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Abstract:  This paper compares the performance of a decentralized market with
that of a dealership market when traders have differential information.  Trade
occurs as a result of equilibrium actions in a Bayesian game, where uncertainty is
captured by a finite state space and information is represented by partitions on this
space.  In the benchmark case of trade with common knowledge of endowments,
the two mechanisms deliver virtually identical outcomes.  However, with
differential information, the dealership market has strictly higher trading volume,
and yields an efficient post-trade allocation in most states.  In contrast, the
decentralized market suffers from suboptimal trading volume.  The reason for this
poor performance is the vulnerability of the decentralized market to higher order
uncertainty concerning the fundamentals of the market.  Traders may know that
mutually beneficial trade is feasible, and perhaps know that they know, and yet a
failure of common knowledge that this is so precludes efficient trade.  The
dealership market is robust to this type of uncertainty.

* I would like to record my debt to Stephen Morris for shaping my views on the issues raised here.  Ian Jewitt,
as managing editor, and three referees guided this paper through several revisions, and I am grateful to them
for their perseverance.  I am especially grateful to one of the referees for pointing to the importance of limit
orders in modifying the results reported here.  I have gained from the comments of Helmut Bester, Katie
Graddy, Ruben Lee, Ailsa Roell, Daniel Seidmann, Peter Sinclair, John Vickers and seminar participants at¨
Tilburg, Newcastle, CORE, Cambridge, IFS, Southampton and the 1994 European Summer Symposium in
Financial Markets at the Studienzentrum Gerzensee.  An earlier version of this paper was circulated under the
title, “The Volume of Trade in Auction and Dealership Markets with Differential Information".



� �1

1. Introduction

  This paper is concerned with how trading systems cope with differential information

among traders.  Traditionally, analysis of trade with differential information has been

underpinned by the assumption of price-taking behaviour, beginning with Radner’s (1968)

analysis of competitive equilibrium with differential information, developing into the now

familiar and standard notion of rational expectations equilibrium (Radner (1979), Allen

(1981, 1982), Jordan (1982)).  This concept has set the standard in the study of differential

information, and has been the mainstay of applied research, especially after the introduction

of the notion of ‘noisy’ rational expectations (Grossman and Stiglitz (1980), Hellwig

(1980)).

  And yet, in spite of its pre-eminent place in applied research, comparatively little is known

in terms of the trading institutions which lie behind the analysis.  For instance, fully

revealing rational expectations equilibrium may involve demand functions which are

independent of price, and as such is difficult to view as the outcome of a game in which

traders submit demand functions.  ‘Noisy’ rational expectations equilibrium is not prone to

this particular weakness, but invites other questions.  Dubey, Geanakoplos and Shubik

(1987) note that games where traders submit demand functions do not specify a unique

outcome when there are several market clearing prices, leading to possibly perverse

situations where there is no continuous mechanism which can implement the REE

correspondence.  The growing literature on market microstructure has been motivated

partly by the perception of this gap between allocations and institutions, although the

development of this literature has followed rather different lines, which is not always well-

suited for the analysis of differential information when the traders’ information cannot be

ordered.

  The point of departure of this paper is the trading institutions themselves.  Rather than

starting with post-trade allocations and asking which trading institutions implement them,

we will begin by describing the institutions themselves, and comparing the allocations

which they bring about in equilibrium.  The institutions in this paper are extremely simple
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and stylized, and are designed to accentuate the differences between a dealership market

and a decentralized market.  In the former, some of the traders are designated as price-

setters, who act in anticipation of the buyers’ actions.  In the latter, traders play a Shapley-

Shubik (1977) market game in which they submit, simultaneously, quantity orders to an

auctioneer, who then sets price to clear the market .1

  In comparing these institutions, we will focus on one consequence of differential

information:  namely, how trading institutions fare in the face of higher order uncertainty.

We envisage scenarios where all traders know that mutually beneficial trade is feasible, and

perhaps know that they all know it, and yet there is a failure of  thatcommonknowledge

this is the case.  Failures of common knowledge will be the rule rather than the exception in

economies with differential information, and yet answers to such questions may elude those

working with very general and complex models motivated by other questions.

To see why a failure of common knowledge may be important, it is instructive to

contrast the role of uncertainty in strategic situations from that in single person decision

problems.  In a single person decision problem, payoffs are determined by one’s action and

the state of the world.  When a decision maker receives a message which rules out some

states, this information can be utilized directly by disregarding these states in one’s

deliberations.  However, the same is not true in strategic situations in which the payoff of

an agent depends on the actions of other agents, as well as the state of the world.  Since my

payoff depends on your actions and your actions are motivated by your beliefs, I care about

the range of possible beliefs you may hold.  So, when I receive a message which rules out

some states of the world, it may not be possible to disregard these states in my

deliberations, since some of these states may carry information concerning  beliefs.your

Furthermore, your beliefs at these neighbouring states may depend on your beliefs

concerning  beliefs at a further set of states.  The reasoning does not stop here.  Unlessmy

there is some feature of the situation which curtails this sequence of iterated beliefs, higher

1 The Shapley-Shubik market game may not be a good representation of markets in which traders have access
to general limit orders.  I am grateful to a referee for a detailed discussion of this issue, and of possible
avenues for future research.
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order beliefs of all orders will be relevant for my decision now.  Thus, in contrast to the

single person decision problem, I may be forced to take into consideration states which are

known not to have occurred.

This last observation is not, of course, original to this paper.  Rubinstein (1989) and

Monderer and Samet (1989) are early expositions of the theme, and Carlsson and van

Damme (1993), Sorin (1993), and Morris, Rob and Shin (1995), have proposed criteria for

deciding when such higher order uncertainty may impinge on equilibrium for  games,# ô #

or for two player games with finite action sets.  Rather, the main contribution of this paper

is to offer a set of tools which may be employed in analysing the effects of differential

information in more conventional market settings where there is price-mediated trade

among many traders.

When unrealized states exercise an influence on the equilibrium allocation, there are

unavoidable welfare consequences.  Since the optimality or otherwise of the final

allocation hinges on what the  are (in terms of preferences and endowments),fundamentals

a well-functioning trading system is one which ensures that post-trade allocations are

determined in the appropriate way in relation to the fundamentals.  However, when

unrealized states exert an influence on the final allocation, this link from fundamentals to

the final outcome is subject to interference.  The mark of a well-functioning trading system

is one which minimizes such interference, and which ensures that the final allocation is as

close as possible to that justified by the fundamentals.  In contrast, a poorly performing

trading system is unable to insulate the equilibrium outcome from the influence of

unrealized states.  This, in a nutshell, is the theme of this paper.

  In order to isolate the key effects, we conduct the analysis in three distinct steps.  We first

set the stage by describing the fundamentals of an economy with two goods.  This allows us

to say which allocations are efficient given the fundamentals, and gives us a welfare

benchmark against which we may judge the performance of any trading institution.
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  We then introduce two distinct Bayesian games, whose contrasting rules reflect the

contrast between a dealership market and a decentralized, order-driven market.  In a

preliminary discussion, it is shown that the two institutions deliver virtually identical

outcomes when there is no differential information.  However, with the introduction of

differential information, the performance of the two institutions diverge sharply.  The

dealership market has strictly higher trading volume, and delivers the Pareto efficient

allocation in most states.  In contrast, the decentralized market (employing the Shapley-

Shubik rules) suffers from low trading volume, and the post-trade allocation is bounded

away from the efficient allocation everywhere on the state space.  Moreover, the extent to

which the trading volume in the decentralized market falls below the efficient level can be

large, depending on a parameter which captures the scope for mutually beneficial trade.

The apparent fragility of the Shapley-Shubik market to departures from common

knowledge can be traced to the large effect of unrealized states on the equilibrium

allocation.

  The juxtaposition of a decentralized market with that of a dealership market has a parallel

in the debate in the literature on the market microstructure of financial markets (for

example, Madhavan (1992), Pagano and Roell (1992a, 1992b, 1993) and Biais (1993)).¨

However, trading rules in financial markets are considerably more sophisticated than those

examined in this paper, and the analysis offered here ought to be viewed as preliminary

observations in a larger research programme whose ultimate goal is to set out more

systematically the welfare consequences of alternative trading arrangements when traders

face differential information.  For our part, let us begin by describing the fundamentals

underlying our markets.

2. The Model

  Our model is an account of trade between two tribes.  One tribe lives by the sea, the other

in the mountains.  Both tribes grow and consume rice.  However, the coastal tribe has been

open to the influence of other cultures, and has acquired a taste for rice pudding.  Indeed,

members of the coastal tribe regard rice and rice pudding as perfect substitutes.  Rice
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pudding is produced by cooking rice in yaks’ milk.  Unfortunately for the coastal tribe, yaks

find the coastal climate inhospitable so that rice pudding cannot be produced on the coast.

However, yaks are plentiful in the mountains where the mountain tribe lives.  Members of

the mountain tribe place zero value on the consumption of rice pudding, but they welcome

the opportunity to trade rice pudding for rice.

  There are  rice growers in the coastal tribe and  rice growers in the mountain tribe,8 8

where .  Each rice grower in the mountain tribe has access to a technology which8 � #

converts rice into rice pudding.  If we denote the quantity of rice by  and of rice puddingB

by , then the cost (in units of rice) of producing  units of rice pudding is given by :C C

B é C ¶ Ç" " (2.1)

where .  The utility function of a mountain rice grower is  while the" � " ? ¸BÇ C¹ é BÇQ

utility function of a coastal rice grower is .  The scope for trade arises? ¸BÇ C¹ é B � CG

from the fact that the coastal growers place a value of 1 on rice pudding (in terms of rice)

while the marginal cost for a mountain grower of producing rice pudding is less than one,

for .C � "

  The rice harvests in the two regions do not suffer from much variability.  The crucial

factor in the rice harvest in both regions is whether there is any rain in the early growing

season.  The early growing season lasts for exactly  days.  If there is no rain during thisR

period, the rice harvest fails, and yields a harvest of zero.  If, however, there are one or

more days of rain during this period, the rice harvest yields one unit of rice for every

grower in that region.  Moreover, the geographical proximity of the two regions means that

the number of days of rain in the two regions are highly correlated.  The probability of there

being  days of rain on the coast and  days of rain in the mountains is zero unless  or; < ; é <

; é < � ".  Furthermore, the probability distribution is uniform so that if we denote by

prob  the probability of there being  days of rain on the coast and  days of rain in the¸;Ç <¹ ; <

mountains, we have :

prob (2.2)
 0                      otherwise

1        if     or  
¸;Ç <¹ é

¶¸#R�"¹ ; é < ; é < � "

�
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where  and  range over .  Each tribe only observes the number of days of; < ¾!Ç "Ç #ÇÊÇR¿

rain in its own region, and must make inferences concerning the rainfall (and hence the

harvest) of the other tribe from this distribution.

  Having described the preferences, endowments and information of the traders, we now

describe two alternative trading mechanisms.  The first is an order-driven market in the

manner of Shapley and Shubik (1977) in which traders submit quantities to an auctioneer,

who then sets the price to equate demand and supply.  The second is a dealership market in

which the sellers post prices in anticipation of buyers’ demands.

Decentralized Market.  Every year after the rice harvest, the two tribes have an opportunity

to trade rice pudding for rice on a specified day.  On the day before the market day, all rice

growers from both regions take an action.  The mountain rice grower decides how much

rice pudding should be produced and taken to the market.  In the meanwhile, every coastal

grower submits a bid to an auctioneer for rice pudding.  The coastal grower submits a bid

by putting up a quantity of rice to be exchanged for rice pudding.  The task of the

auctioneer is to set the price of rice pudding so as to equate demand and supply.  Denote by

= 3 .3 3 the amount of rice pudding supplied by the th mountain grower, and denote by  the

amount of rice put up for exchange by the th coastal grower.  Given the vector of actions3

¸. Ç . ÇÊÇ . Ç = Ç = ÇÊÇ = ¹" # 8 " # 8 , the allocation rule followed by the auctioneer on the day of

the market is as follows.  If  and , the auctioneer sets the price of rice! !
4é" 4é"

8 8

4 4= � ! . � !

pudding (in units of rice) to be :

: é . ¶ =! !
4é" 4é"

8 8

4 4. (2.3)

Then, the th seller (mountain grower) gets  units of rice in exchange for  units of rice3 := =3 3

pudding, and the th buyer (coastal grower) gets  units of rice pudding in exchange for3 . ¶:3

. = é ! . é !3 4 44é" 4é"
8 8 units of rice.  However, if either  or , then no trade takes place,! !

in which case all buyers consume their initial endowment of rice while the th seller3

consumes his initial endowment of rice minus the amount sunk in the production of rice

pudding ( .= ¶ ¹3
"
"
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  Given this allocation rule, we can describe the order-driven market as an extensive form

game.  The game has three stages.  In the first stage, Nature chooses the rainfall in the two

regions according to the probability distribution given by (2.2).  In the second stage, all

traders observe their own rainfall and form beliefs on the rainfall (and hence the harvest) of

their trading partners.  Each trader then takes an action (  by the seller,  by the buyer).  In= .3 3

the third stage, the price of rice pudding is set to clear the market, and all players receive

their allocations.  The game ends when all traders consume their allocations.  The payoff to

consumption for the coastal farmer is given by the sum of the quantities of rice and rice

pudding, while the payoff of the mountain farmer is just the quantity of rice.

  A strategy for the th buyer (coastal farmer) in this game is a rule which sets  as a3 .3

function of the number of days of rain on the coast.  A strategy for the th seller is a rule3

which sets  as a function of the number of days of rain in the mountains.  An equilibrium=3

of the order-driven market is a vector of strategies (one for each trader) such that the action

prescribed by a player’s strategy given his signal maximizes that player’s conditional

expected payoff from consumption given that all other traders follow their respective rules.

This is the standard notion of Bayesian equilibrium, due to Harsanyi (1967).

Dealership Market.  In the dealership market, the producers of rice pudding post prices.  On

the day before market day, each seller decides how much rice pudding should be produced

out of his endowment of rice, and decides on the price to be posted on the following day.

On market day, each buyer is allocated a place in a queue.  The buyers then trade in

sequence.  Each buyer observes all the prices posted, and chooses the group of sellers with

whom to trade and ranks the sellers in order of preference.  If one seller runs out of rice

pudding, the buyer is permitted to visit the next seller in the sequence, until demand is

satisfied.

  As with the order-driven market, the dealership market can be formalized as an extensive

form game with three stages.  In the first stage, Nature chooses the rainfall in the two

regions.  In the second stage, the mountain growers observe the rainfall in their own region

and form beliefs on the rainfall on the coast.  Based on this information, they decide how
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much rice pudding to produce and the price to be posted.  In the third stage, the buyers

observe the actions of all sellers, and trade in sequence.  A strategy for a seller is a rule

which sets the price-quantity pair for rice pudding as a function of number of days of rain in

the mountains.  A strategy for a buyer is a rule which selects those sellers with whom to

trade, and which ranks them in order of preference, having observed the actions of all

sellers.  The game ends when all trades are completed and traders consume their final

allocations.

  Given their preferences, the buyers follow a simple rule of first visiting the seller with the

lowest price, provided that the terms of trade are better than one to one.  If this seller cannot

satisfy the demand for rice pudding, the buyer moves on to the seller with the next highest

price, and so on.  We will assume that if a buyer is indifferent between trading and not

trading, he will choose to trade.  Hence, under our assumption, a buyer will trade provided

the price is one or less.

  This completes the description of the two trading mechanisms.  Before we analyse the

outcomes under these alternatives, we will digress briefly to compare the outcomes in the

two markets when there is common knowledge of the endowments of the traders.  This will

serve as a benchmark for the main results of our paper which pertain to the case with

differential information.

3. Outcomes under Common Knowledge

  Suppose that the endowment of rice of both types of rice growers is 1, and that this is

common knowledge.  The equilibria in the two trading games can be analysed thus.

Order-Driven Market.  Consider the problem for the th seller.  This trader has a unit3

endowment of rice and chooses  to maximize consumption of rice.  Production of  units= =3 3

of rice pudding costs  units of rice but the trader obtains  units of rice in exchange.= ¶ :=3 3
"
"

Thus, the th seller’s consumption of rice is given by :3

" � ¸ . ¶ = ¹= � = ¶! !
4é" 4é"

8 8

4 4 3 3
"
". (3.1)
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The th seller’s problem is to maximize this expression by choosing  subject to the3 =3

endowment of rice.  That is, .= ¶ ì "3
"
"

  Let us now turn to the problem faced by the buyers.  A buyer seeks to maximize the sum

of the quantities of rice and rice pudding.  If the th buyer puts up  units of rice for3 .3

exchange, then the quantity of rice consumed is , unless supply is zero.  The quantity" � .3

of rice pudding consumed is .  Thus, the th buyer seeks to maximize¸ = ¶ . ¹. 3! !
4é" 4é"

8 8

4 4 3

" � . � ¸ = ¶ . ¹.3 4 4 3
4é" 4é"

8 8! ! (3.2)

by choosing  subject to the constraint that .. . ì "3 3

  This game has a trivial equilibrium in which every trader chooses zero.  There is,

however, a Pareto superior equilibrium in which traders choose positive quantities.  There

are potential gains from trade since the marginal cost for a seller of producing rice pudding

is  (which is less than 1 for ), while the buyers value rice pudding at 1.  The= = � "3
�"

3
"

efficient outcome would be for all sellers to produce one unit of rice pudding and all the

buyers to put up one unit of rice in exchange.  In this case, the price and marginal cost are

equated at one.  With a finite population, each trader exercises some market power so that

production in equilibrium falls somewhat short of the first best.  However, this discrepancy

becomes small as  becomes large.  The first order condition for the th seller is :8 3

¸ . ¶ = ¹ " � ¸= ¶ = ¹ � = é !! ! !ê ý
4 4 4

4 4 3 4 3
�"" (3.3)

while that for the th buyer is :3

¸ = ¶ . ¹ " � ¸. ¶ . ¹ � " é !! ! !ê ý
4 4 4

4 4 3 4 . (3.4)

In the symmetric equilibrium where  and  for all , these conditions yield= é = . é . 44 4

. é = = é .î ü î ü8�" 8�"
8 8

 and .  Hence in the symmetric equilibrium,"

= é . é
8�" 8�"

8 8
ù ù

#
�" �"

�"

è � è �" "

"

      and        . (3.5)
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Both these quantities fall short of 1, but as  becomes large, both  and  tend to the first8 = .ù ù

best level of 1.  This is a consequence of the diminishing market power of each trader.

Dealership Market.  The outcome in the dealership market is simpler to analyse.  The

buyers follow a simple rule in which they seek the sellers with the lowest price and trade up

to their endowment provided that price is one or below.  The sellers anticipate this

behaviour and choose production and price.  In fact in every equilibrium, each seller

produces one unit of rice pudding and posts a price of 1.  The argument is as follows.

  Firstly, note that if a seller produces a positive amount, he will not post a price strictly

greater than 1, since the demand facing this seller will be zero.  Since the marginal cost of

rice pudding is  while the marginal benefit is the price posted,  does not exceed= =3 3
�" �"" "

price which, in turn, is at most 1.  Hence no seller will produce more than one unit of rice

pudding.  Thus, in any equilibrium,

!
4©3

4= ì 8�". (3.6)

Since the total endowment of all buyers is  units of rice, the th seller can sell at least one8 3

unit of rice pudding provided the price is one or below.  Thus, the optimal action for the th3

seller is to produce one unit of rice pudding and post the price of one.  The seller receives

one unit of rice in exchange.  Therefore, in any equilibrium of the dealership market, every

seller produces one unit of rice pudding, which is exchanged for one unit of rice.  This is

the efficient allocation.  Notice also that the argument here relies on two rounds of deletion

of strictly dominated strategies, rather than equilibrium reasoning.

  When comparing the order-driven market with the dealership market, we see that the

differences in post-trade allocations are minimal, provided that the population is large.

Thus, in the benchmark case when the endowments are common knowledge, the two

trading mechanisms yield similar outcomes.  We will now argue that this similarity of

outcomes is not preserved when the traders have differential information.

4. Differential Information

  The uncertainty in our model stems from the variability of rainfall in the two regions.
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Each state  in our state space  will represent a possible combination of rainfall in the two= H

regions.  Thus, a pair of natural numbers  is a  if  and  belong to the set¸;Ç <¹ ; <state

¾!Ç "Ç #ÇÊÇR¿ ; é < ; é <�", and either  or .  Hence, the state space  can be representedH

as in figure 1.  The points on the leading diagonal represent those states in which both

regions have the same number of days of rain, while those on the subordinate diagonal

represent those states in which the mountains have one more day of rain.

[ Figure 1 here ]

Since each trader only observes the rainfall in his own region, the coastal rice growers

cannot distinguish two states which have the same component, while a mountainfirst

grower cannot distinguish two states with the same  component.  Hence, thesecond

information partition of a coastal grower is generated by the equivalence relation  on éG H

defined as :

¸;Ç <¹ é ¸; Ç < ¹ µ ; é ;G w w w      (4.1)

The information partition of a mountain grower is generated by the equivalence relation éQ

defined as :

¸;Ç <¹ é ¸; Ç < ¹ µ < é <Q w w w      (4.2)

We define knowledge and iterated knowledge of the traders in the usual way.  A trader

knows an event  at the state  if the element of his partition which contains  is a subsetI = =

of .  The knowledge operator  is defined so that the  is the event that a coastalI O O IG G

trader knows .  In other words,I

O I � ¾ � é ² � I¿G
G w w= = = =    (4.3)

The knowledge operator  for a mountain grower is defined analogously.OQ

  The event which will play an important role in our analysis is that in which the harvests of

both regions are good (and hence equal to 1).  In our model, the harvest in a particular

region is good if the number of days of rain there is one or more.  Hence, the event in which

both harvests are good is given by :
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K � ¾ � � ¸"Ç "¹¿= = . (4.4)

This event is of interest to us since  consists of precisely those states at which theK

efficient allocation (in which every seller produces one unit of rice pudding and receives

one unit of rice in return) is feasible.  The “ ” stands for “good”.  If  were commonK K

knowledge the equilibria described in the previous section come into play.  However, the

differential information in our model is such that  is never common knowledge.  ToK

explain this point, and to introduce our notion of , let us use the notationtransparency

¸O O ¹ K O O K 5Q G Q G
5  to denote the event obtained by applying the operator  to   times.

This is the event in which a seller knows that a buyer knows that a seller knows that  aÊ

buyer knows that  is true, where the order of iterated knowledge is .  Figure 2 illustratesK 5

some of these events.

[ Figure 2 here ]

The event  consists of states  such that the element of the mountain grower’sO O KQ G =

partition which contains  is a subset of .  Inspection of figure 2 shows that this is the= O KG

case for all but one state in , namely .  At state , a mountain grower mustO K ¸"Ç "¹ ¸"Ç "¹G

allow for the possibility that  is false, since he cannot distinguish state  fromO K ¸"Ç "¹G

¸!Ç "¹ O O K é ¾¸;Ç <¹ � ; � "Ç < � #¿ O.  Hence, .  If we now apply the operator  toQ G G

this event, we lose the state , since at  a coastal grower cannot distinguish¸"Ç #¹ ¸"Ç #¹

between  and , and the latter state does not belong to .  Hence,¸"Ç #¹ ¸"Ç "¹ O O KQ G

O O O K é ¾¸;Ç <¹ � ; � #Ç < � #¿ OG Q G Q.  Finally, if we apply the operator  to the event

O O O K ¸#Ç #¹ ¸#Ç #¹G Q G , we lose the state , since at  a mountain grower cannot distinguish

¸#Ç #¹ ¸"Ç #¹ O O O K from , and the latter does not belong to .  Hence,G Q G

¸O O ¹ K é ¾¸;Ç <¹ � ; � #Ç < � $¿Q G
# .  In general, we have :

LEMMA 1.  .¸O O ¹ K é ¾¸;Ç <¹ � ; � 5Ç < � 5�"¿Q G
5

PROOF.  The proof is by induction on .  We have already noted that the lemma holds for5

5 é " 5�" ¸5�"Ç 5¹ ª O ¸O O ¹ K.  Suppose that the lemma holds for .  Then, ,G Q G
5�"
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since , but .  But for every state¸5�"Ç 5¹ é ¸5�"Ç 5�"¹ ¸5�"Ç 5�"¹ ª ¸O O ¹ KG 5�"
Q G

¸;Ç <¹ ¸;Ç <¹ � ¸5Ç 5¹ ¸;Ç <¹ é ¸; Ç < ¹ ¸; Ç < ¹ � ¸O O ¹ K such that , if  then .  Hence,G 5�"w w w w
Q G

O ¸O O ¹ K é ¾¸;Ç <¹ � ; � 5Ç < � 5¿G Q G
5�" . (4.5)

Finally, note that , but , which implies that¸5Ç 5¹ é ¸5Ç 5�"¹ ¸5Ç 5�"¹ ª O ¸O O ¹ KG 5�"
G Q G

¸5Ç 5¹ ª O O ¸O O ¹ K ¸;Ç <¹ � ¸5Ç 5�"¹ ¸;Ç <¹ é ¸; Ç < ¹Q G Q G
5�" G w w.  However, for every , if 

then .  Hence,¸; Ç < ¹ � O ¸O O ¹ Kw w
G Q G

5�"

O O ¸O O ¹ K é ¾¸;Ç <¹ � ; � 5Ç < � 5�"¿Q G Q G
5�" . �

  A corollary of lemma 1 is that there is no state at which  is .  If K Kcommon knowledge

were common knowledge at a state , then  for all , which is inconsistent= = � ¸O O ¹ K 5Q G
5

with a state being a pair of natural numbers, in view of lemma 1.  In the terminology of

Morris, Postlewaite and Shin (1993), the  embodied in our informationdepth of knowledge

structure is finite.

  Lemma 1 sets the agenda for the rest of the paper.  We pose the following question.  How

robust are the two trading mechanisms to higher order uncertainty?  If  is known up toK

degree  but not to degree , how far do the outcomes in the two mechanisms diverge5 5�"

from each other, and how far do they diverge from the benchmark case of common

knowledge?  This question motivates our definition of transparency.  For every state , we=

associate a natural number , called the  of the state , where,>¸ ¹= =transparency

>¸ ¹ é

! ª O O K

5 � ¸O O ¹ K ª ¸O O ¹ K

=

=

= =
�

        if     

       if       but  
(4.6)

Q G

Q G Q G
5 5�"

 

We now investigate the effect of transparency on the volume of trade.  The performance of

each trading mechanism will be assessed in terms of its ability to generate liquidity, both in

the market and in the pudding bowl.  We begin with the order-driven market.

5. Trade in Order-Driven Market

  Since the traders choose their quantities after observing the rainfall in their own region,

the strategies of the traders are functions from the set  to their respective¾!Ç "Ç #ÇÊR¿
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action sets.  A strategy for the th seller is a function  which maps the number of days of3 =3

rain in the mountains to the quantity of rice pudding supplied.  Similarly, a strategy for the

3 .th buyer is a function  which maps the number of days of rain on the coast to the amount3

of rice put up for exchange.

  Since a state  specifies the rainfall in both regions, we may also see the strategies as=

functions which map each state  to the action at that state, with the proviso that if a trader=

cannot distinguish state  from , then the action is the same at the two states (i.e.) a= =w

strategy is measurable on the information partition of the trader.  In what follows, we will

use both formalizations of a strategy.  Thus,  is the supply of the th trader at state ,= ¸ ¹ 33 = =

while for integer ,  is the supply of the th trader given  days of rain in the5 = ¸5¹ 3 53

mountains.   and  are defined analogously for the buyer.. ¸ ¹ . ¸5¹3 3=

  An equilibrium of the order-driven market is a vector of strategies ¸= ÇÊÇ = Ç . ÊÇ . ¹" 8 " 8

such that for every state  and every trader, the action prescribed by that trader’s strategy=

maximizes his expected payoff conditional on the information at , given that all other=

traders follow their respective strategies.

  The first of our pair of theorems highlights the role of transparency on the volume of

trade.  For any symmetric equilibrium and at every state , supply always falls short of ,= =ù

the equilibrium supply with common knowledge, as given by (3.5).  Trade is increasing in

transparency, but no amount of transparency (short of being infinite) can restore the

outcome under common knowledge.

THEOREM 1. For any symmetric equilibrium supply strategy ,  for every .= =¸ ¹ � == =ù

Moreover, if supply is positive at some state, then for all , if , then= = H = =Ç � >¸ ¹ � >¸ ¹w w

=¸ ¹ � =¸ ¹= =w .

  The second result shows that the damage to trade at potentially “good” states can be quite

serious.  The extent of the damage depends on the cost parameter .  If  is close to 1 (so" "

that the cost of rice pudding production is high), then irrespective of the number of traders,
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the supply of rice pudding is close to zero at every state.  More precisely, our second

theorem reads :

THEOREM 2.  For any , there is a benchmark level  of the cost parameter such% "� ! � "ù

that, if , then for any population  and any symmetric equilibrium supply strategy ," "� 8 =ù

=¸ ¹ �= %  everywhere.

  The important point to drive home is that the low trading volume described in theorem 2

is not the kind which will disappear when the population becomes large.  The benchmark

"ù applies to any population .  Hence, the mechanism at work cannot be that of market8

power.  Rather, as we shall see below, it is the absence of common knowledge of the event

K which feeds into higher order uncertainty, and which in turn, starves the market of

liquidity.  The closer  is to 1, the stronger is this effect."

  Before presenting the formal arguments, it is instructive to pause to think about the forces

at work generating these results.  To fix ideas, let us consider the reasoning of a seller who

has observed 17 days of rain.  Should he produce a lot of rice pudding?  The answer is yes

if he believes that demand will be high.  He knows that buyers have had 16 or 17 days of

rain, and so have the full endowment of rice, but this by itself does not guarantee that

demand will be high, since buyers’ actions are chosen rationally given their beliefs.  Thus,

in order to decide what the seller should do, it is necessary to think about the beliefs of

buyers who have observed 16 or 17 days of rain.

  A buyer who has observed 16 days of rain knows that the sellers have had 16 or 17 days of

rain, and so have the full endowment of rice.  A buyer will submit a large order if he

believes that supply will be high, but the mere fact that sellers are  of producing acapable

lot is not enough for high supply.  The supply depends on the beliefs of the  whosellers

have observed 16 or 17 days of rain.

  Thus, a seller who has observed 17 days of rain must worry about what he wouldhave

done given 16 days of rain, since the buyers care about this, and the seller cares about the

beliefs of the buyers.  But then, the reasoning does not stop there, since the seller’s optimal
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action given 16 days of rain depends on the optimal action given 15 days, and by iteration,

all lower numbers.  Ultimately, the belief hierarchy must include beliefs about actions

given  days of rain, at which supply is constrained to be zero, since there is no ricezero

around.  This bad event contaminates the belief hierarchy, since at no state is there common

knowledge that this is not the case, and it is this which reduces trading volume.  The

parameter  gives an indication as to how much of a “cushion” there is in the system to"

absorb this higher order uncertainty.  The closer  is to 1, the less there is to shield the"

actions at states with high rainfall, and hence the lower is the trading volume.

  The following proofs of theorems 1 and 2 are to our model, and involve inductionsad hoc 

on the number of days of rain.  However, in section 7, an alternative proof of theorem 2 is

given which relies on general features of the information structure.

  Let us first consider the problem faced by the th buyer who has observed that the number3

of days of rain on the coast is , where .  Two states are consistent with this5 5 � R

observation, (  and .  Since the probability distribution over  is uniform, the5Ç 5¹ ¸5Ç 5�"¹ H

two states are given equal weight.  If  is the true state, and the traders follow¸5Ç 5¹

strategies , then the utility of the th buyer is ¸= ÇÊÇ = Ç . ÊÇ . ¹ 3 " � . ¸5¹ � ¸ = ¸5¹ ¶" 8 " 8 3 4
4é"

8!
!
4é"

8

4 3. ¸5¹¹. ¸5¹ ¸5Ç 5�"¹.  If  is the true state, utility has a similar expression, except that

= ¸5¹ = ¸5�"¹ 54 4 is replaced by .  Thus, expected utility given the message  is :

" � . ¸5¹ �

= ¸5¹ � = ¸5�"¹
. ¸5¹

. ¸5¹
3

4é" 4é"

8 8

4 4
3

4é"

8

4

� �
! !

!2
(5.1)

The th buyer seeks to maximize this expression by choosing  subject to the resource3 . ¸5¹3

constraint.  The constraint is  for 1, while for ,  is constrained to be. ¸5¹ ì " 5 � 5 é ! .3 3

zero due to the zero harvest.  The buyer’s problem given message  is simpler, since onlyR

one state is consistent with this message  namely, .  The th buyer chooses � ¸RÇR¹ 3 . ¸R¹3

to maximize :

" � . ¸R¹ � = ¸R¹
. ¸R¹

. ¸R¹
3 4

4é"

8
3

4é"

8

4

� �! ! (5.2)
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subject to the constraint .. ¸R¹ ì "3

  Let us now turn to the problem facing the th seller, given the message , where .3 5 5 � "

This message is consistent with two states - namely,  and .  Both states¸5�"Ç 5¹ ¸5Ç 5¹

receive equal weight.  Thus, the th seller chooses  to maximize :3 = ¸5¹3

" � � = ¸5¹ ¶

. ¸5�"¹ � . ¸5¹

#

= ¸5¹

= ¸5¹
� �� �
! !

! (5.3)
4é" 4é"

8 8

4 4

3

4é"

8

4

3
" "

subject to the constraint that the amount of rice used in the production of rice pudding

cannot exceed 1.  That is, .  Given message , only the state  is= ¸5¹ ¶ ì " 5 é ! ¸!Ç !¹3
" "

consistent with this message.  However, the zero harvest constrains the seller to set

= ¸!¹ é !3 .

  Ignoring resource constraints for the moment, the symmetric solution to the first-order

conditions yield :

  if (5.4)é 5 � R.¸5¹
8�" =¸5¹ � =¸5�"¹

8 #� �� �
  if é =¸R¹ 5 é R

8�"

8� �
  if (5.5)é 5 � "=¸5¹

8�" .¸5�"¹ � .¸5¹

8 #
" � �� �

We should now check that the resource constraints are satisfied.  It turns out that for ,5 � "

the constraints do not bind.  We can argue by contradiction.  Suppose that the constraint

.¸5¹ ì " N � ¾"Ç #ÇÊÇR¿ .¸5¹ é " binds for some non-empty set of integers .  Then  for

5 � N .¸5¹ � " 5 ª N .¸5¹ ì " 5 5 � N, and  for .  In any case,  for all .  If , then (5.4)

implies that  or  or both.  In either case, (5.5) implies that one or more=¸5¹ � " =¸5�"¹ � "

of , , and  is  larger than , which is a contradiction.  But then, if.¸5�"¹ .¸5¹ .¸5�"¹ "strictly

the buyers’ constraints do not bind, (5.5) implies that , so that the sellers’=¸5¹ � "

constraints are non-binding also.  However, for , the zero harvest implies that5 é !

=¸!¹ é .¸!¹ é !.
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  Substituting (5.4) into (5.5) we obtain a second-order, non-linear difference equation for

=¸5¹ 5 � ¾"Ç #ÇÊR�"¿ =¸ ø ¹ for  and a terminal condition for .  They are, respectively,

=¸5¹ é
8�" =¸5�"¹ � #=¸5¹ � =¸5�"¹

8 %
" ê ý � �#

(5.6)

and (5.7)=¸R¹ é
8�" =¸R�"¹ � $=¸R¹

8 %
" ê ý � �#

We can now demonstrate theorem 1 by means of the following lemma.  Recall that  is the=ù

equilibrium supply when  is common knowledge.K

LEMMA 2.  If  satisfies (5.6) and (5.7) for , and , then¾=¸5¹¿ 5 � ¾"Ç #ÇÊÇR¿ =¸R¹ © !

=¸R¹ � = ² =¸!¹ � =¸"¹ � =¸#¹ � Ê � =¸R�"¹ � =¸R¹ù          

=¸R¹ � = ² =¸!¹ � =¸"¹ � =¸#¹ � Ê � =¸R�"¹ � =¸R¹ù          .

PROOF.  Suppose .  We shall argue by induction, backwards from .  Begin by=¸R¹ � = Rù

recalling that , so that  implies := é =¸R¹ � =ù ù8�"
8

#
�"ê ý"

ê ý8
8�"

#

=¸R¹ � =¸R¹" . (5.8)

(5.7) then implies that .  Thus, suppose that .=¸R�"¹ � =¸R¹ � = =¸5¹ � =¸5�"¹ � =ù ù

From (5.6),

 (5.9)é =¸5�"¹ � =¸5�"¹ � # =¸5¹ � =¸5¹=¸5¹ " 8
# 8�"

#ê ý ê ý� �"
 (since ì =¸5�"¹ � =¸5�"¹ =¸5¹ � = ¹"

#
ùê ý

 (since )ì =¸5�"¹ =¸5¹ � =¸5�"¹

so that , as desired.  An analogous argument holds for .  =¸5¹ ì =¸5�"¹ =¸R¹ � =ù �

  We can now complete the proof of theorem 1.  First of all, note that if  for some=¸5¹ é !

5 =¸5¹ é .¸5¹ é ! 5, then (5.4) and (5.5) imply that  for .  This is the trivialevery

equilibrium in which every trader submits zero.  Thus, if  for some , then=¸5¹ � ! 5

=¸5¹ � ! 5 for  .  Under the hypothesis of theorem 1, it must be the case thatevery

=¸R¹ � = =¸!¹ � =ù ù, since otherwise lemma 2 implies that  which violates the resource

constraint .  Given that , lemma 2 tells us that  is strictly increasing=¸!¹ é ! =¸R¹ � = =¸5¹ù
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in .  It remains for us to note that if  is the state  and  is the state , then5 ¸;Ç <¹ ¸; Ç < ¹= =w w w

>¸ ¹ � >¸ ¹ < � <= =w w only if .  Thus, for any symmetric equilibrium in which supply is

positive at some state,  only if .  This completes the proof of>¸ ¹ � >¸ ¹ =¸ ¹ � =¸ ¹= = = =w w

theorem 1.

  We now turn to the proof of theorem 2.  Let us define  as :? "¸ ¹

? "¸ ¹ � = � = � = � º!Ç "»max . (5.10)ë þ"

? " " ? " "¸ ¹ � " ¸ ¹ is positive for  and  tends to zero as  tends to 1.  We then have :

LEMMA 3.  For any symmetric equilibrium supply strategy ,=

=¸!¹ � =¸R¹ � #R¸R�"¹ ¸ ¹? " . (5.11)

PROOF.  If  there is nothing to prove.  Thus, suppose .  Then, from=¸!¹ � =¸R¹ =¸!¹ � =¸R¹

theorem 1,  for all , so that .  Then, (5.6) gives=¸5¹ � = 5 =¸5¹ � =¸5¹ù 8
8�"

#ê ý "

 é #=¸5¹ � =¸5�"¹ � % =¸5¹ � =¸5¹=¸5�"¹
8

8�"� �ê ý# "

 . (5.12)� #=¸5¹ � =¸5�"¹ � % ¸ ¹? "

We now claim that )  for any=¸!¹ � ¸5�"¹=¸5¹ � 5=¸5�"¹ � %¸" � # � $ �Ê� 5 ¸ ¹? "

5 � ¾"Ç #ÇÊÇR¿ 5 é ".  The proof is by induction.  For , substitution into (5.12) yields the

desired inequality.  For the inductive step, suppose that =¸!¹ � 5=¸5�"¹ � ¸5�"¹=¸5¹

� %¸" � # � $ �Ê� 5�" ¸ ¹ =¸5�"¹) .  Then, substituting out  by using (5.12) yields? "

the desired inequality, which proves the claim.  For the case when ,5 é R�"

 )� R=¸R�"¹ � ¸R�"¹=¸R¹ � %¸" � # � $ �Ê�R�" ¸ ¹=¸!¹ ? "

 ) )é =¸R¹ � R¸=¸R�"¹ � =¸R¹ � %¸" � # � $ �Ê�R�" ¸ ¹? "

 ) (from (5.7))� =¸R¹ � %R ¸ ¹ � %¸" � # � $ �Ê�R�" ¸ ¹? " ? "

 .é =¸R¹ � #R¸R � "¹ ¸ ¹? " �



� �20

  To complete the proof of theorem 2, we choose  so that .  Then" ? " %ù ù¸ ¹ ì ¶#R¸R�"¹

for , we have  so that from lemma 3, and the fact that ," " ? " %� #R¸R�"¹ ¸ ¹ � =¸!¹ é !ù

we have .  But since  for all , supply is below  everywhere.=¸R¹ � =¸5¹ � =¸R¹ 5 � R% %

  Many questions suggest themselves concerning the generality of these results.  For now,

we note that although our model has a story concerning production, it is clear that a similar

story could be told in a pure exchange economy.  The production of rice pudding plays a

role only to the extent that the seller’s marginal rate of substitution between rice and rice

pudding in the exchange differs from the buyer’s.  For instance, the utility function

B � C � C ¶" " for the seller in a pure exchange economy will reproduce all the necessary

steps in the argument.  One small addition to the rules would be to specify what the final

allocations are if one side of the market has no traders.  In Shapley and Shubik (1977),

infinite prices are allowed, so that if there is no one on the other side of the market, one

loses the submitted quantity.  This ensures that allocations are continuous at extreme prices,

and the argument above goes through.

6. Trade in Dealership Market

  In contrast to the order-driven market, trading volume in the dealership market does not

suffer from the fragility to higher-order uncertainty exhibited by its order-driven cousin.  In

a dealership market, a strategy for the th seller is given by an ordered pair of functions3

¸= ¸ ø ¹Ç : ¸ ø ¹¹ = ¸ ¹ : ¸ ¹3 33 3, where  is the amount of rice pudding produced at state  and  is= = =

the price posted at , with the restriction that both  and  are measurable on a seller’s= = :3 3

information partition.  For a buyer, the information available before taking an action

includes not only that yielded by his information partition, but also includes the vector of

actions taken by all the sellers.  A buyer’s strategy is a rule which, based on all this

information, selects a subset of sellers with whom to trade, and which ranks this set of

sellers in order of preference.  Our result on the dealership market can be stated as follows.

THEOREM 3.  In any equilibrium of the dealership market and for any state , if ,= =>¸ ¹ � "

then  for every .¸= ¸ ¹Ç : ¸ ¹¹ é ¸"Ç "¹ 33 3= =
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  In other words, if  then the outcome under common knowledge will= � O O KQ G

transpire at  in equilibrium.  Iterated knowledge of  of order 1 is sufficient to implement= K

the efficient trade.  Since the event  includes every state other than , O O K ¸!Ç !¹ ¸!Ç "¹Q G

and , the dealership market performs well in preserving liquidity (both in the market¸"Ç "¹

and in the pudding bowl).  The contrast with the order-driven market could hardly be more

stark.  Before examining some of the forces at work which generate these differences, we

shall demonstrate theorem 3.

  We solve the game backwards, starting with the actions of the buyers at the last stage of

the game.  A buyer selects all sellers who have posted a price of one or below, and ranks

them in reverse order in terms of price.  For a buyer’s action to be optimal, it must never be

the case that the buyer trades with a seller who has posted a price strictly higher than

another seller who has unsold stock of rice pudding.

  Now, suppose that , and consider the th seller’s supply  and price= =� O O K 4 = ¸ ¹Q G 4

: ¸ ¹ O O K � O K é K � O O K4 Q G G Q G= = = = at .  Since  and , two features hold at .

Firstly, all buyers have the maximum endowment of rice of 1.  Secondly, all sellers know

that every buyer has this endowment.  Any action  of the th seller for which¸= ¸ ¹Ç : ¸ ¹¹ 44 4= =

= ¸ ¹ � ! : ¸ ¹ = ¸ ¹4 44= = = and  > 1 is strictly dominated by any action for which  is zero, since

no buyer will trade with a seller with a posted price greater than 1.  Hence, if ¸= ¸ ¹Ç : ¸ ¹¹4 4= =

is an equilibrium action of the th seller, then4

= ¸ ¹ � ! ² : ¸ ¹ ì "4 4= =      . (6.1)

Since the marginal cost of producing rice pudding is  while the marginal benefit is= ¸ ¹4
�""

=

at most the price posted, we have , which together with (6.1) implies= ¸ ¹ ì : ¸ ¹4
�"

4
"

= =

= ¸ ¹ ì " = ¸ ¹ ì 8�"4 44©3= =.  Hence, in any equilibrium, , so that the residual demand!
facing the th seller is given by :3

H é

8 � = ¸ ¹ � " : ì "

�
"       if   

0                              otherwise
(6.2)4©3

4 3=

 

Thus, the th seller’s consumption of rice (and hence utility) is given by :3
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  if    and é " � : ¸ ¹= ¸ ¹ � = ¸ ¹ ¶ = ¸ ¹ ì H : ¸ ¹ ì "?Q 3 3 33 3= = = " = ="

  if    and é " �H= ¸ ¹ � = ¸ ¹ ¶ = ¸ ¹ � H : ¸ ¹ ì "3 3 3 3= = " = ="

  if   é " � = ¸ ¹ ¶ : ¸ ¹ � "3 3= " ="

which is maximized when .  Since the argument is symmetric for all¸= ¸ ¹Ç : ¸ ¹¹ é ¸"Ç "¹3 3= =

sellers, every seller produces 1 unit of rice pudding and posts a price of 1.  In any

equilibrium,  units of rice pudding are exchanged for  units of rice.8 8

  In the efficient allocation, the gains from trade are appropriated by the sellers.  The buyers

are no better off than before trade.  This has been assumed in order to simplify the analysis,

and it would not be difficult to consider preferences for the buyers which will make the

efficient allocation strictly Pareto-superior.  A fuller analysis ought to consider distributive

issues as well as efficiency, and should be the subject of further research.  Also, let us note

that the efficiency of the dealership market is not sensitive to who sets prices.  If the buyers

were to set prices instead, price competition will drive up prices to one, and efficient

production takes place.  The only difference will be that the single layer of knowledge

needed will involve the operator  rather than .O O O OG Q Q G

7. Assessing the Argument

  The superiority of the dealership market in terms of greater allocative efficiency is in need

of explanation.  The divergence in the performance of the two markets is especially

noteworthy in view of the  of the outcomes in these markets in the absence ofsimilarity

uncertainty.  At a superficial level, it is certainly correct to say that uncertain transaction

price is the culprit in causing inefficiency in the order-driven market.  However price

uncertainty in our model is .  The interesting question, therefore, is why theendogenous

traders cannot act in such a way as to remove this type of risk.  Even more narrowly, what

is to stop the traders in the order-driven market mimicking the workings of the dealership

market?

  The answers to these questions lie in the details of the trading game, especially the move

order of the traders and the information available to traders when they take their respective
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actions.  The order-driven market requires that all traders take their actions simultaneously,

whereas in the dealership market, the price setters move first and buyers take their actions

having observed the actions of the sellers.  Although this distinction may seem unimportant

at first sight, differential information has rather different effects in the two markets.

  Our modelling of a simultaneous move game with differential information has followed

the standard technique, due to Harsanyi (1967), of casting it as a Bayesian game in which

distinct “types” of each player play their equilibrium strategies.  In the terminology of

“types”, each trader could be one of  possible types, corresponding to each possibleR�"

piece of information which arrives before taking an action.  Each cell in a trader’s

information partition corresponds to a type of that trader.  In such a setting, although two

types of a single trader are mutually exclusive, it is quite possible that the actions of these

types are constrained through the best-reply structure of the game.  The clearest illustration

of this point is equation (5.6), which states that :

=¸5¹ é
8�" =¸5�"¹ � #=¸5¹ � =¸5�"¹

8 %
" ê ý � �#

.

Here, the actions of three distinct types (a seller who has observed ,  and  days of5�" 5 5�"

rain respectively) are constrained by this relationship, even though a seller who observes

one of these messages can exclude the other two possibilities.  The point is that a seller of

type  is concerned with the actions of  of types  and , who in turn care about5 5 5�"buyers

the actions of the sellers of type  and .5�"Ç 5Ç 5�"

  Such restrictions across the cells of a decision maker’s information partition is in marked

contrast to single person decision theory.  In a single person decision problem, it is possible

to divide the world neatly into mutually exclusive parcels labelled by the message received,

and then take the optimal action given each message, quite independently of the actions

taken at other states.  However, as soon as we have a game, this facility for dividing the

world into neat parcels no longer exists, and actions at one part of the state space will

influence (and be influenced by) the actions at other parts of the state space.  In the context

of two player Bayesian games with finite action sets these effects can be studied in a
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reasonably complete manner, as shown by Morris, Rob and Shin (1995), which in turn

builds on the earlier work of Rubinstein (1989) and Monderer and Samet (1989), who

noted the importance of higher order uncertainty, and the work of Carlsson and van Damme

(1993) on the notion of global uncertainty (see also Sorin (1993) on a definition of the

impact of an event).  Geanakoplos (1992) is a survey of the issues raised by some of the

earlier papers.

  The poor performance of the order-driven market should be understood in these terms.

The influence of states with the poor harvest is transmitted through the best-reply structure

of the game to states which, potentially, could have high trading volume.  The actual size of

this effect depends on how sensitive the actions of one type are to the actions of

neighbouring types.  Theorem 2 showed that the cost parameter  is an important"

determinant of this sensitivity.

  The reasons for the relative superiority of the dealership market then become more

transparent.  By allowing the buyers to observe the actions of the sellers before taking their

actions, the dealership market cuts the link between the equilibrium actions of the different

types of the seller.  When a seller is setting the price-quantity pair, there may be uncertainty

about the type of the buyer, but the seller knows that a buyer will play a best reply to the

seller’s action having observed that action.  Crucially, the seller need not worry about what

he have done had he been a  type.  Such considerations of counterfactualwould different

propositions are redundant given that the buyers choose their action only after observing the

seller’s action.  In this sense, the sequential move structure of the dealership market

restores the feature, present in the single person decision problem, of allowing the decision

maker to disregard the optimal actions at those states which are excluded by the current

message.

  How general are the results reported here for the Shapley-Shubik mechanism?  The ad hoc

argument given in section 5 relied on the ‘stationary’ nature of the restrictions, in which the

same qualitative restriction applies to type  as it does to type .  Although this5 5�"

stationarity gave the model sufficient tractability to use an induction argument, it is not
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essential, as we will see with the following alternative argument for theorem 2.  This

argument will be important in suggesting possible extensions of our analysis.

An Alternative Argument.  Consider a finite Markov chain with  states, labelled by theR�"

set .  The one-step transition probability from  to  is denoted by .¾!Ç "Ç #ÇÊÇR¿ 3 4 ¸3Ç 4¹9

State  is an absorbing state, and is the only such state.  Hence, , and! ¸!Ç !¹ é "9

9¸!Ç 4¹ é ! 4 © ! 3 � ¾"Ç #ÇÊR�"¿ for any .  From state , three transitions are possible.

The system returns to  with probability 1/2, while it progresses to  and  with3 3�" 3�"

probability 1/4 each.  In other words, for ,3 � ¾"Ç #ÇÊR�"¿

9¸3Ç 4¹ é

3 é 4

4 é 3�" 4 é 3 � "

ÂÅÃÅÄ
"
#

"
%

if 

if    or 

0 otherwise

(7.1)

Finally, from state , the system returns to  with probability 3/4, and makes a transitionR R

to  with probability 1/4.R�"

  This is a Markov chain, all of whose states are transient, except for the single absorbing

state .  Then, equilibrium  satisfies the following key properties.! =¸ ø ¹

LEMMA 4.  Let  be a symmetric equilibrium supply strategy.  Then, for any ,= 3 © !

(i) ,=¸3¹ � ¸3Ç 4¹=¸4¹!
49

(ii) for any , there is  such that, for any  and any ,% " " "� ! � ! � 8ù ù

=¸3¹ � ¸3Ç 4¹=¸4¹ �!
4

9 %. (7.2)

PROOF.  To see (i), recall that  from lemma 1, so that .  Then=¸3¹ � = =¸3¹ � =¸3¹ù 8
8�"

#î ü "

(i) is just a restatement of equations (5.6) and (5.7).  For (ii), let  be given.  Choose % "� ! ù

sufficiently close to 1 so that for the function  defined in (5.10), .  Then, for? ? " %¸ ¹ ìù

" " %� =¸3¹ � =¸3¹ � =¸3¹ � =¸3¹ �ù 8
8�"

#
 we have , so that (7.2) follows from (5.6)î ü " "

and (5.7). �

  If we regard  as a function of the underlying Markov chain  taking values in=¸ ø ¹ ¾\ ¿>

¾!Ç "Ç #ÇÊÇR¿ =¸ ø ¹, clause (i) above states that  is a  with respect to thissupermartingale

Markov chain.  This is because = , so thatI =¸\ ¹ � \ 3 é ¸3Ç 4¹=¸4¹ ì =¸3¹a b !
>�" > 49
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=¸\ ¹ � I =¸\ ¹ � \> >�" >a b. (7.3)

Functions which satisfy (i) are also referred to as (see, for example, Karlinsuperregular 

and Taylor (1981, p.45)).  A precursor to the following argument is in Shin and Williamson

(1992), which derives the more restrictive condition that equilibrium actions in a

coordination game is a  with respect to an analogous Markov chain.martingale

  The matrix of transition probabilities  whose th entry is , can be partitionedF 9¸3Ç 4¹ ¸3Ç 4¹

as:

F é
M !

V Uè �, (7.4)

where  is the trivial  identity matrix,  is a row vector of zeros,  is a column vectorM " ô " ! V

with  entries all of which are zero except the top entry which is 1/4, and  is an R U R ôR

matrix.  Equilibrium supply can be expressed in a succinct way in terms of the matrix .U

This is because , so that if we denote by  the column vector :=¸!¹ é ! =

= �

=¸"¹

=¸#¹

Ë

=¸R¹

¶ ¹¸ »¸ »
· º

,

of supplies for positive number of days of rain, lemma 4(i) gives us the vector inequality

= � U= 5.  Also, for any positive integer , we have the identity :

= é U = � ¸M � U�Ê�U ¹¸= � U=¹5�" 5 . (7.5)

Since the matrix  describes the transitions among the transient states, the seriesU

¸M � U�Ê�U ¹ R ôR Z � U ¸3Ç 4¹5 5

5é!

_

 converges to some finite  matrix , whose th!
entry is the expected number of visits to state  given that the process starts at state .4 3

(Since the number of states is finite,  is non-singular, and ).  Clearly,M � U Z é ¸M � U¹�"

U 5 = � U=5  tends to the zero matrix as  becomes large.  Since , the second term on the right

hand side of (7.5) is increasing in .  Thus, we may appeal to monotone convergence in5

passing to the limit in (7.5), to yield :

= é Z 2, (7.6)
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where .2 � = � U= � !

  Equation (7.6) gives us an intriguing interpretation of equilibrium supply.  Imagine the

Markov process starting at state .  Each time the process visits some transient state ,3 � ! 4

there is a “prize” of , where  is the th component of .  The equilibrium supply at2 � ! 2 4 24 4

state  is then the expected aggregate prize earned when the process starts from state .3 3

Since all states other than  are transient, the expected aggregate prize is finite.!

Equilibrium supply at  is just this expected aggregate prize.3

  When (7.6) is combined with lemma 4(ii), we have an immediate proof of theorem 2,

which uses the idea that the “prize” for visiting a state goes to zero as  approaches 1."

Given that equilibrium supply is the expected aggregate prize, equilibrium supply can be

made as small as we like by choosing  sufficiently close to 1.  Formally, lemma 4(ii) tells"

us that  tends to the zero vector as  tends to 1, irrespective of the number of traders.2 "

Since ,  tends to zero also.  This is theorem 2.= é Z 2 =

  The above proof of theorem 2 suggests that results analogous to theorem 2 may hold in

contexts which are considerably more general than the model in this paper.  For instance,

the only property of the Markov chain which is needed in the above argument is that state 0

can be reached from all other states, but that all states other than 0 are transient.  It would

appear that the specific assumptions on the joint distribution over rainfall in the two regions

do not play any role, other than to ensure that there is a failure of common knowledge

sufficient to ensure that state 0 can be reached from all other states.

8. Some Tentative Conclusions

  Although the argument using the decomposition of superregular functions holds out hope

for more general results concerning Shapley-Shubik games, it does not answer the logically

prior question of whether such mechanisms shed any light on the workings of realistic

markets.

  The Shapley-Shubik trading game has parallels with both ‘market orders’ and ‘limit

orders’, but corresponds to neither exactly.  The similarity with market orders lies in the
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fact that buyers are uncertain as to the transaction price.  However, unlike market orders,

the buyer in the Shapley-Shubik game is uncertain as to how many units of the good he will

obtain.  Indeed, the buyer’s action can be seen as the submission of a downward sloping

demand curve in the price-quantity space for rice pudding, with the restriction that the

demand curve be a rectangular hyperbola.  This is because the buyer submits a sum of

money (rice) in the game, and this action is equivalent to the submission of a set of price-

quantity pairs for the good (rice pudding) which, when multiplied, yields the sum of money

in question.  To the extent that buyers submit downward sloping demand curves, there is a

parallel with limit orders in financial markets.  However, the set of admissible demand

curves is severely curtailed, the restriction being that it must be a rectangular hyperbola.

For the sellers, the rules of the Shapley-Shubik game correspond exactly to standard market

orders.  In effect, the seller is constrained to submit  supply curves, only.vertical

  For the specific arguments used in this paper, restrictions of the strategies to vertical

supply curves and rectangular hyperbola demand curves have played an essential role.

When traders are free to submit general limit orders the inefficiencies will not be large as

that for the Shapley-Shubik game (at least, this would be so for the fundamentals in our

model).  Since the buyers have a constant valuation for rice pudding, and since all traders

know the value of their own endowment, traders can prevent any trade which would make

them worse off than consuming their own endowment by submitting the appropriate limit

orders which would permit trade only if a net gain in utility is guaranteed .  However, in2

more general settings in which these features do not hold, it is far from clear as to whether

limit orders would ensure efficiency.  For instance, if traders have common or similar

valuations for an object but have imperfect information of this value (as when buying a

project yielding an uncertain payoff), it is not clear that limit orders will be immune from

inefficient trading volume.  The performance of trading institutions will be sensitive to the

fundamentals and the nature of the differential information.

2 This observation is due to a referee.
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  There are some indications of what the ingredients of a more general approach might be.

We have already commented in the previous section on the role played by the failure of

common knowledge, and how this constrains actions across the cells of a trader’s

information partition.  Equally important is the  of these restrictions.  It is importantnature

for our argument that the actions of the traders are  (Bulow,strategic complements

Geanakoplos and Klemperer (1985), Milgrom and Roberts (1990)).  For the relevant range,

the marginal benefit of a trader’s action is increasing in the actions of traders on the other

side of the market.  More directly, the best-reply function of a trader is upward sloping in

the aggregate actions of the other side of the market.  Thus, buyers submit large orders if

they expect sellers to submit large orders, and similarly, the sellers submit large orders if

they expect the buyers to submit large orders.  This is why, if some of the traders at some of

the states are constrained to submit small orders, this has repercussions across all the states,

as all traders react by lowering their orders, even though better outcomes are feasible.

  The strategic complementarity of actions reflects the view of the market as a coordination

device in which the incentive of each individual trader to engage in trade is increasing in

the degree to which other traders participate.  However, a difficulty in tying down this idea

is that it becomes necessary to define an ordering on the action sets of traders.  Defining

this ordering on action sets as complex as the set of all demand functions may be

problematic. Clues may lie in simpler games which are known to have strategic

complementarity of actions.  For instance, Morris (1992) shows that in ‘acceptance games’

where traders reply ‘yes’ or ‘no’ to trades proposed by a referee, the cut-off point on the

space of signals are strategic complements.  One of the challenges thrown up by our

analysis is to demonstrate how such ideas may be applicable to realistic market institutions.
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