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Abstract: This study is focused on the comparison of streamflow composition simulated with three
well-known rainfall–runoff (RR) models (ECOMAG, HBV, SWAT) against hydrograph decomposition
evaluated with End-Member Mixing Analysis (EMMA). In situ observations at two small mountain
testbed catchments located in the south of Pacific Russia are used. All applied RR models and EMMA
analysis demonstrate that two neighboring catchments disagree significantly on the mutual dynamics
of the runoff sources. The RR models' benchmark test is based on proximity to EMMA hydrograph
composition. Different aggregation intervals (season, month, and pentad) were applied to find a
reasonable generalization period ensuring the clarity of results. ECOMAG is most conformable
to EMMA outcome; HBV reflects flood events well enough; SWAT exhibits distinctive behavior
compared to the other models. It is shown that, along with standard efficiency criteria of simulated
and observed runoff proximity, EMMA analysis might provide useful auxiliary information for the
validation of modelling results.

Keywords: hydrograph separation; EMMA; ECOMAG; SWAT; HBV; catchment hydrology

1. Introduction

Understanding runoff composition is a fundamental problem in hydrological sci-
ence [1]. Most of the processes in hydrological systems take place underground and only a
limited range of measurement techniques are available; the observation data need to be
extrapolated in both space and time to predict the response of any catchment to a given
rainfall event with an acceptable uncertainty [2]. Contribution of the different water masses
to total runoff is time-dependent owing to the temporal variability of the flow response
processes. In spite of the many publications on this subject, it is still a challenging task to
determine how a catchment generates runoff as a whole system.

There is an undeniable consensus in the hydrological community that research on ex-
perimental catchments plays a key role in the understanding of the hydrological processes
and provides essential outdoor laboratories for validation flow pathways and runoff gener-
ation mechanisms [3–5]. Small catchments are less inertial (more reactive to rainfall events)
and offer potential noise reduction in the data compared with macro-scale data. Moreover,
small catchments allow one to test hypotheses about runoff generation mechanisms due
to relatively homogenous landscape properties. Alternatively, the greater catchment area
complicates the interpretation of observational data and subsequent modelling results.

Sophisticated hydrological models are powerful tools to test hypotheses about catch-
ment function and deal with uncertainties throughout the observation–conceptualization–
modelling sequence [6]. Plausibly simulated streamflow can be obtained from models
with distinct structures, providing the different runoff compositions, that is widely known
as the equifinality effect. To narrow down the equifinality, it is necessary to evaluate the
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simulation results independently, that is, how realistically the model reflects the natural
behavior of a hydrological system. However, the selection of hydrological models and
the model structure uncertainties are still not fully understood [7–11]. Aggregation of
outcome from different models or evolving model structure along axis of complexity using
a “top-down“ strategy may lead to parsimonious model that provides useful insights into
catchment behavior [10,12–15].

Catchment hydrology is still very much an empirical science [16,17], and it is common
that some parts of a conceptual model may be more rigorously based on physical theory
than others. Empirical approaches are still the basis or part of the numerous well-known
rainfall–runoff (RR) models. The main reason to rely on this empirical knowledge is the
scale-dependency of hydrological response unit (HRU)-based models, where they are more
appropriate than any small-scale physical laws [18–21]. The model parameters are seldom
directly measurable and are inferred from calibration. They are generally model-specific
and represent average behavior in terms of both spatial and temporal variability [22]. Model
structure uncertainty is as impactive on modelling outcome as parameter uncertainty, if
mathematical formulation is not based on fundamental laws but adopts a set of lumped
functions relating impact to the response [18].

All of the above creates a desire for alternative means of model evaluation in terms
of how well a model captures the partitioning, storage, and release of water by a catch-
ment [23]. End-member mixing analysis (EMMA) can provide estimates of the relative
contributions of direct (surface) flow, deep groundwater flow, and soil percolation flow to
total catchment runoff in the context of where these end-members can be easily separated
and sampled [24–27]. Numerous researchers have indicated the importance of water chem-
istry for the transit time estimation and recognized the utility of tracers as an additional
independent measure for model evaluation [27–32]. Despite gradual improvements in
the reliability and economics of the field and laboratory methods, which provide neces-
sary fine-time resolution data series at the present time [33,34], widespread application of
EMMA is limited by the lack of suitable geochemical datasets.

This study is focused on a comparison of streamflow composition simulated with three
well-known RR models (ECOMAG, HBV, SWAT) against the hydrograph decomposition
obtained from EMMA. The main objective is to choose the RR model that best complies
with EMMA in terms of the hydrograph separation that can be linked to a more accurate
representation of real runoff generation processes. In general, it relates to the problem
of harmonizing various approaches based on the solution of direct and inverse tasks of
modelling. In the ideal case, the results of solving direct and inverse tasks should be the
same or match closely.

The paper is laid out as follows: the next section describes the case study catchments,
field observation details and all used models (EMMA, ECOMAG, SWAT, and HBV). Re-
sults of EMMA and hydrological simulations are presented in Section 3. For clarity, the
results of hydrological model calibration are placed in the Appendices A–C. All results
are generalized and discussed in Section 4; and finally, a summary and several concluding
remarks are provided.

2. Description of Study Objects, Data, and Measurements Methods

The studied territory is the Pacific Russia boreal forests and is influenced by the East
Asian Monsoon. Here, runoff modelling and hydrograph separation were performed for
two small catchments (Elovy (3.5 km2) and Medvezhy (7.6 km2) creeks) that belong to
the Upper-Ussuri Biocenological Experimental Station (45 km2, 44◦02′ N, 134◦11′ E). The
considered area is characterized by mid-mountainous relief with moderately steep (Table 1),
locally very steep, hillslopesof up to 30% [3,35]. The average altitudes are 500–700 m a.s.l,
and maximal values reach 1100 m a.s.l. (Figure 1).
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Table 1. Catchments main characteristics.

Characteristics Elovy Medvezhy

Area, km2 3.5 7.6
Avg. height, m 722 704
Max. height, m 962 869
Avg. slope, % 13.5 13.8
Max. slope, % 28.7 31.5

Mean annual precipitation, mm 1 780 830
Mean annual temperature, ◦C 1 3.0 3.2

Avg. discharge, mm day−1 1 0.65 0.75

Note(s): 1 based on observations for the period: 01.01.11–31.12.14 for Elovy creek and the period 01.01.14–31.12.17
for Medvezhy creek.
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Figure 1. The experimental catchments’ topography (vertical distance between iso-level lines is
100 m), localization of observational sites, and soil cover: 1—Dystric Cambisols Humic and Nechic,
2—Dystric Skeletic Leptosols (Humic), 3—Dystric Fluvisols and Sapric Histosols, 4—Dystric Cam-
bisols Gleyic and Stagnic, 5—Dystric Fluvic Cambisols, 6—catchments’ boundary, 7—weather sta-
tions, 8—stream gauges, 9—soil lysimeters, 10—river network.

Air temperature dynamics is characterized by high variability from year to year;
average, and absolute minimal and maximal values are +0.7 ◦C,−45 ◦C (in January) +38 ◦C
(July–August), respectively. The annual average precipitation amount is 700–800 mm,
up to 80% of which occurs during the warm period (from late April to October) as rain.
Unstable intra-annual and long-term precipitation regimes of the territory define runoff
formation conditions of the investigated catchments. Resources of shallow water are not
significant in terms of local water balance due to fractured rocks. Small-river runoff can
be vanishingly low during winter or summer drought periods and reach 30–50 mm d−1

during high-intensity rainfall caused by tropical cyclone–typhoon activity. The range of
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maximal daily heavy rain is 100–200 mm, and frequency of such events is assessed as one
time per 5–6 years. The stable snowpack usually occurs in November, snow-cover depth
reaches 0.5–1 m by the end of March, and the common range of the snow water equivalent
is 100–200 mm.

Field observations were made from March to October in 2012–2018. Two weather
stations (WS-GP1, Delta-T, Cambridge, UK) were mounted at 650 (Elovy catchment) and
750 m a.s.l. (Medvezhy catchment) to record air temperature and humidity, wind character-
istics, and precipitation volume (see Table 1). Stream outlets were fitted with hydrostatic
water-level loggers (Solinst 3001, Georgetown, ON, Canada). Observations temporal reso-
lution was 15 min. Measurements of water discharges were run once in 2–4 days during
low water periods, daily during average moisture conditions, and twice a day during flood
periods. For discharge assessments, flow velocity was measured using magnetic inductive
flow sensor (SEBA FlowSens, Kaufbeuren, Germany); cross-section geometry of riverbeds
in permanent sites was measured simultaneously. To obtain daily discharge for the whole
observation period, a water-level-discharge rating curve Q = f (H) was applied.

Hydrological properties of soil were obtained from 14 soil profiles (4 are located in the
Medvezhy and 10 in the Elovy) [36]. The soil cover of the considered territory is dominated
by the Cambisol group [37]. Brown forest soils here are characterized by a high rock
fragment content (greater than 80% of profile volume) which leads to high infiltration rates
(>30 mm/h).

Rainwater samples were collected to analyze chemical composition by using pyramidal
funnels that were connected to polypropylene collectors. Soil water samples were taken
with the vacuum lysimeters (DIK-8392, Daiki Rika Kogyo Co. Ltd., Kusatsu, Japan) installed
at a depth of 0.35–0.80 m. Streamwater samples were collected simultaneously with
discharge measurements. Streamflow temperature, pH, specific conductance, and total
dissolved solids (TDS) were measured in situ using a handheld multiparameter meter
(Yellow Springs Instrument, YSI Professional Plus, Yellow Springs, OH, USA).

The HCO3 concentration was taken to be equal to total alkalinity, and estimated in the
field laboratory after 2–4 h of sampling by the potentiometric titration method in unfiltered
water samples using the standard technique. Water samples for chemical analysis were
filtered at the field laboratory through the Durapore filter (Millipore, Burlington, MA, USA)
with a pore size of 0.45 µm. To determine the content of cations, about 10 mL of each
filtered aliquot was acidified with purified nitric acid and stored in polypropylene bottles
at room temperature prior to analysis. Then, filtration samples of water for DOC analysis
were stored in 30 mL glass bottles at a temperature of 4–8 ◦C [38–40].

Laboratory analysis of samples was carried out at the Geochemistry Laboratory of
the Pacific Institute of Geography of the Far Eastern Branch of the Russian Academy of
Sciences. The content of cations Ca, Mg, K, Na was determined by Atomic Absorption
Spectroscopic method using a Shimadzu AA 6800 spectrometer. Cl, NO3, SO4 were deter-
mined using a Shimadzu LC 10Avp liquid chromatograph. Dissolved Si was determined
by spectrophotometry method using blue complex with ammonium molybdate, and DOC
by a TOC analyzer—Shimadzu TOC-VCPN.

Data quality control was performed to discard obvious errors associated with the
operation of loggers. According to that, the next simulation periods were suggested: from
2012 to 2014 for Elovy creek, and from 2015 to 2017 for Medvezhy creek. The nearest
WMO weather station 31939 (Chuguevka) is located 35 km northwest of the observation
sites, so its data were used to fill up observational gaps and the cold part of the years.
WRF-ARW model output was applied to derive daily solar radiation interpolated from
closest computational grid nodes.

In this study, three RR models (SWAT, HBV and ECOMAG) represent a wide range of
conceptual diversity of approaches used to solve the direct task of runoff modelling. HBV
is lumped storage-based, and the other two are considered as spatially distributed (HRU-
based) models. They differ in the structure and methods of runoff generation mechanism
parameterization, and physical and mathematical foundation (see Table 2).
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Table 2. Hydrological models main characteristics.

Characteristics ECOMAG SWAT HBV

Spatial discretization HRU HRU Lumped
Temporal discretization Daily Daily Daily

Number of calibrated parameters 11 12 10
Snow component basis Degree-day Degree-day Degree-day

Potential evapotranspiration Dalton method Penman–Monteith Penman–Monteith

Actual evapotranspiration Linear reduction in PET by soil
storage content

Reduction in PET by soil water
content

Linear reduction in PET by soil
storage content

Surface flow Kinematic wave SCS curve number Linear storage
Soil flow Darcy’s law Kinematic storage model Linear storage

Groundwater flow Darcy’s law Linear storage Linear storage
Routing method Kinematic wave Variable travel time Triangular weighted

The end-member mixing analysis (EMMA) framework is an example of solving the
inverse task of modelling using methods of tracer hydrology. In contrast to imitation RR
models, EMMA can be called an identification model, providing the interpretation and
quantification of runoff generation sources. It is substantial: the discharges of different
runoff sources are determined from direct observations of the water and tracer volumes
using the mass balance equations system and some empirical relations. Overall, this could
be interpreted as a sophisticated way to identify runoff sources.

All listed models are well known in the hydrological community and have previously
been applied in the region [36,39–43]. For a description of the models’ structure, variables,
and parameters, the original terms from the base publications are used. Detailed infor-
mation can be obtained from references. A description of the models’ parameterization is
provided in the Appendices A–C.

2.1. EMMA Model

End-Member Mixing Analysis (EMMA) is a commonly applied method to identify
and quantify dominant runoff sources. This method is based on the assumption that
waters, flowing through specific compartments of catchment, acquire its unique chemical
signatures. Thus, some solutes can be used as natural tracers to determine the contributions
of each water source (labelled as the “end-member”, EM) to total runoff. This hydrograph
separation technique is based on the mass balances for the tracers and water, and assumes
that: tracers are conservative; chemical signature of water contributions from various
sources is constant and unique to make it distinguishable from others; mass conservation
law applies to both the water quantity and solute quantity including mixing of water
masses without their essential transformation [44,45].

Water runoff source identification and estimation of its contributions to streamflow
(proportions) were performed using EMMA in combination with the diagnostic tools of
mixing models. The algorithms for multidimensional statistical analysis used are imple-
mented by the software library of extensions for Excel-Chemometrics [46]. According to
the procedure described in Hooper [47], conservative tracers and the number of EMs that
contribute to streamflow were identified from streamflow chemical data without using
information about EMs. First, bivariate scatter plots of solutes against each other were
analyzed for the linearity of mixing. Solutes that demonstrated collinear structure in the
bivariate plots were considered as acceptable tracers. These solutes/tracers are variables of
measured chemical data matrix G, n × p, where n is the number of samples, and p is the
number of tracers. They are standardized using the mean and standard deviation of each
solute. Standardized matrix G* was projected into a new Euclidean m-dimensional space
U (m < p), obtaining matrix Ĝ* (n × m). This projection is made by principal component
analysis (PCA) using eigenvectors S (p × p) extracted from the correlation matrix G*T G*
according to the equation

Ĝ* = G* × ST × (S × ST)−1 × S (1)
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Conservative tracers and the number of EMs were determined by examining the
relation of residuals E (the difference between Ĝ and G values, where Ĝ is destandardized
Ĝ*) against the measured values for each solute. The dimension m of space U was increased
until there was no structure (no correlation on the bivariate plots) to the residuals. Those
solutes that exhibit a random pattern in the residuals, controlled by negligible correlation
in the relations mentioned, are considered as conservative. Their number is denoted as k
(k < p). The number of EMs is determined by m + 1.

Then EMMA was used with conservative tracers to identify EMs and to quantify the
proportions of EMs in the streamflow following the procedure described in [45]. Stream-
flow samples chemical data were orthogonally projected using the truncated matrix of
eigenvectors S1 (k × m) extracted from the matrix G1, which includes only k conservative
tracers. Tracer concentrations in EMs were standardized using the mean and standard
deviation of each tracer in streamflow samples and projected using the same eigenvectors
S1. Mixing diagrams were plotted in the U-space to screen EMs which contribute to the
streamflow. In our study, the first two or three principal components (PCs), or the PCA
scores, were used to determine the proportions of the EMs in the runoff composition. Thus,
the PCs are considered as the tracers for the mixing model—two tracers for a three-source
mixing model or three tracers for a four-sources mixing model.

Determining the proportions of sources in the streamflow based on the mixing model
is performed in the usual way, by solving a system of three or four mass balance equations
for water and tracers, as described in [45]. Model validation was performed by multiplying
the hydrograph separation results (proportions) on the measured solute concentrations
in the EMs to reproduce the chemical data of streamflow for conservative solutes. The
high correlation between the series of modelled and measured tracer concentrations in
streamwater indicates the adequacy of the obtained mixing model.

Hooper [47] suggested that assumptions of linearity of mixing and conservative
behavior of tracers can be evaluated using bivariate scatter plots and residuals derived
from the selected model. Bivariate scatter plots should be developed for all potential
combinations of available solutes. A collinear structure in the bivariate plots could be
used to infer conservative behavior. These data were used to construct a correlation matrix
followed by principal components analysis (PCA) to extract eigenvectors and eigenvalues.
The eigenvectors form the basis for a new Euclidean space, U-space.

2.2. ECOMAG Model

ECOMAG (ECOlogical Model for Applied Geophysics) is the process-based, semi-
distributed RR model [48]. The spatial structure of the ECOMAG model splits watershed
into sub-basins based on topography, river network structure, soil and vegetation type,
land use, and variability of climate characteristics. The main ECOMAG model equations
were adopted from the full spatially distributed model [49] by neglecting secondary terms
and spatial aggregation at subbasin scale. Daily resolution time series of precipitation,
air temperature, and air relative humidity are used as inputs. Computation of river
basin hydrological response is described by two main phases: calculating the effective
precipitation for each sub-basin and then routing it through the river network. Runoff from
sub-basin is calculated as the sum of three components: Horton overland (surface) flow
(when rainfall has exceeded infiltration capacity and depression storage capacity), soil flow
(sum of runoff from horizon A and B) and groundwater outflow (baseflow and infiltration
from horizon B). In warm periods, precipitation is partially infiltrated and moves along the
hillslopes (over impermeable surfaces) as interflow. Excess water produces surface flow
and moves downslope towards the drainage network. The rest of the water that has not
been drained into rivers as lateral or surface flow can be evaporated or percolated into deep
aquifers. Within cold and mid-season periods, the model describes snowpack evolution
and soil freezing–thawing cycle.
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2.3. SWAT Model

The Soil and Water Assessment Tool (SWAT) is a semi-distributed hydro-ecological
model [50,51]. This model uses the net of hydrological response units (HRUs) as the base
elements to model main hydrological cycle processes—infiltration, evaporation, runoff
generation, and soil hydrothermic and snow-cover dynamics. The daily volume of precipi-
tation excess and surface runoff is calculated by the empirical SCS CN method. Kinematic
wave approximation is used for channel routing. Daily rainfall, maximum and minimum
air temperature, solar radiation, relative air humidity and wind speed are the inputs for the
model. The SWAT uses air temperature to define input precipitation as rain or snow. Some
of the precipitation, intercepted by canopy, can be evaporated. Then, the simulation is
performed as two successive land and routing phases. The snow thawing is linearly related
to snow cover depth and fraction of watershed area and air temperature. At the top of the
soil profile, precipitated water can either flow overland or infiltrate into underlying strata
if their temperature is positive, the field capacity of the upper layer is exceeded, and the
underlying soil layer is not saturated. Water may be partially evaporated and turned into
lateral or groundwater runoff components inside the soil profile. The dynamic of the lateral
flow runoff component is calculated using the saturated conductivity of each soil layer.
Percolated through a soil column, water is proportionally divided between unconfined
and deep aquifers. Potential evaporation is used to calculate the water exchange between
groundwater and the bottom of the soil profile.

2.4. HBV Model

The conceptual HBV model was developed by the Swedish Meteorological and Hy-
drological Institute (SMHI) [52]. The model consists of three main modules: snowmelt and
snow accumulation, soil moisture and effective precipitation routine, and runoff transfor-
mation to catchment ’s outlet. The measured precipitation is supposed to be snow if the
air temperature is lower than threshold temperature TT; otherwise, precipitation appears
as rain. The simulated snowpack volume can be adjusted with correction factor SCF. The
degree-day method is used for snowmelt calculation. Groundwater recharge and actual
evaporation are simulated as functions of actual soil storage. The amount of water available
for runoff generation is calculated as the ratio of actual soil moisture SM to field capacity FC
and the power coefficient Beta-(SM/FC)Beta. The model first recharges the upper storage
and then the lower storage using percolation parameter PERC. Surface flow appears when
the upper storage capacity exceeds a certain threshold. Potential evapotranspiration (PET)
is input to the model, which can be tuned by the Cet parameter. Actual evaporation is equal
to PET when SM/FC is higher than the LP parameter; otherwise, a linear reduction is used.
The runoff is calculated as the sum of three linear outflows: surface flow Q0, interflow
Q1, and baseflow Q2 with three correspondent recession coefficients K0, K1, and K2. A
transformation function with the triangular weighting parameter MAXBAS [53] is used for
smoothing the total runoff to obtain the discharge at the outlet.

3. Results
3.1. EMMA Results

The EMMA procedure was performed at the Medvezhy catchment for the period
2015–2017, and at the Elovy catchment for the period 2012–2014. Bivariate solute plots
were constructed for all pairs of chemical indicators using streamwater samples for the
whole period of observations. Diagrams depicting collinearity and linear trends were used
to define tracers with conservative behavior. Stronger linear trends between pair solutes
were observed at the Medvezhy catchment, and weaker linear trends were observed at the
Elovy catchment, R2 < 0.5 (see Table 3).
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Table 3. Pairwise correlations of the concentrations of solutes, ranked by R2 (n is the number
of samples).

R2 Medvezhy Catchment, n = 69 Elovy Catchment, n = 126

>0.71 TDS—HCO3, SO4—Mg,
HCO3—Mg, TDS—Mg –

0.7–0.61
DOC—SO4, HCO3—SO4,

SO4—Ca, HCO3—Ca,
TDS—Ca, Ca—Mg

–

0.6–0.51 TDS—SO4, DOC—Mg –

0.5–0.41 – HCO3—Mg, HCO3—TDS,
SO4—NO3

0.4–0.3 – NO3—HCO3, NO3—Na,
HCO3—Na, Na—TDS

For the Medvezhy catchment, PCA was performed for the matrix of chemical indica-
tors including six solutes: TDS, DOC, HCO3, SO4, Ca, and Mg. The first two PCs explain
more than 92% of the total variance of these data (see Table 4). Analysis of PCA-model
residuals against measured values for individual solutes at two-dimensional mixing sub-
spaces is shown in Figure 2a. The random pattern for each solute indicates that these six
tracers could be considered as conservative and can be used for adopting the mixing model
with three EMs.
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For the Elovy catchment, a four-source mixing model is required to successfully
represent the runoff generation in the Elovy Creek [39,54,55]. The fact that HCO3, Mg, NO3,
Na tracers captured the 95% of the total variance is explained by the first three principal
components. The hypothesis about conservatism of tracers (stable concentrations of tracers
along their pathways) is confirmed by the randomness structures of residuals shown in
Figure 2b.
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Table 4. The percent of variance explained by PC (U) for individual catchments.

Catchment Tracers U1 * U2 U3 U4 U5 U6

Medvezhy TDS, DOC, HCO3, SO4, Ca, Mg 83.6 8.6
(92.2)

4.4
(96.7)

2.1
(98.7)

0.9
(99.6)

0.4
(100)

Elovy HCO3, Mg, NO3, Na 64.8 20.2
(85.0)

9.7
(94.7)

5.3
(100) - -

Note(s): * Values in parentheses—the cumulative percent of total variance explained by set of PCs from the first to
the current.

Here, the strict randomness of the residuals is not always confirmed. Several known
tests for randomness do not seem quite suitable because of inconvenient properties of data
series—non-Gaussianity, uneven sampling, and discontinuous intra-series connectivity.
This uncontrollably reduces the reliability of the test assessments. In this case, it is advisable
to use only the simplest criteria and use their conclusions only as one of the arguments. We
used as a test the critical values of the R2 assessments by sample (with its true value zero),
calculated based on the well-known Fisher’s normalizing z-transform at a significance of
99% [56]. For samples of 69 and 126 members, the critical values of R2 are approximately
0.101 for the Medvezhy and 0.054 for the Elovy, respectively (compared with Figure 2).

In the case when the residuals are not completely random, but with an insignificant
value of R2, the inclusion of the tracer can be justified by independent considerations and
analysis of the simulation results as a whole. For example, R2 for Ca (see Figure 2a) is
essentially non-random. However, there is a group of three outliers in this residual plot,
related to samples taken during one week in May 2015. The exclusion of this group from the
sample reduces the value of R2 by almost half, which serves as an argument for including
this tracer in the model. The use of not completely conservative tracers decreases the
accuracy and reliability of estimates in the mixing model. This fact was taken into account
when discussing the conclusions below. The example above probably indicates that the
existing dataset does not sufficiently account for the seasonal dynamics; hence the mixing
models are considered reliable only for the summer-autumn rain-flood season (from June
to September for the studied territory).

Mixing diagrams were constructed for each creek by orthogonally projecting the
conservative tracer’s matrix of river samples into U-space. Tracers that averaged concen-
trations of EMs (Table 5) were also projected into the same U-space using eigenvectors.
The two-dimensional mixing diagram for Medvezhy creek is presented in Figure 3a. River
samples are located in the mixing subspace of tracers <U1, U2> and are bound by three
sources. The mixing diagram for Elovy catchment represents the cloud of streamflow
samples, which are located in the three-dimensional mixing subspace <U1, U2, U3> and
determined by four sources (see Figure 3b). In both cases, the EM-based figures (triangle or
tetrahedron) enclose most of the streamflow samples in the U-space. This geometrically
confirms the possibility of representing each streamflow sample composition as a mixture
of runoff sources, and generally verifies the mixing model.

The identification and interpretation of EMs for Medvezhy creek is unambiguous. Two
EMs are related to ground and soil water (GW and SW1), and the third one to rainwater
(RW). The GW is associated with streamflow samples taken during the low flow period
and represents the baseflow component of the runoff. Samples of SW1 were taken from
the upper organic horizon of soil and can be interpreted as lateral (or inter-soil) flow. RW
reflects quick overland runoff that reached the drainage network almost without chemical
transformation. The mixing subspace for Elovy catchment evolved to four EMs. The first
three of them (RW, GW, and SW1) are the same as for Medvezhy, and the fourth, SW2, is
associated with soil mineral source and sampled with a lysimeter at the bottom of the steep
hillslope from fir-spruce forest soil with slow organic matter destruction.
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Table 5. Chemical composition of end-members. n—number of samples, range of concentrations is
in the numerator, average values are in the denominator.

Tracer, mg/L

Medvezhy Catchment Elovy Catchment

End-Members

Rainwater
(n = 36)

Groundwater
(n = 15)

Soilwater
(n = 12)

Rainwater
(n = 36)

Groundwater
(n = 5)

Soil Water 1
(n = 13)

Soil Water 2
(n = 7)

HCO3
<0.1–2.30 75.6–90.3 14.6–24.3 <0.1–2.30 14.2–19.2 10.4–18.0 6.71–9.76

0.37 84.3 19.4 0.37 16.4 13.7 8.11

Mg <0.02–0.13 1.66–5.18 3.25–5.36 <0.02–0.1 0.85–1.04 0.34–0.61 0.39–0.55
0.05 3.47 4.56 0.05 0.98 0.4 0.48

TDS
0.05–14.9 121–163 30.5–100 - - - -

5.32 146 63.8

DOC
0.18–5.60 2.50–4.76 4.10–42.9 - - - -

1.77 3.56 18.1

SO4
<0.32–5.75 16.2–29.0 4.07–9.09 - - - -

1.42 23.9 6.71

Ca
<0.1–6.78 17.8–38.9 6.96–22.7 - - - -

0.65 27.8 15.4

NO3 - - - <0.2–5.1 <0.2–0.72 <0.2–0.15 2.13–7.45
1.17 0.39 0.05 4.66

Na - - - 0.04–1.0 2.82–2.99 4.72–7.80 2.00–2.66
0.14 2.91 5.79 2.41
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The mixing models were finally verified by direct calculation of modelled tracer con-
centrations for every streamwater sample using EM tracer concentrations and estimated
proportions of water runoff sources. The modelled and measured series of streamwa-
ter sample tracer concentration (Figure 4) are characterized by relatively high R2 values
(0.75–0.98).

The EMMA runoff components and measured discharges were used to build the
relationships: GW = f (Q) and SW1 = f (Q) at Medvezhy creek; GW = f (Q), SW1 = f (Q)
and SW1 + SW2 = f (Q) at Elovy (see Figure 5). The proportions of RW (for both streams)
and SW2 (for Elovy), which are weakly related to measured discharges, are determined as
the remainder from the water balance equation. These relationships were used to calculate
the daily streamflow composition series using the measured hydrographs.
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Figure 5. Streamflow constituents’ rating curves: (a) Medvezhy catchment; (b) Elovy catchment;
GW—orange dots, SW1—yellow triangles, and SW1 + SW2—red squares.

3.2. Results of Hydrological Simulations

All used models were calibrated independently. Hydrological simulations were made
continuously (winter season included) with daily time step and a one-year warm-up period.
Calibration was performed manually using a trial-and-error approach. The details of the
models’ parameters values appear in the Appendices A–C. Observed and simulated hydro-
graphs for typhoon-induced flood events of 2012 and 2016 are shown in Figure 6. Model
efficiency was assessed using common goodness-of-fit measures (determination factor R2,
Nash and Sutcliffe efficiency (NSE) [57], and relative bias (BIAS, %) against the measured
discharge at catchment outlets (see Table 6). NSE is categorized as “very good” when its
value > 0.75 and “unsatisfactory” when its value < 0.5, interim ranges (0.75 > NSE > 0.65 and
0.65 > NSE > 0.5) are defined as “good” and “satisfactory”, respectively. According to BIAS
values, simulation results are assumed to be unacceptable if |BIAS| > 25%, “satisfactory”
if |BIAS| > 15% and < 25%, “good” for if |BIAS| < 15% < and > 10%, and “very good” if
|BIAS| < 10% [58]. According to these criteria, more complex and sophisticated models
provide better results for both catchments, and ECOMAG outperforms SWAT in most cases.
HBV provides good results for the period of high flow but demonstrates poor performance
for low flow (0.01–1.0 mm d−1) periods.
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Figure 6. Dynamics of precipitation (1), calculated (2—ECOMAG, 3—SWAT, 4—HBV) and observed
(5) runoff for the whole period of hydrological simulation ((a)—Medvezhy creek, (b)—Elovy creek)
and examples of flood events ((c)—Medvezhy creek, (d)—Elovy creek).

Table 6. Goodness-of-fit characteristics for runoff simulations with different models.

Model
Medvezhy Elovy

Year R2 NSE BIAS, % Year R2 NSE BIAS, %

ECOMAG

2015 0.92 0.91 −5 2012 0.93 0.91 −0.3
2016 0.92 0.90 8 2013 0.87 0.80 13
2017 0.91 0.87 −6 2014 0.84 0.83 4

2015–2017 0.92 0.90 4 2012–2014 0.90 0.89 10

SWAT

2015 0.94 0.88 −20 2012 0.90 0.90 −4
2016 0.89 0.85 6 2013 0.82 0.81 −1
2017 0.69 0.67 −12 2014 0.93 0.88 −13

2015–2017 0.90 0.86 −1 2012–2014 0.86 0.86 −6

HBV

2015 0.35 0.35 −8 2012 0.96 0.96 1
2016 0.92 0.91 18 2013 0.83 0.83 −6
2017 0.56 0.53 −3 2014 0.64 0.62 4

2015–2017 0.91 0.91 12 2012–2014 0.88 0.88 −0.3

4. Discussion of Hydrograph Separations

The dynamics of runoff composition for the years with significant flood events is
presented in Figure 7. All RR models demonstrated that two neighboring small catchments
significantly differ in the mutual dynamics of the runoff sources. Geochemical analysis
confirmed the differences in runoff generation processes at the both studied catchments.
For the Medvezhy catchment, the mixing model provided a typical three-source stable
structure and reliable estimates of the source proportions. The proportion of soil runoff
for this catchment is relatively small. Conversely, the soil runoff proportion for the Elovy
catchment is more significant against surface and groundwater. The younger geology
and higher elevation range within this smaller and narrower catchment, with at least two
apparent soil–vegetation belts, led to applying a four-source (with two different soil water
sources) EMMA model.
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From the resulting simulated series, data on runoff constituents were extracted, which
directly depend on the model applied. These data were compared with runoff sources
obtained from EMMA. Here, we would like to highlight the two main aspects concerning
the correctness of further comparison of runoff composition provided by different models.

First, it is difficult to reconcile the interpretations of modelled runoff constituents.
The hydrological models derive runoff sources from hydro-physical and hydraulic charac-
teristics of each proposed flow path. Their results are conditioned by the different basic
concepts used, always more or less speculative. On the other hand, the tracer separation
model is based on the interpretation of measured hydrochemical data related to water
residence time, geochemical features of rocks, and interaction intensity with soil matrix.
The runoff sources in different models, denoted by the same terms, may not have the same
sense. The problem of compatibility and reconciling of different interpretations of the river



Water 2023, 15, 752 14 of 23

flow structure is one of the most complex problems of runoff theory and is beyond the
scope of this study.

Second, the comparison may be complicated by relatively low accuracy and instability
in daily runoff proportions, “measured” by EMMA. This is due to both the well-known limi-
tations of EMMA (incomplete conservatism of tracers and spatial variability of sources) and
the limited number of samples leading to significant dispersion in statistical relationships
used to calculate daily series of the runoff constituents. Concerning this latter problem,
data aggregation in longer time intervals should allow one to mutually compensate for the
random errors and to smooth the instability in daily runoff fractions. Therefore, the range
of data aggregation intervals (season, month, and pentad) are applied to find a reasonable
data generalization period, ensuring the clarity of the results.

The further benchmark analysis is based on the ranking of proximity of runoff con-
stituents simulated by RR models to hydrograph decomposition by EMMA, regarded as an
identification model. Each RR model used (ECOMAG, HBV, SWAT) provides three runoff
fractions related to surface, soil, and groundwater. The EMMA mixing model separated the
Medvezhy catchment runoff to three sources that correspond to the runoff structure of hy-
drological models. For the Elovy catchment, two EMMA soil flow sources are summarized
to match the structure of the three runoff components’ structure in other models.

As the first step, the most generalized seasonal (June–September) data aggregation
(see Table 7) was examined. The total seasonal runoff volume for the Medvezhy catchment
is reproduced more accurately: by ECOMAG in 2015 and by HBV in 2017; in 2016, SWAT
and ECOMAG demonstrate almost identical proximity. The seasonal runoff composition,
provided by EMMA, was captured best using ECOMAG for the dry seasons of 2015 and
2017. However, during the high-water season of 2016, it was impossible to choose the
best hydrograph separation (as the closest to reference EMMA) among the three simulated
variants discussed.

Table 7. Seasonal runoff constituents obtained from rainfall–runoff models and hydrograph separa-
tion by EMMA.

Source
Medvezhy Elovy 1

SWAT HBV ECOMAG EMMA SWAT HBV ECOMAG EMMA
2015 2012

Surface, % 0.0 0.0 43.5 25.6 0.0 22.1 7.7 15.1
Soil, % 97.8 2.8 29.9 14.6 35.3 72.3 89.3 75.5

Ground, % 2.2 97.2 26.6 59.8 64.7 5.6 3.0 9.4
Total, mm 26.9 43.9 34.6 37.2 64.6 74.1 78 74.1

2016 2013

Surface, % 57 7.8 32.1 34.4 0.0 5.0 3.5 24.4
Soil, % 33.3 43.7 63.0 33 36.2 85.9 94.2 66.3

Ground, % 9.7 48.5 4.9 32.6 63.8 9.1 2.3 9.3
Total, mm 211.3 233.4 213.3 195.2 62.2 76.6 100.3 85.6

2017 2014

Surface, % 0.7 0.0 58.3 27.3 0.1 1.0 3.8 23.8
Soil, % 99.3 13.3 22.9 18.3 45.4 86.2 92.8 63.2

Ground, % 0 86.7 18.8 54.4 54.5 12.8 3.3 12.9
Total, mm 35 38.1 37 38.7 49.4 73.7 71.0 66.6

2015–2017 2012–2013

Surface, % 44.1 5.7 35.8 32.1 0.0 9.3 4.9 21.2
Soil, % 47.8 34.4 54.8 28.4 38.4 81.5 92.3 68.4

Ground, % 8.1 59.9 9.4 39.5 61.6 9.2 2.8 10.4
Total, mm 273.1 315.5 284.9 271.2 176.2 224.3 249.3 226.3

Note(s): 1 Soil flow proportion for Elovy catchment obtained by EMMA is the sum of the SW1 (soil organic) and
SW2 (soil mineral) parts; see Section 3 for details.
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In most cases of the Elovy catchment runoff separation (see Table 7), HBV seems
slightly better than ECOMAG, and it was the most successful in the estimation of the
groundwater constituent. SWAT for both catchments provided an essentially different
runoff composition from EMMA and greatly underestimated the Elovy catchment total
seasonal runoff volume. Thus, seasonal data aggregation is not optimal for an unambiguous
selection of the best simulation model, at least for the available data.

Next, monthly data aggregations were used to rank the RR models according to a
better approximation to the reference EMMA. The monthly aggregation of the three runoff
simulation results was compared with 12 observed monthly runoff volumes (four months in
each of the three years) and their 36 source proportions estimated by EMMA (see Figure 8).
For each case, the simulation providing the closest approximation was fixed, and then the
total number of the best results was calculated.

For the Medvezhy catchment, the closest proximity of the ECOMAG and EMMA
runoff composition is more obvious (see Figure 8). Comparison of monthly runoff volumes
showed the approximate parity between HBV and ECOMAG-7 versus five cases (SWAT
loses all the cases). ECOMAG runoff composition is close to EMMA results in 22 out of
36 cases; it is followed by HBV with 11 cases, while SWAT is successful only in 3 cases.

Conversely, for the Elovy catchment, the runoff compositions of the HBV and ECO-
MAG models are close to the EMMA hydrograph separation (see Figure 8). For runoff
volumes of the Elovy catchment, both ECOMAG and HBV score five cases, and SWATthe
remaining two cases. The Elovy monthly runoff source proportions provided by HBV and
ECOMAG are close to EMMA estimates in 16 cases, and SWAT—in 4 cases. An advantage
of the HBV model clearly appears in the estimation of the groundwater fraction in stream-
flow. This is also an advantage of the ECOMAG model—in the estimation of the surface
water fraction. The SWAT model hydrograph decomposition based on monthly analysis
appear to be uncompetitive.

Based on results of a five-day data aggregation comparison (see Figure 9), the advan-
tage of the ECOMAG model becomes more pronounced for the Medvezhy catchment. The
ECOMAG runoff source dynamics is very similar to the EMMA decomposition. However,
for the outstanding 2016 flood event, HBV results are closer to EMMA, while the ECOMAG
provided significantly different runoff composition. For the Elovy catchment, it is hard to
choose with confidence the best approximation to EMMA decomposition from the results
of the ECOMAG and HBV models. It should be noted along the three years (2012–2014)
forming the observation series on the Elovy catchment are similar in terms of volume
and regime of runoff, in contrast to 2015–2017, included in the observation series on the
Medvezhy catchment. An extreme event similar to the flood of 2016 was not observed at
the Elovy catchment.

In accordance with comparison results, the ECOMAG model yielded the best agree-
ment with EMMA, HBV was second, and the SWAT model (despite outperforming HBV by
NSE efficiency somewhat) was last. The competitive advantage of the ECOMAG model is
provided by the proportion comparability of all three runoff sources and the mutual dynam-
ics of their proportions as well. However, while surface runoff estimated by ECOMAG is
in good agreement with EMMA, groundwater source estimations differ markedly. In some
cases, the HBV model is able to reproduce the EMMA ground runoff quite accurately, but
rather the overall pattern over relatively long (seasonal) intervals, not its detailed behavior.
At all times, SWAT showed more difference from EMMA than other models.

EMMA clearly explained the differences in hydrological behavior between the catch-
ments due to the need to use four end-members for the Elovy catchment instead of the
usual three for the Medvezhy catchment. The need to use a four-component mixing model
suggests that the soil interflow of Elovy catchment is more complex in its organization
compared to that ofthe Medvezhy catchment.
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The simplified lumped models (e.g., HBV) provide the classical storage-based composi-
tion of the resulting hydrograph. More sophisticated models, by means of the hydrological
characteristics of the soil horizons, allow one to separate the interflow by means of soil
horizon hydrological constants (WP, AWC, FC), and vertical and horizontal filtration within
one or more layers.

All the above-noted inferences about the representative features of runoff generation
in various models were formulated only preliminarily based on the limited data used. The
difference in performance can also be partly attributed to the subjective choice of the final
model parameterization. It should be concluded that the monthly and synoptic (five/ten
days) data aggregation are the scales at which the seasonal runoff dynamics is well suited
to clearly compare the RR models with representation of flood events in aggregated view.

5. Conclusions

This article demonstrates the results of comparing the simulated runoff hydrographs
and runoff constituents obtained by calibration of three different RR models (SWAT, HBV,
ECOMAG), with observed runoff hydrographs and the runoff sources’ dynamics provided
by EMMA. For the study, we used in situ observations in two typical small experimental
catchments of the mountain-taiga region in the south of Pacific Russia. Both the RR
and tracer models provide unequivocal evidence that two neighboring small catchments
significantly differ in the structure of runoff generation processes related to differences in
the geological and landscape structure. It is shown that compliance with EMMA results
may provide useful auxiliary information for validation of hydrological modelling results
besides the use of standard efficiency criteria that reflect the proximity of simulated and
observed runoff values.

Summarizing the above, we can give a preliminary answer to the question that mo-
tivated this study. Comparison of runoff composition obtained with direct and inverse
modelling can rank the RR models in terms of physical description completeness of the
runoff generation processes. At the same time, the problem of reaching a detailed model-to-
model correspondence of runoff composition dynamics remains an urgent challenge. This
requires development of unified classifications of water mass types within a river basin
and knowledge of runoff generation mechanisms taking into account regional specifics.
All conclusions are preliminarily based on limited observation data from two analyzed
objects. The main perspectives of the research require progress towards development in
methodology, terminological, and conceptual compatibility of interpretations of streamflow
composition behind various approaches.
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Appendix A

ECOMAG hydrological simulation results
The ECOMAG model was used by the authors for large watersheds of lowland rivers

in European Russia [59,60], Arctic rivers [61], and the Amur River [62] and for medium-
sized semi-mountain rivers [63]. In this study, the model was applied to the scale of an
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experimental catchment in Russia for the first time. The average area of model units for the
studied catchments varies within 0.3–0.5 km2. In the model, soil and groundwater flow
was described by the Darcy equation, and surface flow was described by the kinematic
wave equation. In conditions of high soil moisture, the actual evaporation was equal to the
potential, and then, it decreased linearly to zero as the soil moisture decreased to the wilting
point. Potential evaporation was estimated according to the Dalton method. The snowmelt
rate is calculated using the degree-day method. Initial parameter values were assigned
from available measurements and databases. During calibration, the ratio between the
initial and optimized parameter values is fixed [64]. The values of the main calibrated
parameters are presented in Table A1.

In the previous experience of applying ECOMAG for the whole Upper-Ussuri River
basin [65], it was found that the most sensitive parameters were EK and GFB. To simulate
the hydrological response to intensive rainfall of the small studied mountain catchments
with steep hillslopes and high horizontal soil saturated hydraulic conductivity, two addi-
tional parameters, GFA and GROUND, were incorporated into the calibration procedure.
Calibrated values for vertical and horizontal saturated hydraulic conductivity (GFB and
GFA) demonstrated an unexpected large difference for two closely located catchments.
The GFA value for Elovy creek was an order of magnitude greater in comparison with
Medvezhy creek, and the GFB parameter, on the contrary, was lower. Soil evaporation
coefficient (EK) was slightly higher for Elovy creek. The baseflow constant parameter
(GROUND) was an order of magnitude smaller than the values obtained in the previous
study for its major watershed [65] and differed by almost two orders of magnitude for the
two studied catchments. All these facts indicate the difference in the runoff generation and
distinctive geological and geomorphological conditions of the studied objects. Given the
study of the runoff over the summer period, the model was insensitive to the parameters of
the intensity of snowmelt (ALF) as well as the temperature threshold for the precipitation
phase (TCR) and snowmelt (TSN). For both studied catchments, the air temperature gradi-
ent (TGR) was a normal value, and the precipitation gradient (PGR) was not used because
the precipitation in the model was determined from the data of two automatic weather
stations, which are representative of the catchments.

Table A1. Values of ECOMAG calibrated parameters.

Parameter Short Name Medvezhy Elovy

Coef. of vertical saturated
hydraulic conductivity GFB 8.3 6.5

Coef. of horizontal saturated
hydraulic conductivity GFA 1 10

Soil evaporation coefficient EK 0.75 0.8
Baseflow constant, mm day−1 GROUND 0.009 0.0001

Coef. of snowmelt intensity, mm day−1 ◦C ALF 0.28 0.45
Critical air temperature snow/rain, ◦C TCR 0.5 0.5

Snowmelt air temperature, ◦C TSN 0.1 0.1
Air temperature gradient, ◦C 100 m−1 TGR −0.6 −0.6
Precipitation gradient, mm 100 m−1 PGR 0 0

Coef. of vertical saturated
hydraulic conductivity GFB 8.3 6.5

Coef. of horizontal saturated
hydraulic conductivity GFA 1 10

Appendix B

SWAT hydrological simulation results
The ArcSWAT 2012 GIS interface was used for preparing simulation and model cali-

bration. Model HRUs are subbasins with an area of 1–3 km2. Potential evaporation was
computed by the Penman–Monteith method. Channel routing was simulated by variable
travel time method. A set of calibrated parameters and their values are presented in
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Table A2. Values of CN2 (runoff curve number) of both basins correspond to group “A”
of high infiltration capacity soils [66]. Calibrated values of the evaporation compensation
factor (ESCO) from soil profile allow the roots of trees to extract water from all soil layers
for evapotranspiration. Parameters for groundwater simulation (DEP_IMP, ALPHA_BF,
GW_DELAY and GWQMIN) were specified during model calibration.

High values of OV_N for Medvezhy creek mean that, during flood events, most
of the rainwater quickly infiltrates the soil and reaches the catchment drainage network
as interflow through the system of subsoil drains [43,67,68]. The roughness should be
considered as total hillslope flow resistance [36,69]. In the case of Elovy creek, the model is
insensitive to the OV_N parameter, which means that a fraction of surface flow is negligible.
The principal difference is between ESCO and RCHRG_DP parameters. It means that Elovy
basin evaporates more water and Medvezhy loses significant amounts of water from the
soil profile to recharge deep aquifers (losses). The model systematically underestimates
the maximum runoff for both catchments. This can be explained by two facts: the first
is an underestimation of CN value for the soil saturation condition, and the second is an
overestimation of rainfall losses for the vegetation to intercept during periods of heavy
rains (>100 mm day−1).

Table A2. Values of SWAT calibrated parameters.

Parameter Short Name Medvezhy Elovy

SCS runoff curve number for moisture
condition II CN2 35.0 35.0

Roughness coefficient for overland flow OV_N 30.0 0.01
Evaporation compensation from soil ESCO 0.1 0.46

Travel time of lateral flow, days LAT_TTIME 3.5 7.7
Depth of the impervious layer, m DEP_IMP 4.25 5.1

Baseflow recession constant ALPHA_BF 0.25 0.13
Time to reach the groundwater, days GW_DELAY 1.5 1.55
Recharge of deep aquifer coefficient RCHRG_DP 0.55 0.24

Threshold for return flow to occur, mm GWQMN 50 0.0
Capillary rise coefficient GW_REVAP 0.2 0.2

Threshold for GW_REVAP to occur, mm REVAPMN 25 0
Slope length for lateral subsurface flow, m SLSOIL 48 59

Appendix C

HBV hydrological simulation results
HBV-light standard version was used; calibration was performed manually using the

user-interface developed by [53]. PET was calculated by the Penman – Monteith method on
a daily basis. Obtained model parameters (see Table A3) clearly demonstrate the difference
in FC, Beta, PERC, recession, and Cet factors for investigated catchments. The instream-
routed MAXBAS is in the same range. The obtained soil profile-related parameters lead to
deeper and more permeable soil for Medvezhy. The difference in Cet parameter is low and
can be explained by the watershed hillslope aspect. Higher values of recession coefficients
for Medvezhy correspond to fast lateral flow. Special attention is drawn to the recession
coefficient K2 for Elovy creek. The value of K2 actually means that this part is not presented
for this small catchment. The used model version does not allow deep aquifer losses, so in
case of long-term calculation, the near-zero value of K2 will lead to accumulation of water
in low storage and significant bias in modelling results.
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Table A3. Values of HBV calibrated parameters.

Parameter Short Name Medvezhy Elovy

Max. soil storage content, mm FC 350 150
PET limit LP 0.2 0.58

Recharge parameter Beta 1.7 2.7
Max. percolation rate, mm day−1 PERC 2.6 1.6

Upper zone limit, mm HL 28 45
Recession coef. K0 0.99 0.16
Recession coef. K1 0.40 0.03
Recession coef. K2 0.13 0.0001

Length of triangular weighting
function, days MAXBAS 1.8 2.9

PET correction factor, 1 ◦C−1 Cet 0 0.03
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