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ABSTRACT

Parallel processing of symbolic computations on a message-passing multi-

processor presents one challenge: To effectively utilize the available processors, the

load must be distributed uniformly to all the processors. However, the structure of

these computations cannot be predicted in advance. So, static scheduling methods are

not applicable. In this paper, we compare the performance of two dynamic, distri-

buted load balancing methods with extensive simulation studies. The two schemes are

the Contracting Within a Neighborhood (CWN) scheme proposed by us, and the Gra-

dient Model proposed by Lin and Keller. We conclude that although simpler, the CWN

is significantly more effective at distributing the work than the Gradient model.
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1. Introduction

Processor utilization is a key factor that decides the speedup provided by a paral-

lel system. A thousand processor system can provide a speedup of 1000 only if all the

processors can be kept busy all the time. Ideally, we would like to divide the computa-

tion in P equal parts (where P is the number of processors), one for each processor. Of

course, it is usually impossible to identify 'P equal chunks' except for highly structured

computations. A potential alternative is to divide the computation into a large

number of medium granules. (Too small a grainsize would lead to undue overhead.)

Then, even if these granules are of unequal sizes, their large number would allow us to

distribute them equally. Many parallel evaluation schemes for functional programs,

logic programs, problem-solving etc., offer such a medium grain of parallelism.

The large pool of tasks resulting from a medium grain-size may lead to a

increased speedup only if there is an effective load distribution scheme that ensures

that no processors remain idle while there is work available in the system. On shared
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memory machines, the load balancing is relatively simple.

work in a central pool, and let the PEsdraw it from there.

We can maintain all the

The obvious problems of

contention can be resolved with clever schemes. Load distribution is a much more

complicated task on a message-passing multiprocessor. Nevertheless, message-passing

systems have their attractions. Many researchers believe them to be more scalable and

cost effective than shared memory systems.

What sort of load balancing system is needed for a message passing system? The

unpredictability of computation structures in general implies that it must be a

dynamic or run-time strategy, as opposed to a static or compile-time strategy. For

scalability, it must not be centralised at a few PEs, but distributed on all of them.

Also, it should not depend on global information. Each PE should only use the infor-

mation provided by its neighbors.

[11 this paper, we compare the performance of two such dynamic and distributed

load balancing schemes. One of them is 'contracting within a neighborhood (CWN), a

relatively simple strategy proposed by us [1]. The other is the Gradient Model (GM)

proposed by Lin and Keller [3]. In the next section we describe the two schemes and

their rationale. Section 3 describes the simulation set-up, and some preliminary

experiments to select the parameters for the main simulations in a fair manner. The

results of the simulation experiments are presented in Section 4. We conclude with

some ideas for future work.

2. The Competitors

The medium grain tasks found in most application domains have some interesting

features in common. When activated, such a task executes for a short time, and then

either completes, or starts some sub-tasks and awaits response from them. When it

receives a response, it repeats the same cycle. Usually, it is prohibitively expensive to

move a task from a PE to another after it has spawned sub-tasks. Both the strategies

we describe avoid that. They do differ as to when a task is distributed: in CWN, a
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task is scheduled on somePE as soon as it is created, whereas the Gradient Model

keepsthe newly created tasks on the sourcePE, and distributes them when required.

2.1. Contracting Within Neighborhood

This scheme is based on the fact that global communication - allowing communi-

cation between arbitrary pairs of PEs- is not scalable. In a system with global com-

munication, as the number of PEs is increased, a point is reached beyond which the

system is always communication bound. This is true for any interconnection scheme

which uses a fixed number of connections per PE. Luckily, in the tree structured com-

putation domains it is possible to avoid global communication as the communication is

almost exclusively between parent and child tasks. Therefore this scheme restricts a

child task to be within a fixed radius from its parent, i.e. within a fixed communica-

tion neighborhood. Also, in the interest of agility, this scheme sends every subgoal out

to another PE as soon as it is created. The algorithm followed by each PE is as follows:

Each PE maintains the load information about its immediate neighbors. This

information can in general be a combination of various factors that gauge the current

and future 'toad' on that PE. A simple measure may be simply the number of mes-

sages waiting to be processed by that PE. This information is obtained by broadcast-

ing a very short message to all the neighbors periodically, or as an optimization, piggy-

backing the load information 'word' with regular messages, whenever possible. Any

time a subgoal is created on a PE, it consults this load information, and sends the new

goal message to its least loaded neighbor. The me§sage also includes a count field that

says how many hops the message has travelled from the source. APE that receives

such a message checks to see if the hop count is equal to the allowed radius. If so, it

must keep the goal for processing. Otherwise it sends the goal to its least loaded

neighbor after adding 1 to the count. If a PE finds its own load is less than its least

loaded neighbors, it keeps the goal provided the message has travelled a stipulated

minimum hops already. Thus, a new subgoal travels along the steepest load gradient
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to a local minimum. A goal, once it is accepted by a PE, remains there, and is finally

executed by that PE. It cannot be re-sent elsewhere.

Because it follows the local load gradients, it is possible that this scheme does not

send a given subgoal to the least loaded PE in the neighborhood, because of the hor-

izon affect. However, looking for the least loaded PE in the neighborhood would be

expensive. The minimum hops are stipulated to alleviate this problem to some extent.

A source PE cannot keep a piece of work simply because it thinks it is the least loaded

among its neighbors. It must send it some distance to 'look over the horizon', and

then possibly get it back.

The scheme is naive on several counts. First, requiring every piece of work to be

contracted out to another PE seems excessive. Also, once a goal/'eaches its 'destination'

it remains stuck there, which removes opportunities for a correction as time goes on.

However, the strategy is meant as a starting point. The simulation studies should sug-

gest specific ways of improvement.

From the point of view of Simulation, it is important to remember that the

scheme has two parameters: the radius, i.e. the maximum distance a goal message is

allowed to travel, and the horizon, i.e. the minimum distance a goal message is

required to travel.

2.2. The Gradient Model

The gradient model is a more elaborate scheme than CWN. Whenever a subgoal is

generated, it is simply entered in the local queue. A separate, asynchronous process

exists for the load-balancing functions. This process wakes up periodically, and com-

putes the load on the PE as in CWN. Using two parameters, the low-water-mark and

high-water-mark, it decides the state of the node as follows. If the load is below the

low-water-mark, the state is idle. If the load is above the high-water-mark, the state

is abundant; Otherwise, it is neutral It then computes its proximit!r. An idle node has

a 0 proximity. For all other nodes, the proximity is one more than the smallest
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proximity among the immediate neighbors. If the calculated proximity is more than

network diameter, then it is set to (network diameter +1), to avoid unbounded

increase in proximity values. If the proximity so calculated is different than the old

value, then it is broadcast to all the neighbors. All the PEs initially assume that the

proximities of their neighbors are 0. After this, if the state were idle or neutral, the

process sleeps until the next interval. If the state is abundant, it sends a goal message

from the local queue to the neighbor with least proximity. Any PE that receives a goal

message from its neighbor just adds it to its queue. This may, of course, change its

state which will be noticed when the gradient process wakes up.

The proximity of a PE represents a guess at the shortest distance to an idle PE. It

is a 'guess' because by the time the information about an idle PE reaches another PE

via the update-and-broadcast-proximity sequence, the state of some PEs may have

changed. The proximity is a good example of how approximate global information can

be maintained using only local checks.

The rationale behind the gradient model is to keep work locally as far as possible,

and to send work out towards a PE that is in danger of being idle.

This strategy is parameterized by: the low-water-mark, the high-water-mark, and

the sleeping interval between two execution cycles of the gradient process.

3. The simulation set-up

The simulations were carried out on ORACLE, a multi-processor simulation system

we are developing. ORACLE is written in SIMSCRIPT, a discrete-event simulation

language with excellent statistical support. In addition to the events it supports the

process abstraction. Thus the code written for ORACLE looks the same as that for a

real multi-processor. It is not ideal for complex (recursive) programs or data struc-

tures, but we found the benefits outweighed this drawback. ORACLE has one process

for each user process running on a PE, and one process for each communication chan-

nel. Thus it models contention for the basic resources of a parallel system.



6

ORACLE accepts input specifications such as the number of PEs and their intercon-

nection scheme, the load balancing strategy to be used (from its repertoire of stra-

tegies), control strategy options, form and content of the output information required,

a program to execute and times to be charged for primitive operations.

ORACLE can provide statistics on a variety of performance aspects such as the

overall average PE utilization, average utilization of individual PEs, average and indivi-

dual utilizations of communication channels, the time to completion, and the time of

any output produced by the user program. It also provides a specially formatted out-

put th'at can be used to drive a graphics program to monitor load distribution. Here

the utilization of each PE is output at every sampling interval. This data is displayed

on the graphics device with a continuum of colors representing relative activity on

each PE. (red: busy,., blue: idle). We found this facility particularly useful for debug-

ging the load balancing strategies.

A point worth noting is that when we run a program on the simulation system,

we get the result of the program, in addition to the performance stastistics. In con-

trust, a trace driven simulation approach would be to carry out the computation in

advance, producing a trace, which will then be used by the simulation system to get

the performance figures. We found such an approach would not save much in terms of

simulation time. Another approach could be to use a statistical model of computation.

In absence of any uniform model of parallel computations, it was thought to be too

unreliable and ad-hoc an option. So we opted for executing specific computations

with well-understood structures.

Given the two schemes, we needed to select situations, or sample points at which

to compare them. The choices varied on many dimensions:

• The interconnection topologies.

• The number of processors.
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• The computation: structure and size.

• The communication to computation ratio.

We selected 2 interconnection topologies: the 2-dimensional grid (nearest neigh-

bor grid) with wrap-around connections and the double-lattice-mesh topologies. The

grid was used in some of the preliminary simulations of the gradient model by Lin [4].

The double-lattice-mesh (See Figure 1) is a bus-based topology that we have proposed

[2], and is therefore of some interest to us. We also decided to simulate systems with

25 to 400 PEs. Beyond 400 PBs, the time required for simulations was prohibitive.

Also, we feel that range should be sufficient to understand how the schemes will

behave when the size of the .system changes.

o

In general, the parallel computations may have arbitrary data-dependencies

among sub-tasks, and the inherent parallelism in the computation may wane and rise

as computation progresses. To be able to interpret the simulation results, and get an

understanding of how the load balancing schemes behave, we needed a predictable

computation, whose structure is easy to grasp. Then, there won't be ambiguities

about whether a certain feature that is seen in the simulation data is due to the nature

of the computation or due to the load-balancing scheme. We chose to use divide-

and-conquer, and naive-fibonacci programs for these reasons, and also because they

were simple to implement. The divide-and-conquer (abbreviated de) program was

used by Lin, and may be written as:

dc(M,N) *-- if M = N then M else dc(M,(M+N)/2) + de(1 + (M+N)/2, N)

The naive-fibonacci is the doubly recumive function to compute fibonacci numbers.

fib(M) *--- if M < 2 then M else fib(M-I) + fib(M-2)

It must be pointed out that we are not really interested in how to compute this func-

tions in parallel. There are much more efficient methods for computing them. We are

simply interested in the computation trees they yield. The dc computation provides a

well balanced tree, whereas the fibonacci yields a not-so-well-balanced tree. The
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inherent parallelism in both computation rises steadily and then falls steadily. In real

life computations, the parallelism may rise and fall in cycles. So the behaviour of the

schemes on these computations can be used to infer it in the general situation. Also,

observing them in the controlled situation will give us insights into how the schemes

behave.

We used 6 different computation sizes for each program. Fibonacci of 7, 9, 11,

13, 15 and 18, and the de computations of the same sizes, namely: dc(1,X) for X=21,

55, 144, 377, 987 and 4181.

As we wanted to focus on effectiveness of load distribution, we decided to isolate

the factor of communication load. We chose the ratio of communication to computa-

tion to be such that communi/:ation stagnation does not occur.

3.1. The optimization experiments

Recall that each of the schemes has a few parameters that have to be selected

(The water-marks for GM, and the radius for CWN, for example). In the interest of

fairness, the parameters must be chosen in such a way each scheme is working at its

best. We chose a few sample points in the space of planned experiments, and ran the

simulations for various combination of parameters. The winning combinations were

used for the comparison experiments. The parameters so chosen are shown in the

table below.

It is worth noting that the 20 units interval is fairly low, as the total execution

time for simulations ranged from 1000 to 23000 units. That means the gradient pro-

cess is running very frequently, which should be an asset to its performance. Also, we

assume a communication co-processor to handle the routing and load-balancing func-

tions. Without such a co-processor, the gradient model will suffer more, because it

needs to execute a more complex code and more frequently.



g

parameter for exp_iments on the for experiments on the

grid topologies lattice-meshes

CWN: radius 9 5

CWN: horizon 2 1

GM: high-water-mark 2 1

GM: low-water-mark 1 1

GM: interval between cycles: 20 units 20 units

Selected Parameters

Table 1

4. Simulation Results, and Interpretation

The choices of sample points mentioned above lead to 240 simulation runs (2

problem types * 6 problem sizes * 2 topology types * 5 topology sizes * 2 strategies).

The simulations were run on a VAX-750. Each run took between 15 minutes to 3

hours of time on the Vax.

Plots 1 through 10 show the performance of the two schemes on the divide-and-

conquer computations. Each plot depicts experiments done on a specific topology, for

one problem type. Thus Plot 1 shows the results of 6 dc computations of varying sizes,

running on a double-lattice-mesh with 400 (20x20) PEs. The Y-axis shows the average

PE utilization in percents. The X-axis is the problem-size in total number of goals

generated during the computation. The speedup can be computed by multiplying the

number of PEs by (average utilization percentage/100).

On the grid topologies, the CWN is a clear winner by substantial margins. On the

double lattice--meshes also CWN consistently performs better than the GM. The only

one case seen in these plots where CWN is outperformed by the GM occurs in plot 3,

while running dc(1,4181) on a DLM with 100 PEs.
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25 64 100 256 400 25 64 100 256

1.56 1.57 1.44 1.57 1.57 1.30 1.18 1.24 1.18
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1.56 1.56 1.79 i.92 1.92 1.09 1.12 1.06 1.11

1.60 1.92 1.83 1.71 1.71 1.09 1.08 1.09 1.04

1.58 2.14 2.03 2.56 2.56 1.21 1.14 1.04 1.05

1.74 1.72 2.18 3.03 3.09 1.24 1.20 0.87 1.09

1.46 1.47 1.44 1.47 1.47 1.41 1.46 1.51 1.46

1.37 1.33 1.37 1.33 1.33 1.17 1.51 1.35 1.51

1.39 1.48 1.38 1.48 1.48 1.25 1.25 1.40 1.32

1.28 1.72 1.34 1.65 1.65 1.17 1.16 I.II 1.12

1.38 1.89 1.98 2.09 2.09 1.17 1.21 1.09 1.06

1.36 1.42 2.27 2.91 2.82 1.30 1.27 0.96 1.18

Speedup of CWN over GM

Table 3
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A 10xl0 Double Lattice Mesh with bus-span -- 5

Figure I
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The Fibonacci plots are very similar, so we omit them from the plots. However,

the comparative figures from all the runs are shown in table 2. For each run, we show

the ratio of speed-ups obtained using CWN to that obtained using GM. In 118 out of

120 cases, the CWN is seen to be better. In 110 of those cases, the difference is

significant, i.e. more than 10%. On grids at times the CWN leads to thrice as much

speed as GM.

The DLM topologies have smaller diameters (4-5) compared to the grids (ranges

from 8 to 38). The superior performance of CWN on the grids leads us to conjecture

that it performs better than the GM on large systems, which of course tend to have

larger diameters.

To understand the operation of each method, we plot the utilizations during short

sampling intervals throughout the course of computation, for a few selected computa-

tions. We included the case where CWN was weakest. Plots 11 through 13 show the

utilization as time varies for the 100 PE double-lattice-mesh for 3 Fibonacci computa-

tions. Plots 14-1fi show similar plots for the 100 PE grid. The first thing we notice is

that the CWN has much faster 'rise-time' than GM: it spreads work quickly to all the

PEs at beginning. Plots 11 and 12 also show its pitfalls. Although it takes the system

close to 100_ utilization quickly, it cannot maintain the performance at that level.

The Gradient model manages to maintain 100_ when it reaches that level. This is

because of the re-distribution of work that the GM is capable of. For CWN, once a goal

is sent to a PE, it must be executed there, although the load conditions may change

after that. The only way it has to correct such imbalances is using newly created

goals, which limit its ability to supply work to idle processors. Another problem we

notice is the extended tail in plot 11. This suggests that only a few processors were

involved in the computation in that phase. We believe the reason for this to be our

current method for computing the load on a PE. We simply count all the messages

waiting to be processed as 'load'. This ignores potential future commitments,
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indicated by the count of the tasks that are waiting for messages.

The main problem with GMis that it is not agile enough. PEshoard work until

they are sure they are 'abundant'. On the grids, a stronger flattening is seenin, say,

plot 15. When about 40% of the PEshave receivedwork, most PEsthink there is not

sufficient work to distribute it to others, and so keep the new goals they generate,

which leads to loss of parallelism, and as a result not enough work gets generated.

This 'vicious cycle' is responsiblefor the flattening of the plot.

Examination of the detailed simulation output, not shown here, reveals another

potential problem with CWN. Typically, it requires thrice as much communication as

the GM. In the Gradient Model, the averagedistance travelled by a goal messageis

typically less than 1. A significant number of goals just stay at the PE they were

created 0n. On the grids, with CWNthe distance travelled is about 3. Table 3 shows

the distribution of distancestraveled by messagesfor Fibonacci of 18on a 10xl0 grid.

Hops 0 1 2 3 4 5 6 7 8 9 Average

CWN I 3979 1024 713 514 375 298 223 202 1032 3.15

GM 4068 2372 1045 527 195 84 43 20 4 3 0.92

Table 3: distribution of message distance.

The cost of sending every goal away is clearly seen. The sudden rise at 9 hops for

CWN is because 10 is the allowed radius. A message that has gone that far must stop

at that distance.

6. Conclusions and Future Work

Dynamic load balancing methods

unpredictably structured computations.

are necessary for parallel processing of

We compared the performance of two such

methods. The contracting within neighborhood method (CWN) is simpler: every time a

new goal is created, it is sent along the steepest load gradient towards a local

minimum within a specified radius from the source PE. The goal cannot be re-sent
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from that PE afterwards. The Gradient Model (GM) is more sophisticated. It 'attempts

to direct work from abundant PEs to those in danger of being idle. By default, the

work is kept locally, and sent out only when the presence of an idle node is inferred.

Unlike CWN, the GM requires a separate, asynchronous process to handle the load

balancing functions.

We conducted some simulation experiments to select the parameters for the stra-

tegies that will ensure they operate in their optimal ranges. We then ran an extensive

set of simulation experiments, each consisting of running a specific computation on a

specific topology. We compared the perfomance, i.e: the speed-ups achieved, by both

schemes. CWN was found to yield substantially larger speed-ups than GM in most

situations examined.

Although CWN performs better than GM in most experiments reported here, it still

has a large room for improvement. First, CWN does not allow a goal to be re-

distributed once it has been sent to another PE. As seen in Plots 1 and 2, CWN can

benefit from some re-distribution of work. There, the available work is just sufficient

to keep every PE busy, but as the CWN cannot re-shuffie work, some PEs remain idle.

However, this is not of much use when the work is more than sufficient or when it is

too little. So, a small, well-controlled (i.e. responsive to runtime conditions) re-

distribution component should be added to CWN. As seen from the communication

distances (Table 3), CWN certainly needs saturatia, eantral. When the system is run-

ning at 100% utilization, there is no need to send every goal out to other PEs. Detect-

ing such a situation and then keeping goals locally until the situation changes would

be worth investigating. Notice that both of these amount to incorporating the good

features of GM in CWN. Taking future commitments into account while computing the

load is another suggestion stemming from the observation about extended tail of com-

putation in Plot 11. Care must be taken not to lose the agility of CWN while modify-

ing it.
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A note of caution is in order. We chose a low communication to computation

ratio to ensure that communication stagnation does not interfere with the property we

were trying to measure: namely, the ability to distribute computation load effectively.

When the ratio is higher, CWN may lose some of its edge. Techniques mentioned in

the last paragraph will then be necessary.

In conclusion, although a better strategy, CWN still needs to be improved. Incor-

porating some of the features of the GM in CWN may overcome its drawbacks. Much

research is needed to decide how to do that, because the space of possible strategies is

very large.
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Appendix I

Simulation Experiments for the Hypercubes
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