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Abstract

We present the star formation histories (SFHs) of 20 faint M31 satellites (−12MV−6) that were measured by
modeling sub-horizontal branch depth color–magnitude diagrams constructed from Hubble Space Telescope (HST)

imaging. Reinforcing previous results, we find that virtually all galaxies quenched between 3 and 9Gyr ago, independent
of luminosity, with a notable concentration 3–6Gyr ago. This is in contrast to the Milky Way (MW) satellites, which are
generally either faint with ancient quenching times or luminous with recent (<3Gyr) quenching times. We suggest that
systematic differences in the quenching times of M31 and MW satellites may be a reflection of the varying accretion
histories of M31 and the MW. This result implies that the formation histories of low-mass satellites may not be broadly
representative of low-mass galaxies in general. Among the M31 satellite population we identify two distinct groups based
on their SFHs: one with exponentially declining SFHs (τ∼ 2Gyr) and one with rising SFHs with abrupt quenching. We
speculate how these two groups could be related to scenarios for a recent major merger involving M31. The Cycle 27
HST Treasury survey of M31 satellites will provide well-constrained ancient SFHs to go along with the quenching times
we measure here. The discovery and characterization of M31 satellites with MV−6 would help quantify the relative
contributions of reionization and environment to quenching of the lowest-mass satellites.

Unified Astronomy Thesaurus concepts: Local Group (929); Andromeda Galaxy (39); Dwarf spheroidal galaxies
(420); Stellar populations (1622)

1. Introduction

Milky Way (MW) satellite galaxies have long anchored our
understanding of low-mass galaxy formation. Their number
counts, spatial distributions, and structural properties are used
to constrain dark matter cosmology on small scales (e.g.,
Bullock & Boylan-Kolchin 2017; Simon 2019). Their star
formation histories (SFHs) and chemical content provide
insight into cosmic reionization and the baryonic processes
that uniquely shape low-mass galaxy evolution (e.g., Kirby
et al. 2011; Brown et al. 2014; Weisz et al. 2014). More
recently, their orbital histories, as measured by the Hubble

Space Telescope (HST) and Gaia, reveal the complex effects of
central galaxies on the evolution of low-mass satellites (e.g.,
Sohn et al. 2012; Fritz et al. 2018; Simon 2018).

At the same time, there is growing evidence that the MW
satellites may not be representative of low-mass satellites in
general. Compared to the MW, satellite systems throughout the
local universe show varying luminosity functions, stellar
populations, quenching properties, and spatial configurations,
often in excess of cosmic variance (e.g., McConnachie &
Irwin 2006; Brasseur et al. 2011; Tollerud et al. 2011; Geha et al.
2017; Müller et al. 2018; Pawlowski 2018; Smercina et al. 2018;
Pawlowski et al. 2019). Even in our nearest neighbor, M31,
there are hints that the internal (e.g., kinematics, stellar content;

Da Costa et al. 1996; Collins et al. 2010, 2014; Martin et al.
2017) and global (e.g., “plane of satellites”; Ibata et al. 2013;
Pawlowski 2018) properties of M31 and MW satellites are
different. Thus, it is unclear whether the fundamental insights
established in MW satellites are applicable to all low-mass
systems or stem from the specific accretion history of the MW.
In this Letter, we present the first uniform SFH measurements

of many faint M31 satellites. We use sub-horizontal branch (HB)

HST imaging, which has been presented in two previous papers
in this series (Martin et al. 2017; Weisz et al. 2019), to measure
their SFHs, and we compare our measurements to literature SFHs
of MW satellites. Relative to the MW satellites, the SFHs we
measure for M31 satellites have coarser age resolution, because
the M31 color–magnitude diagrams (CMDs) do not reach the
oldest main-sequence turnoff (MSTO). We will acquire the oldest
MSTO photometry for all known M31 satellites during HST

Cycle 27 as part of HST-GO-15902 (PI: D.Weisz), which will
strengthen the results we preview in this Letter.

2. The Data

The observations and data reduction used in this program are
described in detail in Martin et al. (2017). Here, we provide a
brief summary.
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Through HST-GO-13699 (PI: N. Martin), we observed 16
faint M31 satellites with the Advanced Camera for Surveys
(ACS) that had no previous HST imaging. Each galaxy was
observed for a single orbit with equal integration times in the
F606W and F814W filters. We added archival F606W and
F814W ACS data of comparable depth for AndXVIII (HST-
SNAP-13442; PI: B. Tully). We also added archival observa-
tions of AndXI, AndXII, and AndXIII (HST-GO-11084; PI:
D. Zucker), which were taken in F606W and F814W with the
Wide Field Planetary Camera 2 (WFPC2). In total, our sample
has 20 systems with −12MV−6, including 7 ultra-faint
dwarf galaxies (UFDs; MV>−7.7; Simon 2019).

For each galaxy, we performed point-spread function photo-
metry with DOLPHOT, a widely used package for reducing
observations of resolved stellar populations with HST-specific
modules (Dolphin 2000). We adopted the DOLPHOT parameters
recommended in Williams et al. (2014). The raw photometric
catalogs were culled to include only good stars as described in
Martin et al. (2017). We ran ∼105 artificial star tests for each
galaxy to quantify completeness and photometric uncertainties.
The 50% completeness limits for a typical galaxy in our sample
are F606W∼27.1 and F814W∼26.2.

Figure 1 illustrates the quality of our data by showing a Hess
diagram, i.e., a binned CMD, for AndXXI (MV=−9.2). The
CMD shows a clear red giant branch (RGB), red clump (RC),
and a predominantly red HB, as described in Martin et al.
(2017). The faint limit of the CMD is set to the 50%
completeness limit of F814W=26.3, which is ∼1.5 magni-
tudes fainter than the HB.

3. Methodology

We measure the SFHs of the 20 galaxies in our sample using
MATCH (Dolphin 2002), a software package that forward
models the CMD of a galaxy in order to measure its SFH as
described in Weisz et al. (2014). Here, we provide a brief
summary of the pertinent details.

For this analysis, we adopt a Kroupa initial mass function
(Kroupa 2001), a binary fraction of 0.35, HB-based distances for
the ACS data (Weisz et al. 2019), self-consistent tip of the RGB–
based distances for the WFPC2 data (Weisz et al. 2014), and
foreground extinction values from Schlafly & Finkbeiner (2011).

We fit each entire CMD with five different stellar
evolution libraries: Dartmouth (Dotter et al. 2008), Padova
(Girardi et al. 2010), PARSEC (Bressan et al. 2012), MIST

(Choi et al. 2016), and BaSTI (Hidalgo et al. 2018). We find
that for all CMDs analyzed in this Letter the BaSTI 2018
models provide the best overall fits in terms of visual
inspection of the residuals and through comparison of
likelihood ratios between models. Thus, we adopt the BaSTI
models for this Letter.
We adopt a metallicity grid that ranges from −2.3�

[M/H]�−0.5 with a resolution of 0.1 dex and an age grid
that ranges from - t9.00 log yr 10.151( ) with a resolution

of =-tlog yr 0.051( ) dex. We find that including ages younger

than =-tlog yr 9.01( ) did not change the SFHs (as these
galaxies have no young populations) but increased the
computational time. Thus, we simply exclude ages with

<-tlog yr 9.01( ) from our CMD modeling.
Finally, given that our CMDs do not reach the oldest MSTO, we

follow Weisz et al. (2011, 2014) and adopt a prior on the age–
metallicity relationship that requires the metallicity to increase
monotonically with time, with a modest dispersion allowed at each
age. This choice helps to mitigate some of the age–metallicity
degeneracy on the RGB and RC. We compute random (which
accounts for the finite number of stars on the CMD) and systematic
uncertainties (which are a proxy for uncertainties in the physics of
the underlying stellar models) as described in Weisz et al. (2014).
Finally, as detailed in Section 3.6 and Figure 6 of Weisz et al.
(2014), SFHs measured from CMDs that include the HB but do not
include the oldest MSTO have larger systematic uncertainties, but
are consistent with SFHs measured from the oldest MSTO-
depth CMDs.
Figure 1 illustrates the CMD modeling process. Panel (a)

shows the observed Hess diagram of AndXXI, and panel (b)
shows the best-fit model for the BaSTI stellar library. A visual
comparison of the model and data indicates good overall
agreement. Panel (c) is a residual significance diagram, i.e.,
(model–data)/model, which quantifies the level of (dis)
agreement. The majority of populated pixels are consistent
within ∼1σ, while only a handful of pixels are highly
discrepant (i.e., <3σ). There are no signs of poorly fit regions
of the CMD (e.g., large swaths of only black or white pixels),
which indicates that the model is a good fit to the data.
Panel (d) shows the cumulative SFH of AndXXI, i.e., the

fraction of total stellar mass formed prior to a given epoch. The
solid black line is the best-fit BaSTI solution, and the gray-shaded
band reflects the 68% confidence interval of the total (i.e.,
random plus systematic) uncertainties. The random uncertainties
are negligibly small compared to the systematic uncertainties.

Figure 1. Example BASTI-based SFH measurement using AndXXI. Panel (a) shows the observed Hess diagram. Panel (b) shows the best-fit model Hess diagram for
the BaSTI stellar evolution models. Panel (c) shows the residual significance diagram, i.e., (data–model)/model, in units of standard deviation. The lack of systematic
structures in panel (c), i.e., large contiguous regions of black or white points, indicates a good fit. Panel (d) shows the cumulative SFH, i.e., the fraction of stars formed
before a given epoch. The solid black line is the best-fit SFH for the BaSTI models, and the gray-shaded envelope is the total (random plus systematic) uncertainties
for the 68% confidence interval. The thin colored lines are the best-fit SFHs for different stellar evolution models. Overall, the shape of the SFH is similar between the
models, but the ages of SFH features can shift by ∼2Gyr owing to differences in the underlying stellar physics. The gray-shaded region captures the 1σ scatter in the
different SFHs reasonably well.
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The thin colored lines in panel (d) are the best-fit SFHs from
the other four stellar libraries. These SFHs are similar in shape
to the BaSTI solution, though particular features can be shifted
by up to ∼2 Gyr, which is due to differences in the underlying
stellar physics (e.g., Gallart et al. 2005). As intended, the
scatter in the SFHs from different models is well captured by
the gray-shaded error envelope.

The small amount of apparent star formation ∼1–3 Gyr ago
is likely due to a handful of blue stragglers that occupy similar
portions of the CMD as younger main-sequence stars (e.g.,
Monelli et al. 2012).

4. Results and Discussion

Figure 2 shows the cumulative SFHs of 20 faint M31
satellites plotted in order of increasing luminosity from upper
left to lower right. The solid black lines are the best-fit SFHs,
while the gray- and purple-shaded envelopes reflect the 68%
confidence intervals for the random and total (random plus
systematic) uncertainties, respectively. These values are
tabulated in Table 1.

This figure reveals both a diversity of SFHs among the M31
faint satellite population and some broad trends. For example,
galaxies with MV−8.5 tend to have formed 50% of
their stars prior to ∼10−12 Gyr ago, compared to 6–9Gyr ago
for more luminous systems. Interestingly, galaxies such as
AndXXIX, PerI, and LacI appear to have formed 10% of
their stellar mass prior to ∼10Gyr ago, which is unusually low

when put into context with our knowledge of Local Group (LG)

dwarf galaxy SFHs (e.g., Weisz et al. 2014; Gallart et al. 2015).
Another interesting feature is the quenching times. That is,

very few systems have either very early (<10–12 Gyr ago) or
very late (3 Gyr ago) quenching times. Instead, the vast

majority of the systems stopped forming stars ∼3–6 Gyr ago,

almost independent of luminosity.
The top panel of Figure 3 consolidates the SFHs of the 20

faint M31 satellites from this Letter and the 6 systems from

Skillman et al. (2017) into a more digestible form. Here, we

plot the quenching time13 (t90) versus the time at which 50% of
the total stellar mass formed (t50). Points are color-coded by
luminosity, point sizes are proportional to half-light radius, and
the error bars reflect the total (random plus systematic)
uncertainties. To guide the eye, we overplot black lines that
illustrate cases of a constant (solid) and exponentially declining
SFHs (τSFH= 10 Gyr, dashed lined; τSFH= 2 Gyr, dotted–
dashed lined).
This plot shows several interesting trends. First, although there

are several predominantly ancient galaxies (i.e., τ50>12Gyr),
there are very few systems with τ90>12Gyr. Instead, the

predominantly ancient systems have a range of t90 values that

extend from 3 to 10Gyr ago. This is particularly interesting in the
context of reionization, in which the prevailing view is that the

lowest-mass galaxies have star formation shutdown by reionization

Figure 2. Cumulative SFHs of 20 faint M31 satellites ordered by increasing luminosity. The black solid line is the best-fit BaSTI SFH. The gray- and purple-shaded
envelopes reflect the 68% confidence intervals for the random and total uncertainties, respectively. Fainter M31 satellites generally form the bulk of their stellar mass
at earlier time compared to the brighter systems. All galaxies appear to have quenching times between 3 and 9 Gyr ago.

13
Following the literature (e.g., Weisz et al. 2015; Skillman et al. 2017), we

adopt the time at which 90% of the total stellar mass formed as a proxy for the
quenching time to avoid ambiguity due to blue stragglers.
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in the very early universe (e.g., Bullock et al. 2000; Benson et al.

2002; Ricotti & Gnedin 2005). However, we caution against

overinterpretation of this finding, as (i) we lack a complete census

of UFDs around M31 and (ii) current SFHs are uncertain at the

oldest ages.
Second, there are no galaxies that quenched within the last

3 Gyr, i.e., τ90<3 Gyr ago. Instead, most galaxies have

quenching times concentrated at intermediate ages, with a

notable grouping at τ90∼3–6Gyr ago.
Third, there appears to be some degree of synchronicity in

the quenching of some systems. Most notably, the overdensity

of M31 satellites at τ50∼6–9 Gyr ago also all seem to have

τ90∼3–6 Gyr ago, with no clear trends in galaxy size or

luminosity, in agreement with the results of the representative

sample from Skillman et al. (2017).
Fourth, compared to the overplotted fiducial SFH models

(i.e., constant SFH, exponentially declining) there are two

distinct groups. Eight galaxies fall tightly on the τSFH=2 Gyr
track while 15 are to the right of the constant SFH track (i.e.,

they have rising SFHs). Only three galaxies exist between these

groups.
The age information provided by our SFHs may help model

the complex formation and accretion history of the M31 and its

satellites. The M31 halo hosts rich stellar substructures (e.g.,

streams, overdensities) that suggest an active history of mergers
in M31 (see McConnachie et al. 2018 and references therein)
and its stellar halo and outer disk have large populations of
intermediate-age stars, as revealed by the oldest MSTO-depth
CMD analysis (e.g., Brown et al. 2006; Bernard et al. 2015).
Several models have posited a major merger between M31 and
(what would have been) the third largest member of the LG
∼2–4 Gyr ago (e.g., D’Souza & Bell 2018; Hammer et al.
2018). These models can qualitatively explain some observed
features of M31, such as a global burst of star formation
2–4 Gyr ago (e.g., Bernard et al. 2015; Williams et al. 2017)
and the metal-rich inner halo. For example, D’Souza & Bell
(2018) hypothesize such an interaction between M31 and
M32p (the putative progenitor of M32) could explain the
metal-rich component of M31ʼs halo and the unusually
compact nature of M32. This model implies that M32p had a
~ ´M M2.5 1010  prior to its interaction with M31, making

it the third largest member of the LG just a few Gyr ago. One
implication of this scenario may be that the large number of
satellites with τ90∼3–6Gyr ago may have been environmen-
tally quenched during the merger. A second speculative angle
is that the dichotomy of SFHs in the top panel of Figure 3, i.e.,
rising SFHs versus exponentially declining, may be due to the
presence of two different satellite populations, i.e., one set from
M31, the other from M32p. Though speculative, we use these
examples to illustrate the potential of our data for deciphering
the formation history of M31ʼs halo and emphasize that more
rigorous analysis is clearly warranted.
We also consider the relationship between our SFHs and

substructures in the M31 system, e.g., the plane of satellites

Table 1

Summary Statistics for SFHs of Faint M31 Satellites

Name MV rh t50 t90
(mag) (pc) (Gyr ago) (Gyr ago)

(1) (2) (3) (4) (5)

CasIII −12.6 1640 -
+7.9 1.6
1.6

-
+4.1 1.5
2.5

LacI −11.5 967 -
+8.1 1.7
0.8

-
+4.9 1.7
1.7

CasII −11.2 275 -
+9.8 1.1
3.4

-
+7.2 3.4
2.8

PerI −10.2 384 -
+7.9 1.8
1.4

-
+4.0 1.6
2.6

AndXXIII −10.0 1277 -
+6.8 0.9
1.9

-
+5.1 2.8
1.5

AndXXV −9.3 679 -
+8.7 1.1
2.8

-
+5.8 1.3
2.6

AndXXI −9.2 1033 -
+8.3 1.9
1.2

-
+5.8 2.5
0.9

AndXVIII −9.2 262 -
+8.5 1.6
2.0

-
+4.6 2.1
1.7

AndIX −9.0 444 -
+7.2 0.3
2.5

-
+5.1 2.0
1.8

AndXIV −8.6 379 -
+8.7 0.4
4.5

-
+4.8 0.7
5.2

AndXXIX −8.5 397 -
+7.6 0.7
3.1

-
+5.2 1.2
2.2

AndXVII −8.2 339 -
+13.2 0.3
0.0

-
+10.5 5.0
2.1

AndXXIV −7.9 579 -
+12.9 3.3
0.3

-
+5.4 3.1
4.4

AndX −7.5 239 -
+9.5 0.2
3.6

-
+6.5 2.1
4.8

AndXII −7.0 420 -
+12.9 6.3
0.3

-
+3.4 0.2
2.6

AndXXII −6.7 253 -
+11.5 0.8
2.0

-
+6.8 2.5
5.8

AndXX −6.7 110 -
+10.2 0.9
2.6

-
+6.9 2.1
4.6

AndXIII −6.5 130 -
+9.1 0.4
4.1

-
+6.5 0.1
3.5

AndXI −6.3 120 -
+13.2 0.3
0.0

-
+7.4 1.4
2.4

AndXXVI −6.1 228 -
+12.9 0.3
0.3

-
+9.1 6.0
2.9

AndII −12.6 965 -
+11.5 2.1
0.8

-
+6.3 0.6
0.5

AndI −12.0 815 -
+12.6 3.9
0.3

-
+7.4 0.7
0.9

AndIII −10.1 405 -
+11.7 1.3
1.1

-
+8.7 0.6
1.5

AndXXVIII −8.8 265 -
+12.6 0.8
0.3

-
+7.6 0.3
1.7

AndXV −8.4 230 -
+12.9 0.9
0.3

-
+9.3 0.8
3.3

AndXVI −7.5 130 -
+9.8 1.1
1.4

-
+5.9 0.6
0.4

Note. Values of t50 and t90 are from the best-fit SFHs measured in this Letter.

Error bars are the 68% confidence intervals for the total uncertainties (i.e.,

random plus systematic). Values for the galaxies below the horizontal lines are

taken directly from Skillman et al. (2017).

Figure 3. Lookback time (Gyr ago) at which 50% of the stellar mass formed
(t50) vs. the time at which 90% of the stellar mass formed (t90), i.e., the
quenching time. The top panel includes the 20 M31 satellites from this Letter
and 6 from Skillman et al. (2017). Points are color-coded by luminosity and
their relative sizes reflect their half-light radii. The gray point indicates a size of
500pc. The black lines illustrate a constant and exponentially declining SFHs.
The bottom panels shows results from literature SFHs of MW satellites. The
area enclosed by the blue dotted line contains half the M31 sample, but no MW
satellites. The smaller uncertainties for the Skillman et al. (2017) M31 dSphs
are indicative of what can be expected from the forthcoming Cycle 27
observations.
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from Ibata et al. (2013). We find no clear evidence for a
correlation with membership in structures identified in Ibata
et al. (2013) and Santos-Santos et al. (2019). However, given
the large uncertainties and unclear theoretical expectations
between substructures and SFHs, the lack of a clear correlation
is challenging to interpret.

Figure 3 also summarizes differences in the formation
histories of M31 and MW satellites. In the bottom panel, we
plot t90 versus t50 for the MW satellites using literature SFHs
(e.g., Brown et al. 2014; Weisz et al. 2015) and global
properties (e.g., luminosity, size; McConnachie 2012).

It is striking that the M31 and MW satellite populations do
not share many similar trends. The M31 satellites fill out
intermediate values of t50 and t90, i.e., 6t5012 Gyr ago
and 3t906 Gyr ago (the dotted blue box in Figure 3,
whereas there are essentially no MW satellites in that range. In
terms of quenching, the MW satellites Fornax, Carina, and
Leo I (galaxies located in the upper right region of the lower
panel) all ceased star formation within the most recent
∼1–3 Gyr, whereas none of the M31 satellites did. The faintest
MW satellites (MV−7) all quenched 12 Gyr ago, pre-
sumably due to reionization (e.g., Brown et al. 2014), but some
of the comparably faint M31 satellites appear to have more
extended SFHs. This may indicate that the evolution of the
satellites are coupled to the accretion history of the host galaxy.
By extension, it may be that the MW satellites do not cover the
full range of intrinsic formation histories of low-mass galaxies.

There are several caveats with the present analysis. First,
while SFHs from MW satellites are all measured from CMDs
that reach the oldest MSTO, our new M31 data are much
shallower. Consequently, we are left with large uncertainties
that may hide various trends in the data. Moreover, our SFHs
are based primarily on the HB morphology, which is not as
well an understood phase of stellar evolution as the MSTO
(e.g., Gallart et al. 2005). However, we note that comparisons
of SFHs measured from different depths (i.e., HB versus oldest
MSTO) generally show good agreement (e.g., Weisz et al.
2014) as previously described. We urge appropriate caution
against overinterpreting this generation of M31 SFHs,
particularly at ancient epochs. Second, there are various
selection effects that we have not explicitly considered. One
is the size of the HST field of view relative to the size of a
galaxy. In some cases, this can lead to ∼1Gyr biases in the
measured SFH relative to the true global SFH (e.g., Graus et al.
2019). Another is the lack of many known UFDs in the M31
ecosystem. Detecting faint systems is quite challenging at the
distance of M31, given the paucity of bright stars and the high
level of contamination.

Despite these challenges, we are optimistic about prospects
of placing the M31 satellites onto equal observational footing
with their MW counterparts. The 244 orbit Cycle 27 HST

Treasury program (HST-GO-15902; PI: D. Weisz) will obtain
MSTO-depth imaging across the entire M31 satellite system,
which will significantly reduce the uncertainties on the SFHs
and establish a first epoch for proper motion measurements.

In our view, among the most important next steps for M31
satellites is to identify UFDs around M31. If UFDs around
M31 are found to have substantially extended SFHs, then our
picture of how reionization affects low-mass galaxy formation,
halo occupation, etc., may fundamentally change. Finding and
characterizing UFDs around M31 requires dedicated imaging
and spectroscopic efforts, as well as the power of HST and/or

the James Webb Space Telescope for measuring their star
formation and orbital histories.
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