposed by researchers 

which allows the application of boosting to estimate the 

response at different quantiles. 

Hao and Naiman (2007) and Ul-Saufie et al. (2012) 

explained that the ability of QRM to capture both the mean 

and variation of the response variable is related to its 

ability of examining the entire distribution of the variable 

rather than a single measure of the central tendency of its 

distribution. Cade and Noon (2003) have also stated that 

QRM estimates multiple rates of change or slopes from the 

minimum to the maximum response and thus provides a 

more complete picture of the relationships between response 

and explanatory variables, unlike other regression methods, 

such as MLRM, GAM, and BRT that consider only the mean 

response and ultimately yield a poor predictive performance. 

 

Comparison with Other Studies 

As stated earlier, although the models under considerations 

have been used for modelling different air pollutants, for 

modelling PM10 researchers have focused mainly on GAM 

(e.g., Aldrin and Haff, 2005; Barmpadimos et al., 2011; 

Munir et al., 2013a) and MLRM. Studies on the application 

of QRM for modelling PM10 concentrations are very rare 

(Ul-Saufie et al., 2012), while the application of BRT to 

(d)

(e)
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PM10 concentration does not exist yet. However, other 

models, such as NN have been applied for analysing PM10 

levels and their results are compared with different models, 

especially MLRM (Chaloulakou et al., 2003; Grivas and 

Chaloulakou, 2006; Ul-Saufie et al., 2011) and statistical 

parameters such correlation coefficients, bias errors, and 

indices of agreement were calculated. 

Although the above authors attempted to predict PM10 

concentrations, they had different forecast targets and, 

therefore, direct comparisons with this paper cannot be 

made. However, they are briefly stated here as a preliminary 

tool for comparison and in order to provide a comprehensive 

analysis of results. Barmpadimos et al. (2011) used GAM 

to study the influence of meteorology on PM10 and calculated 

FACT2 and R for each season of the year. Average value 

of 0.93 with a minimum of 0.8 was observed for the 

FACT2 and an average value of 0.7 was observed for the R 

coefficient. Aldrin and Haff (2005) estimated a GAM model 

on log-scale on PM10 concentrations for four different 

stations. The reported R coefficient varied between 0.69 

and 0.84. Munir et al. (2013a) have also developed a GAM 

model and compared the predicted and the observed PM10 

concentrations on an independent testing dataset. They 

have reported 0.72, 84, and 0.88 as the values of R 

coefficient, RMSE, and FACT2, respectively. The value of 

FACT2 was similar to this study, however the values of R 

and RMSE were different. 

Alternatively, Chaloulakou et al. (2003) have developed 

an MLRM and calculated various statistical metrics using 

an independent testing set of data. The reported values of 

MBE, MAE, RMSE, and R were –0.39, 14.07, 18.37, and 

0.77, respectively. They used lag_PM10 as one of the 

explanatory variables. 

 

CONCLUSION 

 

In this study, five different models were used for the 

prediction of hourly PM10 concentration levels in the City 

of Makkah, KSA. The predictors used in each of the five 

models are meteorological parameters, surrogate variables 

to traffic volumes, and lagged PM10 concentration. QRM 

clearly outmatched the rest of the models: MLRM, GAM, 

and the 1-way and 2-way BRTs. By investigating the 

comparative performance of the models, significant 

differences were observed between the mean observed and 

predicted PM10 concentrations for all the models, except 

MLRM and QRM. However, QRM topped the other 

models, including MLRM, in capturing the variability of 

PM10. Various statistical parameters and error indices, 

calculated to assess the performance of the models, showed 

that QRM was able to predict hourly PM10 concentrations 

with minimal errors. The difference between QRM and the 

other models is due to the approximation behavior. While the 

other models attempt to approximate an average behavior, 

QRM approximate is based on the number of quantiles 

adopted in the model. This suggests that the ability of 

QRM to capture the contributions of covariates at different 

quantiles produces better prediction, compared to the 

procedures where a single central tendency is considered.  

It should be noted that the models developed for PM10 

did not directly use traffic characteristics (traffic flow, speed 

and composition) as predictors, rather surrogate variables 

were used. Also, the comparison of models was limited to 

only one monitoring site in Makkah and for a short period 

of time. This can limit the performance and comparison of 

the models. Accordingly, further investigation using data 

from different monitoring sites over a longer period of time 

is suggested. Furthermore, traffic characteristics data (e.g., 

traffic flow, vehicles speed and fleet composition), which 

can be collected using inductive loops, are also recommended 

for future investigations to be directly included in the 

models. Traffic characteristics are required to estimate air 

pollutant emissions and may help in more accurate 

prediction of PM10 concentrations and therefore may further 

improve the model comparison in the City of Makkah. 

Alternatively, when using the best model for predicting 

future PM10 concentrations, it might require data on 

forecasted independent variables, such as weather conditions. 

Currently, weather forecasts are limited to international 

weather channels. This might add uncertainty to model the 

models’ outcomes. This is also highlighted in Paschalidou 

et al. (2011), who reported that the use of accurate weather 

forecast stations is important when the models are set to be 

used for future air quality predictions. 
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