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ABSTRACT

Context. Density and velocity fluctuations on virtually all scales observed with modern telescopes show that molecular clouds (MCs)
are turbulent. The forcing and structural characteristics of this turbulence are, however, still poorly understood.
Aims. To shed light on this subject, we study two limiting cases of turbulence forcing in numerical experiments: solenoidal
(divergence-free) forcing and compressive (curl-free) forcing, and compare our results to observations.
Methods. We solve the equations of hydrodynamics on grids with up to 10243 cells for purely solenoidal and purely compressive
forcing. Eleven lower-resolution models with different forcing mixtures are also analysed.
Results. Using Fourier spectra and ∆-variance, we find velocity dispersion-size relations consistent with observations and indepen-
dent numerical simulations, irrespective of the type of forcing. However, compressive forcing yields stronger compression at the
same rms Mach number than solenoidal forcing, resulting in a three times larger standard deviation of volumetric and column density
probability distributions (PDFs). We compare our results to different characterisations of several observed regions, and find evidence
of different forcing functions. Column density PDFs in the Perseus MC suggest the presence of a mainly compressive forcing agent
within a shell, driven by a massive star. Although the PDFs are close to log-normal, they have non-Gaussian skewness and kurtosis
caused by intermittency. Centroid velocity increments measured in the Polaris Flare on intermediate scales agree with solenoidal
forcing on that scale. However, ∆-variance analysis of the column density in the Polaris Flare suggests that turbulence is driven on
large scales, with a significant compressive component on the forcing scale. This indicates that, although likely driven with mostly
compressive modes on large scales, turbulence can behave like solenoidal turbulence on smaller scales. Principal component analysis
of G216-2.5 and most of the Rosette MC agree with solenoidal forcing, but the interior of an ionised shell within the Rosette MC
displays clear signatures of compressive forcing.
Conclusions. The strong dependence of the density PDF on the type of forcing must be taken into account in any theory using the
PDF to predict properties of star formation. We supply a quantitative description of this dependence. We find that different observed
regions show evidence of different mixtures of compressive and solenoidal forcing, with more compressive forcing occurring primar-
ily in swept-up shells. Finally, we emphasise the role of the sonic scale for protostellar core formation, because core formation close
to the sonic scale would naturally explain the observed subsonic velocity dispersions of protostellar cores.
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1. Introduction

Studying the density and velocity distributions of interstellar
gas provides essential information about virtually all physical
processes relevant to the dynamical evolution of the interstel-
lar medium (ISM). Along with gravity, magnetic fields and
the thermodynamics of the gas, supersonic turbulence plays a

⋆ A movie is only available in electronic form at
http://www.aanda.org

fundamental role in determining the density and velocity statis-
tics of the ISM (e.g., Scalo et al. 1998). Thus, supersonic turbu-
lence is considered a key process for star formation (Mac Low
& Klessen 2004; Elmegreen & Scalo 2004; Scalo & Elmegreen
2004; McKee & Ostriker 2007).

In this paper, we continue our analysis of the density
probability distribution function (PDF) obtained in numeri-
cal experiments of driven supersonic isothermal turbulence.
Understanding the density PDF and its turbulent origin is essen-
tial, because it is a key ingredient for analytical models of star
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formation: the turbulent density PDF is used to explain the stellar
initial mass function (Padoan & Nordlund 2002; Hennebelle
& Chabrier 2008, 2009), the star formation rate (Krumholz
& McKee 2005; Krumholz et al. 2009; Padoan & Nordlund
2009), the star formation efficiency (Elmegreen 2008), and the
Kennicutt-Schmidt relation on galactic scales (Elmegreen 2002;
Kravtsov 2003; Tassis 2007). In Federrath et al. (2008b), we
found that supersonic turbulence driven by a purely compres-
sive (curl-free) force field yields a density PDF with roughly
three times larger standard deviation compared to solenoidal
(divergence-free) turbulence forcing, which strongly affects the
results obtained in these analytical models. Here, we want to
compare our results for the density PDF to observations of col-
umn density PDFs (e.g., Goodman et al. 2009).

Moreover, in Federrath et al. (2009) we investigated the frac-
tal density distribution of our two models with solenoidal and
compressive turbulence forcing, which showed that compressive
forcing yields a significantly lower fractal dimension (Df ≈ 2.3)
compared to solenoidal forcing (Df ≈ 2.6). In the present contri-
bution, we consider the scaling of centroid velocity increments
computed for these models, and we compare them to observa-
tions of the Polaris Flare by Hily-Blant et al. (2008). We ad-
ditionally used principal component analysis and compared our
results to observations of the G216-2.5 (Maddalena’s Cloud) and
the Rosette MC by Heyer et al. (2006).

Our results indicate that interstellar turbulence is driven by
mixtures of solenoidal and compressive forcing. The ratio be-
tween solenoidal and compressive modes of the turbulence forc-
ing may vary strongly across different regions of the ISM. This
provides an explanation for the apparent lack of correlation be-
tween turbulent density and velocity dispersions found in ob-
servations (e.g., Goodman et al. 2009; Pineda et al. 2008). We
conclude that solenoidal forcing is more likely to be realised
in quiescent regions with low star formation activity as in the
Polaris Flare and in Maddalena’s Cloud. On the other hand, in
regions of enhanced stellar feedback, compressive forcing leads
to larger standard deviations of the density PDFs, as seen in
one of the subregions of the Perseus MC surrounding a central
B star. Moreover, compressive forcing exhibits a higher scaling
exponent of principal component analysis than solenoidal forc-
ing. This higher scaling exponent is consistent with the mea-
sured scaling exponent for the interior of an ionising shell in the
Rosette MC.

In Sect. 2, we explain the numerical setup and turbulence
forcing used for the present study. We discuss our results ob-
tained using PDFs, centroid velocity increments, principal com-
ponent analysis, Fourier spectrum functions, and ∆-variance
analyses in Sects. 3−7, respectively. In each of these sections,
we compare the turbulence statistics obtained for solenoidal and
compressive forcing with observational data available in the lit-
erature. In Sect. 8, we discuss the possibility that transonic pre-
stellar cores typically form close to the sonic scale in a globally
supersonic, turbulent medium. Section 9 provides a list of the
limitations in our comparison of numerical simulations with ob-
servations. A summary of our results and conclusions is given
in Sect. 10.

2. Simulations and methods

The piecewise parabolic method (Colella & Woodward 1984),
implemented in the astrophysical code FLASH3 (Fryxell et al.
2000; Dubey et al. 2008) was used to integrate the equations
of hydrodynamics on three-dimensional (3D) periodic uniform

grids with 2563, 5123, and 10243 grid points. Since isothermal
gas is assumed throughout this study, it is convenient to define

s ≡ ln
ρ

〈ρ〉 (1)

as the natural logarithm of the density divided by the mean den-
sity 〈ρ〉 in the system. For isothermal gas, the pressure, P = ρc2

s ,
is proportional to the density ρ with the constant sound speed cs.
The equations of hydrodynamics solved here are consequently
given by

∂s

∂t
+ (u · ∇)s = −∇ · u (2)

∂u

∂t
+ (u · ∇)u = −c2

s ∇s + f , (3)

where u denotes the velocity of the gas. An energy equation
is not needed, because the gas is isothermal. The assumption
of isothermal gas is very crude, but may still provide an ad-
equate physical approximation to the real thermodynamics in
dense molecular gas (Wolfire et al. 1995; Pavlovski et al. 2006).
We discuss further limitations of our simulations in Sect. 9. The
stochastic forcing term f is used to drive turbulent motions.

2.1. Forcing module

Equations (2) and (3) have been solved before in the con-
text of molecular cloud dynamics, studying compressible tur-
bulence with either solenoidal (divergence-free) forcing or with
a 2:1 mixture of solenoidal to compressive modes in the tur-
bulence forcing (e.g., Padoan et al. 1997; Stone et al. 1998;
Mac Low et al. 1998; Mac Low 1999; Klessen et al. 2000;
Heitsch et al. 2001; Klessen 2001; Boldyrev et al. 2002;
Li et al. 2003; Padoan et al. 2004; Jappsen et al. 2005;
Ballesteros-Paredes et al. 2006; Kritsuk et al. 2007; Dib et al.
2008; Kissmann et al. 2008; Offner et al. 2008; Schmidt et al.
2009). The case of a 2:1 mixture of solenoidal to compres-
sive modes is the natural result obtained for 3D forcing, if no
Helmholtz decomposition (see below) is performed. Then, the
solenoidal modes occupy two of the three available spatial di-
mensions on average, while the compressive modes only oc-
cupy one (Elmegreen & Scalo 2004; Federrath et al. 2008b).
In the present study, the solenoidal forcing case is thus also
used as a control run for comparison with previous studies us-
ing solenoidal forcing. However, we additionally applied purely
compressive (curl-free) forcing and analysed the resulting tur-
bulence statistics in detail. Each simulation at a resolution of
10243 grid cells consumed roughly 100 000 CPU h. Therefore,
we concentrated on two extreme cases of turbulence forcing with
high resolution: (1) the widely adopted purely solenoidal forcing
(∇ · f = 0), and (2) purely compressive forcing (∇ × f = 0).
However, we also studied eleven simulations at numerical res-
olution of 2563 in which we smoothly varied the forcing from
purely solenoidal to purely compressive by producing eleven dif-
ferent forcing mixtures.

The forcing term f is often modelled with a spatially static
pattern, for which the amplitude is adjusted in time following the
methods introduced by Mac Low et al. (1998) and Stone et al.
(1998). This results in a roughly constant energy input on large
scales. Other studies model the random forcing term f such that
it can vary in time and space (e.g., Padoan et al. 2004; Kritsuk
et al. 2007; Federrath et al. 2008b; Schmidt et al. 2009). Here, we
used the Ornstein-Uhlenbeck (OU) process to model f , which
belongs to the latter type. The OU process is a well-defined
stochastic process with a finite autocorrelation timescale. It can
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be used to excite turbulent motions in 3D, 2D, and 1D simula-
tions as explained in Eswaran & Pope (1988) and Schmidt et al.
(2006). Using an OU process enables us to control the autocor-
relation timescale T of the forcing. The concept of using the
OU process to excite turbulence and the projections in Fourier
space necessary to get solenoidal and compressive force fields
are described below.

The OU process is a stochastic differential equation de-
scribing the evolution of the forcing term f̂ in Fourier space
(k-space):

d f̂ (k, t) = f0 (k) P ζ (k) dW(t) − f̂ (k, t)
dt

T
· (4)

The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt), (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ(k) in
Fourier space. In index notation, the projection operator reads

Pζ
i j

(k) = ζ P⊥i j (k) + (1 − ζ)P‖
i j

(k) = ζ δi j + (1 − 2ζ)
kik j

|k|2 , (6)

where δi j is the Kronecker symbol, and P⊥
i j
= δi j − kik j/k

2 and

P‖
i j
= kik j/k

2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
∣∣∣∣(1 − ζ)P‖i j

∣∣∣∣
2
= (1 − ζ)2, (7)

and by evaluating the norm of the full projection tensor
∣∣∣∣Pζi j

∣∣∣∣
2
= 1 − 2ζ + Dζ2. (8)

The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:

Flong

Ftot
=

(1 − ζ)2

1 − 2ζ + Dζ2
· (9)

Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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forcing pattern, which is obtained in the limit T → ∞ in test sim-
ulations. We have furthermore checked that the particular choice
of Fourier amplitudes did not affect our results by using a band
spectrum instead of a parabolic forcing spectrum. Varying these
parameters did not strongly affect our results. In contrast, chang-
ing ζ from ζ = 1 (solenoidal forcing) to ζ = 0 (compressive forc-
ing) always led to significant changes in the turbulence statistics.

2.2. Initial conditions and post-processing

Starting from a uniform density distribution and zero veloci-
ties, the forcing excites turbulent motions. Equations (2) and (3)
have been evolved for ten dynamical times T , which allows us
to study a large sample of realisations of the turbulent flow.
Compressible turbulence reached a statistically invariant state
within 2 T (Federrath et al. 2009). This allows us to average all
statistical measures over 8 T separated by 0.1 T in the fully de-
veloped regime. We are thus able to average over 81 different
realisations of the turbulence to improve statistical significance.
The 1-σ temporal fluctuations obtained from this averaging pro-
cedure are indicated as error bars for the PDFs, centroid velocity
increments, principal component analysis, Fourier spectra and
∆-variance analyses in the following sections and in all figures
showing error bars throughout this study. The forcing amplitude
was adjusted to excite a turbulent flow with an rms Mach number
M ≈ 5.5 in all cases. We use the rms Mach number as the control
parameter, because this dimensionless number determines most
of the physical properties of scale-invariant turbulent flows and
is often used to derive important flow statistics such as the stan-
dard deviation of the density distribution. However, in the next
section we show that the latter depends sensitively on the turbu-
lence forcing parameter ζ as well.

Figure 2 (top panels) shows column density fields projected
along the z-axis from a randomly selected snapshot at time
t = 2 T in the regime of fully developed, statistically station-
ary turbulence for solenoidal (left) versus compressive forcing
(right). This regime was reached after 2 dynamical times T ,
which is shown in Fig. 3 for the minimum and maximum log-
arithmic densities s (top panel) and rms curl and divergence of
the velocity field (bottom panel) as a function of the dynamical
time. It is evident that compressive forcing produces higher den-
sity contrasts, resulting in higher density peaks and bigger voids
compared to solenoidal forcing.

3. The probability density function of the gas

density

It is interesting to study the probability distribution of turbulent
density fluctuations, because it is a key ingredient for many an-
alytical models of star formation: it is used to explain the stel-
lar initial mass function (Padoan & Nordlund 2002; Hennebelle
& Chabrier 2008, 2009), the star formation rate (Krumholz
& McKee 2005; Krumholz et al. 2009; Padoan & Nordlund
2009), the star formation efficiency (Elmegreen 2008), and the
Kennicutt-Schmidt relation on galactic scales (Elmegreen 2002;
Kravtsov 2003; Tassis 2007).

The probability to find a volume with gas density in the
range [ρ, ρ + dρ] is given by the integral over the volume-
weighted probability density function (PDF) of the gas density:∫ ρ+dρ

ρ
pρ(ρ′) dρ′. Thus, the PDF p describes a probability den-

sity, which has dimensions of probability divided by gas density
in the case of pρ(ρ). By the same definition, ps(s) denotes the
PDF of the logarithmic density s = ln(ρ/〈ρ〉).

Figure 4 presents the comparison of the time-averaged
volume-weighted density PDFs ps(s) obtained for solenoidal
and compressive forcing. The linear plot of ps(s) (top panel) dis-
plays the peak best, whereas the logarithmic representation (bot-
tom panel) reveals the low- and high-density wings of the dis-
tributions. Three different fits to analytic expressions (discussed
below) are shown as well.

3.1. The density PDF for solenoidal forcing

In numerical experiments of driven supersonic isothermal turbu-
lence with solenoidal and/or weakly compressive forcing (e.g.,
Vázquez-Semadeni 1994; Padoan et al. 1997; Stone et al. 1998;
Mac Low 1999; Nordlund & Padoan 1999; Boldyrev et al. 2002;
Li et al. 2003; Padoan et al. 2004; Kritsuk et al. 2007; Beetz et al.
2008), but also in decaying turbulence (e.g., Ostriker et al. 1999;
Klessen 2000; Ostriker et al. 2001; Glover & Mac Low 2007b)
it was shown that the density PDF ps is close to a log-normal
distribution,

ps ds =
1√

2πσ2
s

exp

⎡⎢⎢⎢⎢⎢⎣ −
(s − 〈s〉)2

2σ2
s

⎤⎥⎥⎥⎥⎥⎦ ds, (10)

where the mean 〈s〉 is related to the standard deviation σs by
〈s〉 = −σ2

s/2 due to the constraint of mass conservation (e.g.,
Vázquez-Semadeni 1994):
∫ ∞

−∞
exp (s) ps ds =

∫ ∞

0
ρ pρ dρ = 〈ρ〉. (11)

Equation (11) simply states that the mean density has to be re-
covered. This constraint together with the PDF normalisation,
∫ ∞

−∞
ps ds =

∫ ∞

0
pρ dρ = 1 (12)

must always be fulfilled for any density PDF whether log-normal
or non-Gaussian.

From our simulations, we obtain density PDFs in agree-
ment with log-normal distributions for solenoidal forcing. The
log-normal fit using Eq. (10) is shown in Fig. 4 as dashed
lines. However, the PDF is not perfectly log-normal, i.e., there
are weak non-Gaussian contributions (see also, Dubinski et al.
1995), especially affecting the wings of the distribution. The
strength of these non-Gaussian features is quantified by com-
puting higher-order moments (skewness and kurtosis) of the dis-
tributions. The first four standardised central moments (see, e.g.,
Press et al. 1986) of a discrete dataset {q} with N elements are
defined as

mean : 〈q〉 = 1
N

N∑

i=1

qi

dispersion : σq =

√
〈(q − 〈q〉)2〉

skewness : Sq =
〈(q − 〈q〉)3〉
σ3

kurtosis : Kq =
〈(q − 〈q〉)4〉
σ4

· (13)

Note that in our definition of the kurtosis (also called flatness),
the Gaussian distribution hasK = 3. We have computed the first
four statistical moments of the volumetric density PDFs shown
in Fig. 4. The results are summarised in Table 1. The 1-σ er-
ror given for each statistical moment was obtained by averaging
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Fig. 2. Maps showing density (top), vorticity (middle) and divergence (bottom) in projection along the z-axis at time t = 2 T as an example
for the regime of statistically fully developed, compressible turbulence for solenoidal forcing (left) and compressive forcing (right). Top panels:
column density fields in units of the mean column density. Both maps show three orders of magnitude in column density with the same scaling
and magnitudes for direct comparison. Middle panels: projections of the modulus of the vorticity |∇ × u|. Regions of intense vorticity appear to be
elongated filamentary structures often coinciding with positions of intersecting shocks. Bottom panels: projections of the divergence of the velocity
field ∇ · u showing the positions of shocks. Negative divergence corresponds to compression, while positive divergence corresponds to rarefaction.
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Table 1. Statistical moments and fit parameters of the PDFs of the volumetric density ρ for solenoidal and compressive forcing shown in Fig. 4.

Solenoidal forcing Compressive forcing
Standardised Moments 〈ρ〉 1.00 ± 0.00 1.00 ± 0.00
of ρ σρ 1.89 ± 0.09 5.86 ± 0.96

Sρ 9.03 ± 1.06 26.7 ± 10.1
Kρ 211. ± 69.8 1720 ± 2000

Standardised Moments 〈s〉 −0.83 ± 0.05 −3.40 ± 0.43
of s = ln (ρ/〈ρ〉) σs 1.32 ± 0.06 3.04 ± 0.24

Ss −0.10 ± 0.11 −0.26 ± 0.20
Ks 3.03 ± 0.17 2.91 ± 0.43

Skewed Log-normal Approximation ξ 0.010 ± 0.050 −0.048 ± 0.133
using equation (14) ω 1.562 ± 0.035 4.712 ± 0.193

α −0.911 ± 0.064 −2.163 ± 0.173
4th Order Approximation a0 −1.3664 ± 0.0091 −2.5014 ± 0.0259
(including skewness and kurtosis) a1 −0.4592 ± 0.0064 −0.3437 ± 0.0132
using equation (17) a2 −0.3067 ± 0.0052 −0.0831 ± 0.0030

a3 −0.0073 ± 0.0011 −0.0065 ± 0.0011
a4 −0.0002 ± 0.0005 −0.0004 ± 0.0001

Fig. 3. Top panel: minimum and maximum logarithmic density s =
ln (ρ/〈ρ〉) as a function of the dynamical time T . Note that compres-
sive forcing yields much stronger compression and rarefaction com-
pared to solenoidal forcing, although the rms Mach number is roughly
the same in both cases (see Federrath et al. 2009, Fig. 2). Bottom panel:
rms vorticity 〈(∇ × u)2〉1/2 and rms divergence 〈(∇ · u)2〉1/2 as a function
of the dynamical time. Within the first 2 T , a statistically steady state
was reached for both solenoidal (sol) and compressive (comp) forc-
ing. This allows us to average statistical measures (probability density
functions, centroid velocity increments, principal component analysis,
Fourier spectra and ∆-variances) in the range 2 ≤ t/T ≤ 10 to improve
statistical significance of our results and to estimate the amplitude of
temporal fluctuations (snapshot-to-snapshot variations) between differ-
ent realisations of the turbulence.

over 81 realisations of the turbulence as described in Sect. 2.2.
Both solenoidal and compressive forcing yield density PDFs
with deviations from the Gaussian 3rd order (skewness S = 0)
and 4th order (kurtosisK = 3) moments.

3.2. The density PDF for compressive forcing

Contrary to the solenoidal case, the PDF obtained for compres-
sive forcing is not at all well fitted with the perfect log-normal
functional form (dashed line in Fig. 4 for compressive forcing).
Due to the constraints of mass conservation (Eq. (11)) and nor-
malisation (Eq. (12)), the peak position and its amplitude can-
not be reproduced simultaneously. The skewness and kurtosis
for the compressive forcing case are also listed in Table 1. Non-
Gaussian values of skewness and kurtosis, i.e., higher-order mo-
ments require modifications to the analytic expression of the log-
normal PDF given by Eq. (10). A first step of modification is to
allow for a finite skewness, which is possible with a skewed log-
normal distribution (Azzalini 1985)

p(s) =
1
πω

exp

[
− (s − ξ)2

2ω2

] ∫ (s−ξ)α/ω

−∞
exp

(
− t2

2

)
dt, (14)

where α, ξ and ω are fit parameters. Defining δ = α/
√

1 + α2,
the first four standardised central moments of the distribution are
linked to the parameters α, ξ and ω, such that

mean : 〈s〉 = ξ + ωδ
√

2/π

dispersion : σs = ω
(
1 − 2δ2/π

)1/2

skewness : Ss =
4 − π

2
(δ
√

2/π)3

(1 − 2δ2/π)3/2

kurtosis : Ks =
2(π − 3)(δ

√
2/π)4

(1 − 2δ2/π)2
· (15)

Skewed log-normal fits are added to Fig. 4 as dash-dotted
lines and the corresponding fit parameters are given in Table 1.
However, for a skewed log-normal distribution, the kurtosis is
a function of the skewness, since the skewness and kurtosis in
Eqs. (15) both depend on the same parameter δ only.

Better agreement between an analytic functional form and
the measured PDF can be obtained, if the actual kurtosis of the
data is taken into account as an independent parameter in the
analytical approach. The fundamental derivation of a standard
Gaussian distribution is given by

ln p(s) = a0 + a1s + a2s2, (16)

where one parameter is constrained by the normalisation and
the two remaining ones are determined by the mean and the
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Fig. 4. Volume-weighted density PDFs p(s) of the logarithmic den-
sity s = ln(ρ/〈ρ〉) in linear scaling (top panel), which displays the
peak best, and in logarithmic scaling (bottom panel) to depict the low-
and high-density wings. The PDF obtained from compressive forcing
(10243 comp) is significantly wider than the solenoidal one (10243 sol).
The peak is shifted to lower values of the logarithmic density s, be-
cause of mass conservation, defined in Eq. (11). The density PDF from
solenoidal forcing is compatible with a Gaussian distribution. However,
there are also non-Gaussian features present, which are associated with
intermittency effects. These are more prominent in the density PDF ob-
tained from compressive forcing, exhibiting statistically significant de-
viations from a perfect log-normal (fit using Eq. (10) shown as dashed
lines). A skewed log-normal fit (dash-dotted lines) given by Eq. (14)
provides a better representation, but still does not fit the high-density
tail of the PDF obtained for compressive forcing. Both the PDF data
obtained from solenoidal and compressive forcing are best described
as log-normal distributions with higher-order corrections defined in
Eq. (17), which take into account both the non-Gaussian skewness and
kurtosis of the distributions. These fits are shown as solid lines (skew-
kurt-log-normal fit). The first four standardised moments defined in
Eqs. (13) of the distributions in ρ and s are summarised in Table 1 to-
gether with the fit parameters. The grey shaded regions indicate 1-σ er-
ror bars due to temporal fluctuations of the distributions in the regime
of fully developed, supersonic turbulence. A total number of 10243 ×
81 ≈ 1011 data points contribute to each PDF.

dispersion. We can extend this to a modified Gaussian-like dis-
tribution by including higher-order moments:

p(s) = exp
[
a0 + a1s + a2s2 + a3s3 + a4s4 + O(s5)

]
. (17)

Here, the expansion is stopped at the 4th moment. One parameter
is again given by the normalisation, and the remaining four pa-
rameters are related to the mean, dispersion, skewness and kurto-
sis. Fits obtained with this formula are included in Fig. 4 as solid
lines. The fit parameters are listed in Table 1. This new func-
tional form is in good agreement with the data from solenoidal
and compressive forcing, fitting both the peak and the wings
very well. They follow the constraints of mass conservation and
normalisation given by Eqs. (11) and (12). We have computed
the first four moments of the fitted function and find very good
agreement with the first four moments of the actual PDFs.

The fitted parameters a3 and a4, which represent the higher-
order terms tend to zero compared to the standard Gaussian pa-
rameters a0, a1 and a2 (see Table 1). This means that the higher-
order corrections to the standard Gaussian are small. However,
we point out that they are absolutely necessary to obtain a
good analytic representation of the PDF data, given the fact that
Eqs. (11) and (12) must always be fulfilled and that the analytic
PDF should return the correct values of the numerically com-
puted moments of the measured distributions.

In the various independent numerical simulations mentioned
above, the density PDFs were close to log-normal distributions
as in our solenoidal and compressive forcing cases. However,
most of these studies also report considerable deviations from
Gaussian PDFs, which affected mainly the low- and high-density
wings of their distributions. These deviations can be associated
with rare events caused by strong intermittent fluctuations during
head-on collisions of strong shocks and oscillations in very low-
density rarefaction waves (e.g., Passot & Vázquez-Semadeni
1998; Kritsuk et al. 2007). The pronounced deviations from the
log-normal shape of the density PDF for compressively driven
turbulence were also discussed by Schmidt et al. (2009). Even
stronger deviations from log-normal PDFs were reported in
strongly self-gravitating turbulent systems (e.g., Klessen 2000;
Federrath et al. 2008a; Kainulainen et al. 2009).

Intermittency is furthermore inferred from observations,
affecting the wings of molecular line profiles (Falgarone &
Phillips 1990), and the statistics of centroid velocity increments
(Hily-Blant et al. 2008). Goodman et al. (2009) measured col-
umn density PDFs using dust extinction and emission, as well
as molecular lines of gas in the Perseus MC. Using dust ex-
tinction maps, Lombardi et al. (2006) obtained the column den-
sity PDF for the Pipe nebula. The PDFs found in these stud-
ies roughly follow log-normal distributions. However, deviations
from perfect log-normal distributions are clearly present in the
density PDFs obtained in these studies. They typically exhibit
non-Gaussian features. For instance, Lombardi et al. (2006) had
to apply combinations of multiple Gaussian distributions to ob-
tain good agreement with the measured PDF data.

3.3. Density-Mach number correlation and signatures
of intermittency in the density PDFs

As discussed by Passot & Vázquez-Semadeni (1998),
a Gaussian distribution in the logarithm of the density,
i.e., a log-normal distribution in ρ is expected for supersonic,
isothermal turbulent flows. The fundamental assumption be-
hind this model is that density fluctuations are built up by
a hierarchical process. The local density ρ(r, t) at a given
position r is determined by a Markov process, i.e., by the
product ρ(tn) = δ(tn−1)ρ(tn−1) = . . . = δ(t0)ρ(t0) of a large
number of independent random fluctuations δ(tn) > 0 in time
(Vázquez-Semadeni 1994). If these fluctuations were indeed
independent, the quantity s = ln(ρ/〈ρ〉) would be determined
by the sum of this large number of local fluctuations and the
distribution in s becomes a Gaussian distribution according to
the central limit theorem. Since the Eqs. (2) and (3) are invariant
under the transformation s→ s + s0 for an arbitrary constant s0,
the random variable s(tn) should be independent of the local
Mach number, and independent of the density at previous times
tn−1, tn−2, . . . , t0. As pointed out by Vázquez-Semadeni (1994)
and Passot & Vázquez-Semadeni (1998), this independence
breaks down in strong shocks and density extrema, because s0
cannot be arbitrarily high due to mass conservation, and an
upper boundary s+ exists. In consequence, if s+ is reached
locally, the density cannot increase anymore by a subsequent
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Fig. 5. Volume-weighted correlation PDFs of local Mach number M versus logarithmic density s for solenoidal (left) and compressive forcing
(right). Adjacent contour levels are spaced by 0.25 dex in probability density. Density and Mach number exhibit a very weak, but non-zero
correlation in both forcing cases, which provides an explanation for the non-Gaussian features in the density PDFs of Fig. 4 (Vázquez-Semadeni
1994; Passot & Vázquez-Semadeni 1998; Kritsuk et al. 2007). The two solid lines, intersecting the maxima of both distributions show the mean
Mach number as a function of the logarithmic density s = ln(ρ/〈ρ〉). The tendency for high-density gas having lower Mach numbers on average
is indicated as power laws in the high-density parts of the distributions. This suggests that the Mach number M(ρ) ∝ ρ−0.06 for solenoidal and
M(ρ) ∝ ρ−0.05 for compressive forcing.

fluctuation, and the next density is not independent of the
previous timestep, causing the fundamental assumption to break
down. This also applies to strong rarefaction waves, because
creating shocks always produces strongly rarefied regions
outside the shock.

When the fundamental assumption breaks down, den-
sity and velocity statistics are expected to become correlated
(Vázquez-Semadeni 1994; Passot & Vázquez-Semadeni 1998;
Kritsuk et al. 2007). Since in isothermal gas, the sound speed
is constant, this translates directly into Mach number-density
correlations. The average local Mach number M = v/cs may
therefore exhibit some dependence on the average local den-
sity. For instance, it is intuitively clear that head-on collisions of
strong shocks produce very high density peaks. In the stagnation
point of the flow, the local velocity and consequently the local
Mach number will almost drop to zero. The time evolution of
the maximum and minimum density in Fig. 3 shows these inter-
mittent fluctuations (see also, Porter et al. 1992b; Kritsuk et al.
2007). The intermittent phenomenon corresponds to the situa-
tion explained above, for which s+ might have been reached, and
some dependence of the Mach number on density is expected.

In real molecular clouds, the maximum densities are sim-
ilarly bounded, and cannot reach infinitely high values, either.
This is – unlike the finite resolution constraints in simulations –
because the gas becomes optically thick at a certain density
(ρ >∼ 10−14 g cm−3), and cannot cool efficiently anymore (e.g.,
Larson 1969; Penston 1969; Larson 2005; Jappsen et al. 2005,
and references therein). The gas is not close to isothermal any-
more in this regime, and adiabatic compression induced by tur-
bulent motions remain finite in real molecular clouds. Thus, the
reason for the breakdown of the density-Mach number indepen-
dence is different in simulations and observations, but it might
still be fundamental for the deviations from a log-normal PDF.
Moreover, the existence of a characteristic scale may lead to a
breakdown of the hierarchical model, and thus to a breakdown
of the fundamental assumption. The scale at which supersonic
turbulence becomes subsonic is such a scale. This scale is called
the sonic scale, and is discussed later in Sect. 8.

We have computed the probability distributions for
Mach number-density correlations. Figure 5 shows the
volume-weighted correlation PDFs of local Mach number M

versus density ρ. Although the correlation between density and
Mach number is weak as expected for isothermal turbulence
(Vázquez-Semadeni 1994; Passot & Vázquez-Semadeni 1998),
these two quantities are not entirely uncorrelated, which may ex-
plain the deviations from perfect log-normal distributions. There
is a weak trend for high-density regions to exhibit lower Mach
numbers on average. Power-law estimates for densities above the
mean logarithmic density indicate Mach number-density corre-
lations of the form M(ρ) ∝ ρ−0.06 for solenoidal and M(ρ) ∝
ρ−0.05 for compressive forcing. A similar power law exponent
can be obtained from Kritsuk et al. (2007, Fig. 4).

3.4. Numerical resolution dependence of the density PDFs

The high-density tails of the PDFs in Fig. 4 are not perfectly
fit, even when the skewness and kurtosis are taken into account.
This is partly due to non-zero 5th, 6th and higher-order moments
in the distributions, and partly because our numerical resolution
is insufficient to sample the high-density tail perfectly. Figure 6
shows that even at a numerical resolution of 10243 grid points,
the high-density tails are not converged in both solenoidal and
compressive forcing and tend to underestimate high densities.
This limitation is shared among all turbulence simulations (see,
for instance, the turbulence comparison project by Kitsionas
et al. 2009), since the strongest and most intermittent fluctua-
tions building up in the tails will always be truncated due to lim-
ited numerical resolution (see also Hennebelle & Audit 2007;
Kowal et al. 2007; Price & Federrath 2010). However, the peak
and the standard deviation of the PDFs are reproduced quite ac-
curately at a resolution of 2563. Table 2 shows the values of
the linear standard deviation σρ and logarithmic standard de-
viation σs for numerical resolutions of 2563, 5123 and 10243.
There appears to be no strong systematic dependence of the
standard deviations on the numerical resolution for resolutions
above 2563. The statistical fluctuations are the dominant source
of uncertainty in the derived values of the standard deviations.
It should be noted however that we have tested only the case
of an rms Mach number of about 5−6 here. There might be a
stronger resolution dependence for higher Mach numbers, due
to the stronger shocks produced in higher Mach number turbu-
lence, which should be tested in a separate study.
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Fig. 6. Density PDFs at numerical resolutions of 2563, 5123 and
10243 grid cells. The PDFs show very good overall convergence, es-
pecially around the peaks. Table 2 shows that the standard deviations
are converged with numerical resolution. The high-density tails, how-
ever, are not converged even at a numerical resolution of 10243 grid
points, indicating a systematic shift to higher densities with resolution.
This limitation is shared among all turbulence simulations (see also,
Hennebelle & Audit 2007; Kitsionas et al. 2009; Price & Federrath
2010). The low-density wings are subject to strong temporal fluctua-
tions due to intermittent bursts caused by head-on collisions of shocks
followed by strong rarefaction waves (e.g., Kritsuk et al. 2007). The in-
termittency causes deviations from a perfect Gaussian distribution and
accounts for non-Gaussian higher-order moments (skewness and kurto-
sis) in the distributions.

Table 2. Standard deviations of the density PDFs as a function of nu-
merical resolution for solenoidal and compressive forcing shown in
Fig. 6.

Grid resolution Solenoidal forcing Compressive forcing
σρ σs σρ σs

2563 .............. 1.79 ± 0.08 1.36 ± 0.07 5.66 ± 0.79 3.09 ± 0.21
5123 .............. 1.89 ± 0.10 1.35 ± 0.05 5.59 ± 0.67 3.15 ± 0.34

10243 .............. 1.89 ± 0.09 1.32 ± 0.06 5.86 ± 0.96 3.04 ± 0.24

3.5. The column density PDFs and comparison
with observations

The strong difference between the statistics of the solenoidal and
compressive forcing cases seen in the PDFs of the volumetric
density shown in Fig. 4 is reflected by the corresponding col-
umn density PDFs. The time-averaged and projection-averaged
column density PDFs are shown in Fig. 7. Analogous to Table 1
for the volumetric density PDFs, we summarise the statistical
quantities and fit parameters for the column density PDFs in
Table 3. The main results and conclusions obtained for the vol-
umetric density distributions also hold for the column density
distributions. Compressive forcing yields a column density stan-
dard deviation roughly three times larger than solenoidal forc-
ing. The relative difference between solenoidal and compres-
sive forcing is thus roughly the same for the volumetric and
the column density distributions. However, the absolute values
are lower for the column density distributions compared to the
volumetric density distributions. The reason for this is that by
computing projections of the volumetric density fields, density
fluctuations are effectively averaged out by integration along the
line-of-sight, and as a consequence, the column density disper-
sions become smaller compared to the corresponding volumetric
density dispersions.

Fig. 7. Same as Fig. 4, but the time- and projection-averaged logarith-
mic column density PDFs of η = ln(Σi/〈Σi〉) are shown. Σi and 〈Σi〉 de-
note the column density and the mean column density integrated along
the i = x, y, z principal axes respectively. As for the volumetric PDFs of
Fig. 4, the standard deviation of the column density PDF obtained from
compressive forcing is roughly three times larger than from solenoidal
forcing (see Table 3). The inset in the upper right corner shows the PDFs
of column density computed in z-projection at a fixed time t = 2 T , cor-
responding to the snapshots shown in Fig. 2. The density dispersions
computed for these instantaneous PDFs are σΣ = 0.49 and ση = 0.45
for solenoidal forcing, and σΣ = 1.34 and ση = 1.56 for compressive
forcing. Although these distributions are quite noisy, the influence of
the forcing is still clearly discernible. Thus, by studying instantaneous
column density PDFs, which are accessible to observations, one should
be able to distinguish solenoidal from compressive forcing.

The small inset in the upper right corner of Fig. 7 addition-
ally shows the column density PDFs computed along the z-axis
at one single time t = 2 T corresponding to the map shown in
Fig. 2. This figure shows the effect of studying one realisation
only, without time- and/or projection-averaging. This is interest-
ing to consider, because observations can only measure column
density distributions at one single time. Improving the statis-
tical significance would only be possible by studying multiple
fields and averaging in space rather than in time invoking the er-
godic theorem as suggested by Goodman et al. (2009). However,
even by studying one turbulent realisation only, the difference
between solenoidal and compressive forcing is recovered from
the dispersions of the distributions. We therefore expect that us-
ing observations of column density PDFs, one can distinguish
purely solenoidal from purely compressive forcing by measur-
ing the dispersion of the column density PDF.

Goodman et al. (2009) provided measurements of the col-
umn density PDFs in the Perseus MC obtained with three dif-
ferent methods: dust extinction, dust emission, and 13CO gas
emission. Although systematic differences were found between
the three methods, they conclude that in general, the measured
column density PDFs are close to, but not perfect log-normal
distributions, which is consistent with our results. They further-
more provided the column density PDFs and the column density
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Table 3. Same as Table 1, but for the PDFs of the column density Σ shown in Fig. 7.

Solenoidal forcing Compressive forcing
Standardised Moments 〈Σ〉 1.00 ± 0.00 1.00 ± 0.00
of Σ σΣ 0.47 ± 0.05 1.74 ± 0.43

SΣ 1.38 ± 0.38 4.57 ± 1.44
KΣ 6.32 ± 2.20 36.8 ± 24.3

Standardised Moments 〈η〉 −0.10 ± 0.02 −1.00 ± 0.33
of η = ln (Σ/〈Σ〉) ση 0.46 ± 0.06 1.51 ± 0.28

Sη −0.04 ± 0.30 −0.17 ± 0.29
Kη 2.97 ± 0.40 2.69 ± 0.45

Skewed Log-normal Approximation ξ 0.180 ± 0.088 0.717 ± 0.102
using equation (14) ω 0.539 ± 0.058 2.392 ± 0.160

α −0.878 ± 0.342 −2.371 ± 0.300
4th Order Approximation a0 −0.1524 ± 0.0451 −1.4547 ± 0.0532
(including skewness and kurtosis) a1 −0.3900 ± 0.1080 −0.2902 ± 0.0417
using equation (17) a2 −2.4643 ± 0.1994 −0.2669 ± 0.0259

a3 −0.1748 ± 0.1469 −0.0370 ± 0.0080
a4 0.0204 ± 0.1239 −0.0035 ± 0.0024

dispersions for six subregions in the Perseus MC. The difference
between the dispersions measured for these subregions is not
as large as the difference between purely solenoidal and purely
compressive forcing. The largest difference in the column den-
sity dispersions among the six subregions found by Goodman
et al. (2009) is only about 50% relative to the average column
density dispersion measured in the Perseus MC. This indicates
that both purely solenoidal and purely compressive forcing are
very unlikely to occur in nature. On the other hand, a varying
mixture of solenoidal and compressive modes close to the natu-
ral mixture of 2:1 can easily explain the 50% difference in den-
sity dispersion measured among the different regions. In partic-
ular, the Shell region (Ridge et al. 2006), which surrounds the
B star HD 278942 exhibits the largest density dispersion among
all the subregions studied by Goodman et al. (2009), although
its velocity dispersion is rather small compared to the others.
This indicates that turbulent motions may be driven compres-
sively rather than solenoidally within the Shell region. Goodman
et al. (2009) indeed mentioned that the gas in the Shell is domi-
nated by an “obvious driver”, skewing the column density distri-
bution towards lower values compared to the other regions. Due
to the constraints of mass conservation (Eq. (11)) and normalisa-
tion (Eq. (12)), both the peak position and the peak value of the
PDF skew to lower values, if the density dispersion increases
(see Fig. 7). Taken together, this suggests that the Shell in the
Perseus MC represents an example of strongly compressive tur-
bulence forcing rather than purely solenoidal forcing.

3.6. The forcing dependence of the density dispersion-Mach
number relation

In Federrath et al. (2008b), we investigated the density
dispersion–Mach number relation (Padoan et al. 1997; Passot &
Vázquez-Semadeni 1998)1,

σρ

〈ρ〉 = bM. (18)

This relation was also investigated in Kowal et al. (2007,
Fig. 11), indicating that the standard deviation of turbulent den-
sity fluctuations, σρ is directly proportional to the sonic Mach

1 Note that Passot & Vázquez-Semadeni (1998) suffers from a num-
ber of typographical errors as a result of last-minute change of no-
tation. Please see Mac Low et al. (2005, footnote 5) for a number of
corrections.

number in the supersonic regime. It must be noted, however,
that it was only directly tested for rather low rms Mach num-
bers, M <∼ 2.5 (Kowal et al. 2007) and M <∼ 3.5 (Passot &
Vázquez-Semadeni 1998), compared to typical Mach numbers
in molecular clouds. If additionally a log-normal PDF, Eq. (10)
is assumed, then Eq. (18) can be expressed as

σ2
s = ln

(
1 + b2M2

)
, (19)

with the same parameter b (Padoan et al. 1997; Federrath et al.
2008b).

We begin our discussion of the forcing dependence of the
density dispersion-Mach number relation with a problem raised
by Mac Low et al. (2005) and Glover & Mac Low (2007b).
Mac Low et al. (2005) and Glover & Mac Low (2007b) claimed
that the density dispersion-Mach number relation found by
Passot & Vázquez-Semadeni (1998), σs = bM (which is a
Taylor expansion of Eq. (19) for small rms Mach numbers), with
b ≈ 1 did not at all fit their results for pressure and density PDFs,
while Eq. (19) with b ≈ 0.5 (Padoan et al. 1997) provided a
much better representation of their data. The main difference in
the density dispersion-Mach number relations by Padoan et al.
(1997) and Passot & Vázquez-Semadeni (1998) is the propor-
tionality constant b. It is b ≈ 0.5 and b ≈ 1 in Padoan et al.
(1997) and Passot & Vázquez-Semadeni (1998), respectively.
Our forcing analysis provides the solution to this apparent dif-
ference, which lies at the heart of the disagreement of the PDF
data analysed in Mac Low et al. (2005) and Glover & Mac Low
(2007b) with the model by Passot & Vázquez-Semadeni (1998).
Passot & Vázquez-Semadeni (1998) used 1D models. In 1D,
only compressive forcing is possible, because no transverse
waves can exist. In contrast, Mac Low et al. (2005) and Glover
& Mac Low (2007b) used a mixture of solenoidal and compres-
sive forcing in 3D. In this section, we show that the parameter b
in both Eqs. (18) and (19) is a function of the forcing param-
eter ζ. Indeed, using the relation σs = bM analysed in Passot
& Vázquez-Semadeni (1998), but with a lower proportionality
constant (b = 0.5 in contrast to b = 1) gives a very good repre-
sentation of the PDF data in Mac Low et al. (2005, Fig. 8). Thus,
an investigation of the parameters that control b seems necessary
and important.

Moreover, relations (18) and (19) are key ingredients for the
analytical models of the stellar initial mass function by Padoan
& Nordlund (2002) and Hennebelle & Chabrier (2008), as well
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Fig. 8. Diamonds: the proportionality parameter b in the density
dispersion-Mach number relation, Eq. (18), computed as b =

σρ/ (〈ρ〉M) for eleven 3D models at numerical resolution of
2563 grid cells (top panel) and eleven 2D models at numerical reso-
lution of 10242 grid cells (bottom panel), ranging from purely com-
pressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1). The pa-
rameter b decreases smoothly from b ≈ 1 for compressive forcing to
b ≈ 1/3 in 3D and b ≈ 1/2 in 2D for solenoidal forcing. Stars: ratio
〈Ψ〉 = Elong/Etot of longitudinal to total power in the velocity power
spectrum (see Sect. 6.1). This quantity provides a measure for the rela-
tive amount of compression induced by the turbulent velocity field, and
appears to be correlated with the standard deviation of the density PDF.
Squares: same as stars, but multiplied by the geometrical factor

√
D

with D = 3 for the three-dimensional case and D = 2 for the two-
dimensional case. The quantity

√
D 〈Ψ〉 provides a good numerical es-

timate of the PDF parameter b. The dashed lines show model fits using
Eq. (23) for D = 3 (top panel) and D = 2 (bottom panel).

as for the star formation rate model by Krumholz & McKee
(2005) and Krumholz et al. (2009) and for the star formation
efficiency model by Elmegreen (2008). In all these models, b is
assumed to be 0.5, which is an empirical result from magne-
tohydrodynamical simulations by Padoan et al. (1997). On the
other hand, Passot & Vázquez-Semadeni (1998) found b ≈ 1
from 1D hydrodynamical simulations. Federrath et al. (2008b)
resolved this disagreement between Padoan et al. (1997) and
Passot & Vázquez-Semadeni (1998) by showing that b is a func-
tion of the ratio ζ ∈ [0, 1] of compressive to solenoidal modes of
the turbulence forcing. However, Federrath et al. (2008b) only
tested the two limiting cases of purely solenoidal forcing (ζ = 1)
and purely compressive forcing (ζ = 0). They approximated the
regime of mixtures with a heuristic model, which had a linear
dependence of b on ζ:

b̃ = 1 +

(
1
D
− 1

)
ζ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 − 2
3ζ, for D = 3

1 − 1
2ζ, for D = 2

1, for D = 1.

(20)

Here, we refine this model based on eleven additional simula-
tions with ζ = [0, 1] separated by ∆ζ = 0.1 for rms Mach
numbers of 5 in 2D and 3D. These simulations allow us to test
eleven different mixtures of forcing controlled by the parame-
ter ζ (see Eq. (9)). The models were run at a numerical resolution
of 2563 and 10242 grid points in 3D and 2D, respectively. We
use a lower resolution in 3D, because using our standard resolu-
tion of 10243 would be too computationally intensive. However,
as shown in Sect. 3.4, the standard deviation of the density is
fairly well reproduced at 2563, as is the rms Mach numberM
(Federrath et al. 2009, Fig. 2), which allows a reasonably ac-
curate determination of b. The results are plotted in Fig. 8 as
diamonds for 3D (top panel) and 2D (bottom panel). We used
Eq. (18) to measure b, because unlike Eq. (19), this version of
the standard deviation-Mach number relation does not rest on the
assumption of a log-normal PDF. In fact, if Eq. (19) was used to
derive b for models with ζ < 0.5, b would be overestimated sig-
nificantly (by up to an order of magnitude for ζ = 0), because the
deviations from the perfect log-normal distribution are stronger
for ζ < 0.5 (cf. Sect. 3.2; see also Schmidt et al. (2009)).

Figure 8 shows that the dependence of b on ζ is non-linear.
For 3D turbulence the parameter b increases smoothly from
b ≈ 1/3 for ζ = 1 to b ≈ 1 for ζ = 0, and for 2D turbulence from
b ≈ 1/2 for ζ = 1 to b ≈ 1 for ζ = 0. However, there is an appar-
ent break at ζ ≈ 0.5, which represents the natural forcing mixture
used in many previous studies. For ζ >∼ 0.5 the b-parameter re-
mains close to the value obtained for purely solenoidal forcing,
i.e. b ≈ 0.3−0.4 in 3D and b ≈ 0.5 in 2D. The flat part of the
data in Fig. 8 for ζ > 0.5 explains why in previous studies with a
natural forcing mixture (e.g., Mac Low et al. 1998; Klessen et al.
2000; Li et al. 2003; Kritsuk et al. 2007; Glover et al. 2010), the
turbulence statistics were close to the purely solenoidal forcing
case (e.g., Padoan et al. 1997; Stone et al. 1998; Boldyrev et al.
2002; Padoan & Nordlund 2002; Kowal et al. 2007; Lemaster &
Stone 2008; Burkhart et al. 2009). In contrast, b increases much
more strongly for ζ <∼ 0.5, until it reaches b ≈ 1 for purely
compressive forcing (e.g., Passot & Vázquez-Semadeni 1998;
Federrath et al. 2008b; Schmidt et al. 2009).

Equation (20) thus needs to be refined to account for the
non-linear dependence of b on the forcing. Moreover, Eq. (20)
was based on the analytic expression of the forcing parameter ζ
(cf. Sect. 2.1). However, the numerical estimate of b depends on
how well the code can actually induce compression through the
build-up of divergence in the velocity field. Thus, different codes
can produce slightly different values of b for the same forcing
parameter ζ. This is because of the varying efficiency of codes
to convert the energy provided by a given forcing into actual ve-
locity fluctuations (e.g. Kitsionas et al. 2009; Price & Federrath
2010). To construct a refined model for b that does not directly
rest on the analytic forcing parameter ζ and that accounts for
the non-linear dependence on the forcing, we recall that b is a
normalised measure of compression. Compression is caused by
converging flows and shocks, which have a finite magnitude of
velocity divergence. A normalised measure of compression is
thus also provided by dividing the power in longitudinal modes
of the velocity field by the total power of all modes in the veloc-
ity field,

〈Ψ〉 =
Elong

Etot
· (21)

We therefore expect a dependence of b on 〈Ψ〉.
Figure 8 shows 〈Ψ〉 as a function of ζ (plotted as stars) for 3D

and 2D turbulence. It is indeed correlated with b, however, 〈Ψ〉
is less than b by a factor of roughly

√
3 in 3D and

√
2 in 2D. The
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squares in Fig. 8 show
√

3 〈Ψ〉 in 3D and
√

2 〈Ψ〉 in 2D, which
seems to provide a good estimate of b. The factor

√
3 is a geo-

metrical factor for 3D turbulence (the diagonal in a cube of size
unity). It is

√
2 in 2D turbulence (the diagonal in a square of size

unity), and
√

1 in 1D. The latter in particular is trivial, because
in 1D only longitudinal modes can exist, and thus

√
1 〈Ψ〉 = 1

for any value of ζ (cf. Fig. 1). The larger geometrical factors
in 2D and 3D account for the fact that the longitudinal velocity
fluctuations, which induce compression occupy only one of the
available spatial directions (two in 2D and three in 3D) on av-
erage. For the general case of supersonic turbulence in D = 1, 2
and 3 dimensions, these ideas lead to

b̃ =
√

D〈Ψ〉, (22)

which is solely based on the ratio of the power in longitudinal
modes in the velocity field to the total power of all modes in the
velocity field, 〈Ψ〉.

In addition to the refined model based on the compressive
ratio 〈Ψ〉 in Eq. (22), we provide a fit function for b based on the
forcing parameter ζ. The dashed lines in Fig. 8 show

b̃(ζ) =
1
D
+

D − 1
D

(
Flong(ζ)

Ftot(ζ)

)3

· (23)

The forcing ratio Flong/Ftot is given by Eq. (9). The first sum-
mand in Eq. (23) is the expected ratio of longitudinal modes
(compression) in a supersonic turbulent medium for a purely
solenoidal forcing, i.e. a forcing that does not directly induce
compression. The second summand is the contribution to the
compression directly induced by the forcing. The model Eq. (23)
is similar to Eq. (20), but with a non-linear dependence of b on
the forcing parameter ζ.

We suggest that the dependence of b on the forcing solves
a puzzle reported by Pineda et al. (2008). They provided mea-
surements of velocity dispersions and 12CO excitation tempera-
tures for the six subregions in the Perseus MC. The molecular
excitation temperatures serve as a guide for the actual gas tem-
perature, from which the sound speed can be estimated. From
these values, the local rms Mach numbers are computed as the
ratio of the local velocity dispersion to the local sound speed.
Goodman et al. (2009) and Pineda et al. (2008) pointed out that
there is clearly no correlation of the form suggested by Eq. (19)
for a fixed parameter b across the investigated subregions in
the Perseus MC. For instance, the Shell region exhibits an in-
termediate to small velocity dispersion derived from 12CO and
13CO observations, while its density dispersion is the largest in
the Perseus MC. This provides additional support to our sug-
gestion that the Shell in Perseus is dominated by compressive
turbulence forcing for which b takes a higher value compared
to solenoidal forcing. The apparent lack of density dispersion-
Mach number correlation reported by Pineda et al. (2008) and
Goodman et al. (2009) for a fixed parameter b can thus be ex-
plained, because b is in fact not fixed across different subregions
in the Perseus MC.

We plan to measure b in different regions of the ISM in fu-
ture studies. However, the main problem in a quantitative analy-
sis of Eq. (18) with observational data is that the column density
dispersion is typically smaller than the 3D density dispersion
(compare Tables 1 and 3). The relation between the column den-
sity PDF and the volumetric density PDF is non-trivial and de-
pends on whether the column density tracer is optically thin
or optically thick and on the scale of the turbulence driving.
However, Brunt et al. (2010) developed a promising technique

to estimate the 3D density variance from 2D observations with
an accuracy of about 10%.

4. Intermittency

Intermittency manifests itself in

i) non-Gaussian (often exponential) wings of PDFs of quan-
tities involving density and/or velocity, its derivatives
(e.g., vorticity) and combinations of density and velocity
(e.g., ρ1/2v and ρ1/3v as discussed in Appendix A);

ii) anomalous scaling of the higher-order structure functions
of the velocity field (e.g., Anselmet et al. 1984) and cen-
troid velocity increments (Lis et al. 1996; Hily-Blant et al.
2008); and

iii) coherent structures of intense vorticity (∇ × u) (see Vincent
& Meneguzzi 1991; Moisy & Jiménez 2004, for results of
incompressible turbulence), and of strong shocks and rar-
efaction waves (∇ · u).

Filamentary coherent structures of vorticity (intermittency
item iii) are indeed observed in our two supersonic models.
In Fig. 2 (middle panel), we show the projected vorticity for
solenoidal and compressive forcing, respectively. Most of the fil-
aments of high vorticity coincide with the positions of shocks
and therefore also with high density and negative divergence
in the velocity field (Fig. 2, bottom panel). This is further-
more inferred from observations of the Ursa Majoris Cloud by
Falgarone et al. (1994) and is consistent with the results of
weakly compressible decaying turbulence experiments by Porter
et al. (1992a) and Porter et al. (1994), who concluded that intense
vorticity is typically associated with intermittency.

4.1. The probability distribution of centroid velocity
increments

Since there is evidence of filamentary coherent structures in
the vorticity (intermittency item iii) of our models, and because
there is additional evidence of non-Gaussian tails in the density
PDFs (intermittency item i) discussed in Sect. 3, we now pro-
ceed to examine the PDFs and the scaling of centroid velocity
increments (intermittency item ii) to assess the strength of the
intermittency. We compare centroid velocity increments (CVIs)
for solenoidal and compressive forcing and discuss the interpre-
tation of observations based on that comparison. Following the
analysis by Lis et al. (1996), who discuss CVIs computed for
the turbulence simulation by Porter et al. (1994), and following
the CVI analysis of the Polaris Flare and of the Taurus MC by
Hily-Blant et al. (2008), the centroid velocity increment is de-
fined as

δCℓ(r) = 〈C(r) −C(r + ℓ)〉, (24)

where the angle average 〈 〉 is computed over all possible di-
rections of the vector ℓ in the plane perpendicular to the line-of-
sight. Thus, δCℓ(r) only depends on the norm of the lag vector
ℓ = |ℓ|, which separates two points r = (x, y) and r + ℓ in the
plane of the sky (x, y). The normalised centroid velocity, C(r) in
Eq. (24) is defined as

C(r) =

∫
ρ(r, z) vz(r, z) dz
∫
ρ(r, z) dz

· (25)

The variable vz(r, z) denotes the line-of-sight velocity in
z-direction. We have however computed C(r) separately along
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Fig. 9. PDFs of centroid velocity increments, computed using Eqs. (24) and (25) are shown as a function of lag ℓ in units of grid cells ∆ = L/1024
for solenoidal forcing (left) and compressive forcing (right). The PDFs are very close to Gaussian distributions for long lags, whereas for short
lags, they develop exponential tails, which is a manifestation of intermittency (e.g., Hily-Blant et al. 2008, and references therein).

each of the three principal lines-of-sight x, y and z of our
Cartesian domain in order to examine the effects of varying the
projection. Also note that we have computed normalised cen-
troid velocities (Lazarian & Esquivel 2003), since we want to
compare to Hily-Blant et al. (2008). Another point to mention
here is that the centroid velocities, C(r) are typically computed
using an intensity weighting instead of a density weighting. This
is because the gas density cannot be measured directly, whereas
the emission intensity is accessible to observations. By using
density weighting we implicitly assume optically thin emission.
For optically thick emission, uniform weighting would be more
appropriate (Lis et al. 1996).

Figure 9 shows the PDFs of δCℓ(r) computed for varying
lag ℓ in units of the numerical cell size ∆ = L/1024. They should
be compared to Hily-Blant et al. (2008, Fig. 4−6). The PDFs are
mainly Gaussian for large lags, whereas for smaller separations,
they develop exponential tails, indicating intermittent behaviour.
This result is consistent with the numerical simulation analysed
by Lis et al. (1996), and with observations of the ρ Oph Cloud,
the Orion B and the Polaris Flare by Lis et al. (1998), Miesch
et al. (1999) and Hily-Blant et al. (2008), respectively.

Following the analysis by Hily-Blant et al. (2008), we com-
puted the kurtosis K of the PDFs of CVIs using the definition
in Eqs. (13). Note that K = 3 corresponds to a Gaussian dis-
tribution, and K = 6 corresponds to an exponential function.
The kurtosis of the CVI PDFs is shown in Fig. 10 as a func-
tion of spatial lag ℓ, and can be directly compared to Hily-Blant
et al. (2008, Fig. 7). Both forcing types exhibit nearly Gaussian
values of the kurtosis at lags ℓ >∼ 100∆. On the other hand,
for ℓ <∼ 100∆, both forcing types produce non-Gaussian PDFs.
Solenoidal forcing approaches the exponential value K = 6 for
ℓ <∼ 10∆. Compressive forcing yields exponential values already
for lags ℓ ≈ 40∆, while solenoidal forcing has K ≈ 4 on these
scales. This indicates stronger intermittency in the case of com-
pressive forcing. For ℓ <∼ 30∆, compressive forcing yields even
super-exponential values of K . For both solenoidal and com-
pressive forcings, we show later in Sect. 6 that ℓ <∼ 30∆ is in the
dissipation range for numerical turbulence. Compressive veloc-
ity modes dominate in this regime (see Fig. 14), which may re-
sult artificially in extreme intermittency. For ℓ ≈ 30∆, compres-
sive forcing gives K = 6.0 ± 1.0, which is roughly 35% larger
than the Polaris Flare observations at their resolution limit. The
solenoidal case on the other hand gives K ≈ 4.3 ± 0.5, which
is in very good agreement with the IRAM and KOSMA data
discussed by Hily-Blant et al. (2008, Fig. 7). Depending on
the actual lag used for the comparison, both solenoidal and

Fig. 10. Kurtosis K of the PDFs of centroid velocity increments shown
in Fig. 9 as a function of the lag ℓ in units of grid cells ∆ = L/1024 for
solenoidal and compressive forcing. Note that a kurtosis value of 3 (hor-
izontal dot-dashed line) corresponds to the value for a Gaussian distri-
bution. Non-Gaussian values of the kurtosis are obtained for ℓ <∼ 100∆.
The error bars contain both snapshot-to-snapshot variations as well as
the variations between centroid velocity increments computed by inte-
gration along the x, y and z axes. This figure can be compared to ob-
servations of the Polaris Flare and Taurus MC (see Fig. 7 of Hily-Blant
et al. 2008).

compressive forcing seem to be consistent with the observa-
tions. However, it should be noted that the lags cannot be eas-
ily compared for the real clouds and the simulations, because
simulated and observed fields have different spatial resolution.
Moreover, the simulated fields have periodic boundaries, while
the true fields don’t. Nevertheless, the similarity of the observed
and the numerically simulated CVIs indicates that turbulence in-
termittency plays an important role in both our simulations and
in real molecular clouds.

The Polaris Flare has a very low star formation rate and is
therefore appropriate for studying the statistics of interstellar su-
personic turbulence without contamination by internal energy
sources. In contrast, the Taurus MC is actively forming stars.
Against our expectations, the Taurus MC data display very weak
intermittent behaviour and the kurtosis remains at the Gaussian
values K ≈ 3 in Hily-Blant et al. (2008, Fig. 7). However, the
Taurus field studied by Hily-Blant et al. (2008) is located far
from star-forming regions in a translucent part of the Taurus MC
(Falgarone 2009, private communication). This may explain why
the Taurus field displays only very weak intermittency. It would
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Fig. 11. Scaling of the structure functions of centroid velocity increments defined in Eq. (26) for solenoidal forcing (left) and compressive forcing
(right) up to the 6th order. Scaling exponents obtained using power-law fits following Eq. (27) within the inertial range are indicated in the figures
and summarised in Table 4.

Table 4. Scaling of the structure functions of centroid velocity increments.

Absolute scaling exponents ............. ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

CVI SFs (10243 sol) 0.62 1.20 1.73 2.21 2.65 3.05
CVI SFs (10243 comp) 0.62 1.13 1.52 1.82 2.05 2.22

Relative Scaling Exponents ............. ζ̃1 ζ̃2 ζ̃3 ζ̃4 ζ̃5 ζ̃6

CVI SFs using ESSa (10243 sol) 0.36 0.70 1.00 1.27 1.51 1.72
CVI SFs using ESSa (10243 comp) 0.38 0.72 1.00 1.23 1.41 1.56
Polaris Flareb 0.37 0.70 1.00 1.27 1.53 1.77
Polaris Flarec 0.38 0.71 1.00 1.28 1.54 1.80
Intermittency Model SL94d 0.36 0.70 1.00 1.28 1.54 1.78
Intermittency Model B02e 0.42 0.74 1.00 1.21 1.40 1.56

Notes. (a) Using extended self-similarity (ESS) (Benzi et al. 1993).
(b) Measurement of CVI structure functions by Hily-Blant et al. (2008).
(c) Measurement of CVI structure functions by Hily-Blant et al. (2008) using 12CO(2−1) data by Bensch et al. (2001).
(d) Intermittency model ζ̃p = p/9 + C

(
1 − (1 − 2/(3C))p/3

)
defined in Eq. (28) using a fractal co-dimension C = 2 (She & Leveque 1994), which

corresponds to filamentary structures (D = 1).
(e) Same as d , but for co-dimension C = 1 (Boldyrev 2002; Boldyrev et al. 2002) corresponding to sheet-like structures (D = 2).

be interesting to repeat the analysis of centroid velocity incre-
ments for regions of confirmed star formation, including regions
with winds, outflows and ionisation feedback from young stel-
lar objects to see whether these regions indeed display stronger
intermittency.

4.2. The structure function scaling of centroid velocity
increments

In this section, we discuss the scaling of the pth order structure
function of CVIs, defined as

CVISFp(ℓ) = 〈|δCℓ(r)|p〉r. (26)

We have averaged over a large enough sample of independent
increments δCℓ(r) that increasing the sample size produced no
change in the value of CVISFp(ℓ) for p ≤ 6, which is demon-
strated in Appendix B. Figure 11 shows the CVI structure func-
tions for solenoidal and compressive forcing. The CVI structure
functions were fit to power laws of the form

CVISFp(ℓ) ∝ ℓ ζp (27)

within the inertial range2, defined equivalently to the study in
Federrath et al. (2009). The value for each power-law exponent
is indicated in Fig. 11 and summarised in Table 4.

For a direct comparison of CVI structure functions with the
study by Hily-Blant et al. (2008, Fig. 8), we apply the extended
self-similarity (ESS) hypothesis (Benzi et al. 1993), which states
that the inertial range scaling may be extended beyond the in-
ertial range, such that power-law fits can be applied over a
larger dynamic range. The ESS hypothesis is used by plotting
the pth order CVISFp(ℓ) against the 3rd order CVISF3(ℓ) (Benzi
et al. 1993). These plots are shown in Fig. 12. Indeed, the scaling
range is drastically increased using ESS. All ESS data points are
consistent with a single power law for each CVI structure func-
tion order p ≤ 6. We summarise the scaling exponents with and
without using the ESS hypothesis in Table 4.

2 By its formal definition for incompressible turbulence studies (e.g.,
Frisch 1995), the inertial range is the range of scales for which the turbu-
lence statistics are not directly influenced by the forcing acting on scales
larger than the inertial range, and not directly influenced by the viscos-
ity acting on scales smaller than the inertial range. The inertial range
is typically very small in numerical experiments, because of the high
numerical viscosity caused by the discretisation scheme, given the res-
olutions achievable with current computer technology (see also Sect. 6
and Appendix C).
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Fig. 12. Same as Fig. 11, but using the extended self-similarity hypothesis (Benzi et al. 1993), allowing for a direct comparison of the scaling
exponents of centroid velocity increments with the study by Hily-Blant et al. (2008) for the Polaris Flare and Taurus MC (see Table 4).

Table 4 furthermore provides the ESS scaling exponents ob-
tained for the Polaris Flare (Hily-Blant et al. 2008, Table 3),
as well as the scaling exponents obtained from intermittency
models of the structure function scaling exponents

ζ̃p ≡
ζp

ζ3
=

p

9
+ C

⎛⎜⎜⎜⎜⎜⎝1 −
(
1 − 2

3C

)p/3⎞⎟⎟⎟⎟⎟⎠ (28)

by She & Leveque (1994) (C = 2) and Boldyrev (2002) (C =
1). In these models, the fractal co-dimension C is related to the
fractal dimension of the most intermittent structures D by C =
3 − D. The She & Leveque (1994) model assumes 1D vortex
filaments as the most intermittent structures (D = 1), whereas
the Boldyrev (2002) model assumes sheet-like structures with
D = 2.

For solenoidal forcing, the scaling of the CVI structure func-
tions using ESS is very similar to the She & Leveque (1994)
model. This model is appropriate for incompressible turbulence,
for which the most intermittent structures are expected to be fil-
aments (She & Leveque 1994,D = 1). Interestingly, their model
seems to be consistent with the measurements in the Polaris
Flare by Hily-Blant et al. (2008) and with our solenoidal forc-
ing case. In contrast, the scaling exponents derived for compres-
sive forcing are better consistent with the intermittency model
by Boldyrev (2002, D = 2). This direct comparison indicates
that turbulence in the Polaris Flare observed by Hily-Blant et al.
(2008) behaves like solenoidally forced turbulence. However,
it does not imply that turbulence in the Polaris Flare is close
to incompressible, since our numerical models are clearly su-
personic in the inertial range (see Sect. 6). It rather means that
CVI scaling is different from the absolute scaling exponents fol-
lowing from the intermittency models by She & Leveque (1994)
and Boldyrev (2002). This is mainly because of two reasons:
first, these models do not account for density fluctuations (see
however Schmidt et al. 2008), and second, CVIs are 2D projec-
tions of the 3D turbulence. The statistics derived from CVIs is
a convolution of density and velocity statistics projected onto
a 2D plane. As shown by Ossenkopf et al. (2006) and Esquivel
et al. (2007), CVI statistics differ significantly from pure ve-
locity statistics, if the ratio of density dispersion to mean den-
sity is high. This is usually the case in supersonic flows, and is
also the case for both our numerical experiments (see Table 1).
It explains the difference between the structure functions de-
rived from the pure velocity statistics compared to convolved
velocity-density statistics (Schmidt et al. 2008). The deviations
from the Kolmogorov (1941) scaling (̃ζp = p/3) for the 3D data
analysed in Schmidt et al. (2008) are significantly larger than

those derived via CVI in 2D, revealing a significant loss in the
signatures of intermittency in the projected CVI data (see also
Brunt et al. 2003; Brunt & Mac Low 2004, for a discussion of
projection effects). This also means that direct tests of the the-
oretical models will be very difficult to achieve, unless a means
of relating the CVI-based moments to the 3D moments is devel-
oped. Moreover, the fractal dimension of structures changes in
a non-trivial way upon projection (Stutzki et al. 1998; Sánchez
et al. 2005; Federrath et al. 2009), which severely limits the
comparison of CVI statistics with the 3D intermittency models
by She & Leveque (1994), Boldyrev (2002) and Schmidt et al.
(2008).

Nevertheless, a direct comparison of CVI structure function
scaling obtained in numerical experiments and observations can
provide useful information to distinguish between different pa-
rameters of the turbulence, as for instance different turbulence
forcings.

5. Principal component analysis

Principal component analysis (PCA) is a multivariate tool
(Murtagh & Heck 1987) introduced by Heyer & Schloerb (1997)
for measuring the scaling of interstellar turbulence. It has been
used for studying the structure and scaling in several molecu-
lar cloud regions, simulations and synthetic images (Brunt &
Heyer 2002a,b; Brunt et al. 2003; Heyer & Brunt 2004; Heyer
et al. 2006). PCA can be used to characterise structure on differ-
ent scales. For best comparison with observations, we choose
to work in position-position-velocity (PPV) space. Since our
simulation data are typically stored in position-position-position
(PPP) space, we transformed our PPP cubes into PPV space
prior to PCA. As for the CVIs discussed in the previous sec-
tion, we use the approximation of optically thin radiative trans-
fer to derive radiation intensity. This means that we essentially
assume that the emission is proportional to the gas density.
The PPV data therefore represent a simulated measured inten-
sity T (xi, yi, vz, j) ≡ Ti j at spatial position ri = (xi, yi) and spec-
tral position vz, j. The indices i and j thus represent the spatial
and spectral coordinates respectively. A detailed description of
the PCA technique is given by Heyer & Schloerb (1997) and
Brunt & Heyer (2002a). The most important steps necessary to
derive the characteristic length scales and corresponding veloc-
ity scales using PCA are described below. First, the covariance
matrix

U jk =
1

NxNy
Ti j Tik (29)
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Fig. 13. Principal component analysis (PCA) for solenoidal (left) and compressive forcing (right). The PCA slopes obtained for solenoidal and
compressive forcings are summarised and compared with observations by Heyer et al. (2006) in Table 5. The error bars contain the contribution
from temporal variations and from three different projections along the x, y and z-axes. The data were re-sampled from 10243 to 2563 grid points
prior to PCA. The re-sampling speeds up the PCA and has virtually no effect on the inertial range scaling (see e.g., Padoan et al. 2006; Federrath
et al. 2009).

Table 5. Comparison of measured PCA scaling slopes.

10243 sol 10243 comp Rosette Zone Ia Rosette Zone IIb G216-2.5c

αPCA ..................................... 0.66 ± 0.05 0.76 ± 0.09
αPCA from 12CO(1–0) ....... 0.79 ± 0.06 0.66 ± 0.06 0.63 ± 0.04
αPCA from 13CO(1–0) ....... 0.86 ± 0.09 0.67 ± 0.12 0.56 ± 0.02

Notes. (a) PCA by Heyer et al. (2006) of the interior of an HII region in the Rosette MC; (b) same as a, but exterior of the HII region; (c) PCA by
Heyer et al. (2006) for G216-2.5 (Maddalenas’s Cloud).

is constructed by summation over all spatial points Nx and Ny.
Solving the eigenvalue equation

U u(l) = λ(l) u(l) (30)

yields the lth eigenvalue λ(l) and the lth eigenvector u(l) of the
covariance matrix. The subsequent projection

I
(l)
i
= T

ik
u

(l)
k

(31)

onto the eigenvectors yields the lth eigenimage I
(l)
i

.
Autocorrelation functions (ACFs) are then computed for
each of the eigenimages and eigenvectors. The spatial scale on
which the two-dimensional ACF of the lth eigenimage falls off
by 1/e defines the lth characteristic spatial scale. Following
the same procedure, the corresponding characteristic velocity
scale is determined from the ACF of the lth eigenvector, which
contains the spectral information.

Figure 13 shows our time- and projection-averaged set of
spatial and velocity scales obtained with PCA. We have fitted
power laws to the PCA data, which yielded PCA scaling expo-
nents αPCA for solenoidal and compressive forcing respectively.
For solenoidal forcing we find αPCA = 0.66 ± 0.05 and for com-
pressive forcing we find αPCA = 0.76 ± 0.09 (see Table 5). The
different PCA slopes αPCA derived for solenoidal and compres-
sive forcing suggest that by using PCA, differences in the mix-
ture of transverse and longitudinal modes of the velocity field
can be detected. However, the difference between solenoidal and
compressive forcing is only at the 1-σ level.

Heyer et al. (2006) applied PCA to the Rosette MC and to
G216-2.5 (Maddalenas’s Cloud). These two clouds are quite dif-
ferent in dynamical and evolutionary state, although they exhibit
roughly the same turbulence Mach number. Heyer et al. (2006)

measured the Mach numberM1 pc ≈ 4−5 on a scale of 1 pc for
both clouds. The Rosette MC exhibits confirmed massive star
formation, whereas G216-2.5 has a low star formation rate, sim-
ilar to the Polaris Flare discussed in the previous section. Heyer
et al. (2006) measured PCA slopes for both clouds and addition-
ally provided the PCA slopes in two distinct subregions of the
Rosette MC. The first subregion is inside the HII region (Zone I)
surrounding the massive star cluster NGC 22443, while the other
subregion is outside of this HII region (Zone II). The measured
PCA slopes obtained from 12CO and 13CO observations are sum-
marised in Table 5 together with our estimates for solenoidal and
compressive forcing. The PCA scaling exponent for solenoidal
forcing is very close to the PCA scaling exponents derived from
the 12CO observations in the G216-2.5 (αPCA = 0.63 ± 0.04)
and in Zone II of the Rosette MC (αPCA = 0.66 ± 0.06). In con-
trast, the PCA slope derived from 12CO observations in Zone I
of the Rosette MC (αPCA = 0.79 ± 0.06) is better consistent with
our compressive forcing case. This indicates that Zone I con-
tains more kinetic energy in compressive modes than Zone II
and G216-2.5. The corresponding 13CO observations reported
in Heyer et al. (2006) yield slightly larger differences between
the PCA scaling exponents derived for Zone I on the one hand,
and Zone II and G216-2.5 on the other hand (see also Table 5).
This supports the idea that Zone I in the Rosette MC, and
Zone II as well as G216-2.5 contain quite different amounts of

3 The formation of the star cluster XA in the Rosette MC was likely
triggered by the accumulation of material in the expanding shell sur-
rounding the OB star cluster NGC 2244 (Wang et al. 2008, 2009).
This emphasises the importance of expanding HII regions in triggering
subsequent star formation by compression of gas in expanding shells
(Elmegreen & Lada 1977).
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Fig. 14. Top panels: total, transverse (rotational) and longitudinal (compressible) velocity Fourier spectra E(k) defined in Eq. (32) and compen-
sated by k2 for solenoidal (left) and compressive forcing (right). Error bars indicate temporal variations, which account for an uncertainty of
roughly ±0.05 of all scaling slopes reported for the inertial range 5 <∼ k <∼ 15. The inferred inertial range scaling exponents for both solenoidal and
compressive forcing are consistent with independent numerical simulations and with observations of the size-linewidth relation (see text). Note
that the transverse part, Etrans falls off more steeply than the longitudinal part, Elong for both forcing types in the inertial range. Bottom panels:
ratio of the energy in longitudinal velocity modes Elong to the total energy in velocity modes Etot = Etrans + Elong . For solenoidal forcing, we obtain
Elong/Etot ≈ 1/3 in the inertial range (horizontal dash-dotted line), because compression can only occur in one of the three spatial dimensions on
average (Elmegreen & Scalo 2004; Federrath et al. 2008b). For compressive forcing, this ratio is roughly 1/2, which corresponds to an equipartition
of longitudinal and transverse velocity modes. Note however that compressive forcing can compress the gas in all three spatial dimensions directly,
whereas solenoidal forcing can only induce compression indirectly through the velocity field (Federrath et al. 2008b). The excess of longitudinal
modes at high wavenumbers k >∼ 40 stems from numerical dissipation, which is more effectively dissipating transverse than longitudinal modes
on small scales due to the discretisation onto a grid. This suggests that roughly 30 grid cells are needed to accurately resolve a vortex, while a
shock is typically resolved with roughly 3 grid cells using the piecewise parabolic method (Colella & Woodward 1984). However, for a numerical
resolution of 10243 grid cells, we find that wavenumbers k <∼ 40 are almost unaffected by the discretisation and by the parameters of the numerical
scheme (see Appendix C).

compressive modes in the velocity field, which may be the result
of different turbulence forcing mechanisms, similar to the differ-
ences obtained in purely solenoidal and compressive forcings.

6. Fourier spectra

6.1. Velocity Fourier spectra

Fourier spectra of the velocity field E(k) are typically used to dis-
tinguish between Kolmogorov (1941) turbulence, E(k) ∝ k−5/3

and Burgers (1948) turbulence, E(k) ∝ k−2. For highly com-
pressible, isothermal, supersonic, turbulent flow, it has been
shown that the inertial range scaling is close to Burgers turbu-
lence. For instance, Kritsuk et al. (2007) found E(k) ∝ k−1.95

and Schmidt et al. (2009) obtained E(k) ∝ k−1.87 from high-
resolution numerical simulations.

The Fourier spectrum of a quantity provides a measure of
the scale dependence of this quantity. Velocity Fourier spectra
are thus defined as

E(k) dk =
1
2

∫
û · û∗ 4πk2 dk, (32)

where û denotes the Fourier transform of the velocity field (e.g.,
Frisch 1995). The total Fourier spectrum can be separated into
transverse (k ⊥ û) and longitudinal (k ‖ û) parts by apply-
ing a Helmholtz decomposition. Note that integrating the trans-
verse energy spectrum yields the kinetic energy in transverse
(rotational) modes, while integration of the longitudinal energy
spectrum yields the kinetic energy in longitudinal (compress-
ible) modes. Furthermore, by integrating the velocity spectrum
from k1 to k2, one obtains the kinetic energy content on length
scales corresponding to the wavenumber interval [k1, k2]. Since
the mean velocity is zero in our simulations, integration of the
total velocity Fourier spectrum E(k) over all wavenumbers yields
the total variance of velocity fluctuations σ2

v :

∫ kc

1
E(k) dk =

1
2
σ2
v . (33)

The upper bound of the integral is the cutoffwavenumber kc = N
for a cubic dataset with N3 data points. Thus, kc = 1024 for our
standard resolution of 10243 grid cells.

In Fig. 14 we show the total velocity Fourier spectra E(k)
as defined in Eq. (32) together with its decomposition into
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transverse Etrans and longitudinal Elong parts for solenoidal and
compressive forcing respectively. The prominent signature of the
different forcings on the main driving scale, k = 2 is clearly
noticeable: solenoidal forcing excites mostly transverse modes,
whereas compressive forcing excites mostly longitudinal modes
in the velocity field at k = 2. However, the forcing has direct
influence only for 1 < k < 3 (see Sect. 2.1). Further down the
cascade, the turbulent flow develops its own statistics as a re-
sult of non-linear interactions in the inertial range 5 <∼ k <∼ 15.
We emphasise that this scaling range was chosen very carefully,
since turbulence simulations will only provide a small inertial
range even at resolutions of 10243 grid cells (see, e.g., Klein
et al. 2007; Lemaster & Stone 2009). This is mainly caused
by the bottleneck phenomenon (e.g., Porter et al. 1994; Dobler
et al. 2003; Haugen & Brandenburg 2004; Schmidt et al. 2006;
Kritsuk et al. 2007), which may slightly affect the Fourier spectra
in the dissipation range. However, the bottleneck phenomenon
had no significant impact on the turbulence statistics in our nu-
merical study for wavenumbers k <∼ 40. This is demonstrated
in Appendix C, where we present the resolution dependence of
the Fourier spectra and the dependence on parameters of the
PPM numerical scheme. We conclude that the statistical quan-
tities derived for wavenumbers k <∼ 40 are not significantly af-
fected by the numerical scheme or limited resolution applied in
the present study.

We apply power-law fits to the inertial range data with
the resulting slopes indicated in Fig. 14 (top panels). Both
solenoidal and compressive forcing yield slopes consistent with
size-linewidth relations inferred from observations (e.g., Larson
1981; Myers 1983; Perault et al. 1986; Solomon et al. 1987;
Falgarone et al. 1992; Miesch & Bally 1994; Ossenkopf &
Mac Low 2002; Padoan et al. 2003; Heyer & Brunt 2004;
Padoan et al. 2006; Ossenkopf et al. 2008b; Heyer et al. 2009),
and with the results of independent numerical simulations (e.g.,
Klessen et al. 2000; Boldyrev et al. 2002; Padoan et al. 2004;
Kritsuk et al. 2007; Schmidt et al. 2009). Note that size-linewidth
relations of the formσv ∝ lγ with scaling exponents γ = 0.4−0.5
correspond to Fourier spectra E(k) ∝ k−β with scaling exponents
in the range β = 1.8−2.0, because γ = (β − 1)/2. However,
it must be emphasised that the relation between scaling ex-
ponents obtained from observational maps of centroid veloc-
ities (as discussed in Sect. 4.2) and 3D velocity fields from
simulations is non-trivial, because of projection-smoothing and
intensity-weighting. Projection-smoothing increases the scaling
exponents of the 2D projection of a 3D field such that γ2D =

γ3D + 1/2 (e.g., Stutzki et al. 1998; Brunt & Mac Low 2004).
However, Brunt & Mac Low (2004) showed that the effect of
projection-smoothing is compensated statistically (but not iden-
tically) by intensity-weighting of observed centroid velocity
maps. Thus, our measurements of velocity scaling seem consis-
tent with observations.

It is important to note that the transverse parts Etrans(k) fall
off more steeply than the longitudinal parts Elong(k) for both
forcing types within the inertial range. For solenoidal forcing,
we find Etrans(k) ∝ k−1.89 and Elong(k) ∝ k−1.79, and for com-
pressive forcing, Etrans(k) ∝ k−2.03 and Elong(k) ∝ k−1.87. This re-
sult indicates that longitudinal modes can survive down to small
scales, such that compression may not be neglected anywhere in
the turbulent cascade. Lemaster & Stone (2009, Figs. 9, 10) ob-
tain Etrans(k) ∝ k−2.0 and Elong(k) ∝ k−1.8 for their hydrodynam-
ical model with solenoidal forcing at a resolution of 10243 grid
points in the Athena code. This is consistent with our findings
for the scale dependence of the transverse and longitudinal parts

and shows that the kinetic energy in longitudinal modes must not
be neglected within the inertial range.

In order to quantify the relative importance of compres-
sion over rotation in the turbulent motions, we present plots of
the ratio

Ψ(k) =
Elong(k)

Elong(k) + Etrans(k)
=

Elong(k)

Etot(k)
(34)

in the bottom panels of Fig. 14. Solenoidal forcing yields
Ψ ≈ 1/3 in the inertial range. We emphasise that the ratio
Ψ ≈ 1/3 was expected from the fact that compression can only
occur in one of the three available spatial dimensions on aver-
age in the case of supersonic flow driven by a purely solenoidal
force field (Elmegreen & Scalo 2004; Federrath et al. 2008b).
This is the fundamental idea on which the heuristic model of the
density dispersion-Mach number relation given by Eq. (20) was
based. For compressive forcing, we find Ψ ≈ 1/2 in the inertial
range as a result of the direct compression induced by compres-
sive forcing. Thus, solenoidal and compressive forcing produce
quite similar amounts of compressive modes in the velocity field
(Ψ ≈ 1/3 versus Ψ ≈ 1/2). This means that even fully compres-
sive forcing can behave very similar to solenoidal forcing in the
inertial range, as far as pure velocity statistics are concerned.
However, we show in the next section that the density statistics
are very different in the inertial range. The same is true for com-
bined density-velocity statistics (see Appendix A).

We also note here that the rise ofΨ at k >∼ 40 for both forcing
types is a numerical effect, which comes from the discretisation
of the velocity field onto a grid with finite resolution. This shows
that energy in rotational modes cannot be accounted for accu-
rately if vortices are smaller than roughly 30 grid cells in each
direction, whereas longitudinal modes (i.e. shocks) may still be
well resolved. As a result, the transverse kinetic energy is un-
derestimated for k >∼ 40 up to the resolution limit kc = 1024.
However, the plateau of almost constant Ψ for k <∼ 40 indicates
that the discretisation had no significant influence on scales with
wavenumbers k <∼ 40. The effect of underestimating the trans-
verse kinetic energy due to the discretisation of fluid variables
is also observed in the ZEUS-3D simulations by Pavlovski et al.
(2006, Fig. 2) for wavenumbers k >∼ 10 at numerical resolu-
tion of 2563 grid cells. In Appendix C, we furthermore demon-
strate that our results for the Fourier spectra are not affected by
the specific choice of parameters of the numerical scheme for
wavenumbers k <∼ 40.

6.2. Logarithmic density Fourier spectra

In analogy to the velocity Fourier spectra E(k), we define loga-
rithmic density fluctuation spectra

S (k) dk =

∫
( ̂s − 〈s〉) ( ̂s − 〈s〉)∗ 4πk2 dk. (35)

We subtract the mean logarithmic density prior to the Fourier
transformation such that S (k) is a measure of density fluctuations
as a function of scale. Therefore, integrating S (k) over all scales
yields the square of the logarithmic density dispersion σs

∫ kc

1
S (k) dk = σ2

s . (36)

Furthermore, integrating S (k) over the wavenumber range
[k1, k2] yields the typical density fluctuations on length scales
corresponding to this range of scales.
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Fig. 15. Left panel: fourier spectra of the velocity, E(k) defined in Eq. (32) (crosses and diamonds) and Fourier spectra of the logarithmic density
fluctuations, S (k) defined in Eq. (35) (triangles and squares) for solenoidal and compressive forcing, respectively. Both E(k) and S (k) are com-
pensated by k2 allowing for a better determination of the inertial range scaling. The density fluctuation power spectra differ significantly in the
inertial range 5 <∼ k <∼ 15 with S (k) ∝ k−1.56 for solenoidal and S (k) ∝ k−2.32 for compressive forcing. The scale on which the density fluctuation
spectra from solenoidal and compressive forcing cross each other and where the slope obtained in compressive forcing breaks and approaches the
shallower slope of the solenoidal forcing case roughly coincides with the sonic wavenumber ks (vertical dashed lines) defined in Eq. (38). Right
panel: same as left panel, but instead of using Fourier spectra to determine the inertial range scaling, we use the ∆-variance method to derive the
scaling slopes in physical space. Note that the scaling slopes α obtained with the ∆-variance technique are related to the slopes β of the Fourier
spectra by β = α + 1 (Stutzki et al. 1998). Error bars denote 1-σ temporal fluctuations.

Figure 15 (left) shows the logarithmic density fluctuation
spectra S (k) together with the total velocity Fourier spectra E(k)
in one plot. In contrast to the scaling of the velocity E(k), the
scaling of S (k) ∝ k−β is significantly different for solenoidal
(β = 1.56 ± 0.05) and compressive forcing (β = 2.32 ± 0.09)
in the inertial range.

7. ∆-variance of the velocity and density

The ∆-variance technique provides a complementary method for
measuring the scaling exponent of Fourier spectra in the physical
domain using a wavelet transformation (Stutzki et al. 1998). We
apply the ∆-variance to our simulation data using the tool devel-
oped and provided by Ossenkopf et al. (2008a). This tool imple-
ments an improved version of the original ∆-variance (Stutzki
et al. 1998; Bensch et al. 2001). The ∆-variance measures the
amount of structure on a given length scale ℓ by filtering the
dataset q(r) with an up-down-function

⊙
ℓ

(typically a French-
hat or Mexican-hat filter) of size ℓ, and computing the variance
of the filtered dataset. The ∆-variance is defined as

σ2
∆(ℓ) = 〈

(
q(r) ∗

⊙
ℓ
(r)

)2
〉r, (37)

where the average is computed over all data points at positions
r = (x, y, z). The operator ∗ stands for the convolution. We use
the original French-hat filter with a diameter ratio of 3.0 as in
previous studies using the ∆-variance technique (e.g., Stutzki
et al. 1998; Mac Low & Ossenkopf 2000; Ossenkopf et al. 2001;
Ossenkopf & Mac Low 2002; Ossenkopf et al. 2006).

Figure 15 (right panel) shows that the inertial range scaling
obtained with the ∆-variance technique is in very good agree-
ment with the scaling measured in the Fourier spectra. Note that
the scaling exponents β of Fourier spectra are ideally related to
the scaling exponents α of the ∆-variance by α = β − 1 (Stutzki
et al. 1998). The small deviations from this analytical relation
are caused by the finite size of the dataset, the re-sampling proce-
dure prior to the ∆-variance analysis applied here and the choice
of the filter function (Ossenkopf et al. 2008a). However, these
deviations are on the order of 4% and therefore smaller than the
average snapshot-to-snapshot variations.

For the ∆-variance of the velocity field, σ2
∆

(v, ℓ) ∝ ℓα, we
find scaling exponents α = 0.83 ± 0.05 for solenoidal forcing
and α = 0.96 ± 0.05 for compressive forcing. This translates
into size-linewidth relations σ∆(v, ℓ) ∝ ℓγ with scaling expo-
nents γ = α/2. Thus, we find γ = 0.42 ± 0.03 for solenoidal
forcing and γ = 0.48 ± 0.03 for compressive forcing. Ossenkopf
& Mac Low (2002) found a common power-law slope γ =
0.5 ± 0.04 for the Polaris Flare, ranging over three orders of
magnitude in length scale from about 50 pc down to roughly
0.05 pc. This scaling exponent is roughly consistent with both
our solenoidal and compressive forcing data, but slightly better
consistent with compressive forcing. Note that the centroid ve-
locity analysis by Ossenkopf & Mac Low (2002) is also subject
to the combined effects of projection-smoothing and intensity-
weighting discussed in Brunt & Mac Low (2004) and discussed
in Sect. 6.1. Thus, the comparison of 3D scaling of the velocity
with 2D observations should always be made with the caution
that projection-smoothing and intensity-weighting roughly can-
cel each other out in a statistical sense (Brunt & Mac Low 2004).

We are not aware of any observational study considering the
scaling of logarithmic intensity. The use of logarithmic density is
useful in isothermal simulations, because the equations of hydro-
dynamics, Eqs. (2) and (3), are invariant under transformations
in s = ln(ρ/〈ρ〉). In observations however, the intensity, T is
measured instead of the density, but the intensity can be trans-
formed into s′ = ln(T/〈T 〉), which gives a normalised quantity
similar to s = ln(ρ/〈ρ〉). This enables a straightforward compari-
son of simulation and observational data (yet with the limitations
listed in Sect. 9). It is also interesting to look at logarithmic den-
sity and intensity scaling, because this scaling parameter is used
in analytic models of the mass distribution of cores and stars by
Hennebelle & Chabrier (2008, 2009).

Unlike a logarithmic scaling analysis, the scaling of the lin-
ear integrated intensity, σ∆(ρ, ℓ) ∝ ℓγ was analysed by Stutzki
et al. (1998) and Bensch et al. (2001). They found γ ≈ 0.5−0.9
for the Polaris Flare, in good agreement with the scaling ex-
ponent γ = 0.8 ± 0.1 obtained from solenoidal forcing in
Federrath et al. (2009). In contrast, the scaling exponent obtained
for compressive forcing is significantly higher (γ = 1.4 ± 0.3).
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Bensch et al. (2001) measured scaling exponents γ ≈ 1.0−1.5
in small-scale maps (ℓ <∼ 0.1 pc) of the Polaris Flare and in
Perseus/NGC 1333, which are consistent with our estimates
for compressive forcing (Federrath et al. 2009, Table 1). Since
both solenoidal and compressive forcings display strong inter-
mittency at short lags (see Fig. 10), intermittency appears to be
primarily measurable on scales smaller than the turbulence in-
jection scale. Taking together the results by Bensch et al. (2001)
with ours for solenoidal and compressive forcing indicates that
interstellar turbulence is driven primarily on large scales, poten-
tially with a significant amount of compressive modes present
on the forcing scale (see also Brunt et al. 2009).

8. The sonic scale

The velocity Fourier spectra E(k) discussed in Sect. 6.1 can be
described as power laws E(k) ∝ k−β with negative power-law ex-
ponents, β > 1. This means that the typical velocity fluctuations
are decreasing when going to smaller scales. The value of the

integral
∫ kc

k1
E(k) dk over a finite range of wavenumbers with k1

as the lower bound and the cutoff wavenumber kc as the upper
bound therefore becomes smaller with increasing k1. Thus, the
turbulent flow is expected to change from a supersonic to a sub-
sonic flow on a certain length scale. This scale separates the su-
personic regime on large scales, where the velocity fluctuations
are supersonic from the subsonic regime, which is located on
smaller scales, where the typical velocity fluctuations are small
compared to the thermal motions of the gas. This transition scale
is called the sonic scale λs. Following Schmidt et al. (2009), the
corresponding sonic wavenumber ks in Fourier space is defined
by solving the equation

∫ kc

ks

E(k) dk ≃ 1
2

c2
s (38)

implicitly for ks. The sonic scale is thus defined as the scale on
which the mean square velocity fluctuations become comparable
to the mean square of the sound speed.

We solved Eq. (38) for the sonic wavenumbers ks for both the
solenoidal and compressive forcing cases. The sonic wavenum-
bers for solenoidal and compressive forcings are indicted in
Fig. 15 (left) as vertical dashed lines. We find ks = 26 for
solenoidal forcing and ks = 27 for compressive forcing. The cor-
responding sonic scales λs are also indicated in Fig. 15 (right) as
vertical dashed lines.

The Fourier spectra S (k) shown in Fig. 15 (left) and the
corresponding ∆-variance curves shown in Fig. 15 (right) for
solenoidal and compressive forcing cross each other roughly at
the sonic wavenumber and on the sonic scale, respectively. For
compressive forcing S (k) is significantly steeper on scales larger
than the sonic scale (k <∼ ks) compared to scales k >∼ ks. S (k) for
compressive forcing approaches the shallower slope of S (k) for
solenoidal forcing at k ≈ ks. For k >∼ ks there are neither signifi-
cant differences between the density spectra S (k) nor the velocity
spectra E(k) for solenoidal and compressive forcings.

The strong break in the logarithmic density fluctuation spec-
tra S (k) for compressive forcing around ks appears to be linked
to the transition from supersonic motions on large scales to sub-
sonic motions on scales smaller than the sonic scale. In order
to quantify this, we estimated the typical density fluctuations
on supersonic scales (k < ks) by evaluating σ2

s(k < ks) =∫ ks

1
S (k) dk. We obtain σs(k < ks) ≈ 1.22 for solenoidal and

σs(k < ks) ≈ 3.05 for compressive forcing, which is on the order

of the logarithmic density dispersions σs found from the density
PDFs (see Table 1). This means that most of the power in den-
sity fluctuations is located on scales larger than the sonic scale.
In contrast, on scales smaller than the sonic scale the typical
density fluctuations can be estimated by solving σ2

s(k > ks) =∫ kc

ks
S (k) dk. We obtain σs(k > ks) ≈ 0.45 for both types of forc-

ing. This shows that density fluctuations on scales below the
sonic scale are small compared to the typical density fluctuations
in the supersonic regime at k < ks (see also Vázquez-Semadeni
et al. 2003). Moreover, Fig. 15 shows that the typical logarithmic
density fluctuations are similar for both solenoidal and compres-
sive forcings on scales smaller than the sonic scale. Note that the
sum of logarithmic density fluctuations on all scales is
[
σ2

s(k < ks) + σ2
s (k > ks)

]1/2 ≈ 1.30 (39)

for solenoidal forcing and
[
σ2

s(k < ks) + σ2
s (k > ks)

]1/2 ≈ 3.08 (40)

for compressive forcing. As expected from Eq. (36), these values
are in excellent agreement with the total logarithmic density dis-
persions σs, obtained from the density PDFs shown in Table 1.

A spatial representation of the structures exhibiting sub-
sonic velocity dispersions is shown in Fig. 16 (bottom panel).
These structures are identified in slices through the local Mach
number M as regions with M <∼ 1. Figure 16 (top panel) dis-
plays the corresponding density slices. The density-Mach num-
ber correlations are quite weak, as expected for isothermal tur-
bulence (cf. Sect. 3.6). However, Fig. 5 shows that high-density
regions exhibit lower Mach numbers on average. In real molec-
ular clouds, the sonic scale is expected to be located on length
scales λs ≈ 0.1 pc within factors of a few (e.g., Falgarone
et al. 1992; Barranco & Goodman 1998; Goodman et al. 1998;
Schnee et al. 2007). For instance, Heyer et al. (2006) found
λs ≈ 0.3−0.4 pc for the Rosette MC and λs ≈ 0.1−0.2 pc
for G216-2.5. Furthermore, the sonic scale may be associated
with the transition to coherent cores (Goodman et al. 1998;
Ballesteros-Paredes et al. 2003; Klessen et al. 2005). Recent
simulations of turbulent core formation by Smith et al. (2009)
also suggest that star-forming cores typically exhibit transonic
to subsonic velocity dispersions. This can be understood if cores
form close to the sonic scale in a globally supersonic turbulent
medium. Figure 16 suggests that regions with subsonic velocity
dispersions have different shapes and sizes for both solenoidal
and compressive forcings. The movie (online version) shows
that these structures are transient objects, forming and dissolv-
ing in the turbulent flow (e.g., see also Vázquez-Semadeni et al.
2005). If we had included self-gravity in the present study, some
of these regions would have likely collapsed gravitationally, be-
cause turbulent support becomes insufficient in some of these
subsonic cores (e.g., Mac Low & Klessen 2004).

9. Limitations

As a result of the simplicity of the hydrodynamic simulations
presented in this paper, comparisons with observational data are
limited and should be considered with caution. These limitations
are listed below:

– We assume an isothermal equation of state, so our models
are strictly speaking only applicable to molecular gas of low
enough density to be optically thin to dust cooling. Variations
in the equation of state can lead to changes in the density
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Fig. 16. z-slices through the local density (top panels) and Mach number fields (bottom panels) at z = 0 and t = 2 T for solenoidal forcing (left),
and compressive forcing (right). Regions with subsonic velocity dispersions (Mach < 1) are distinguished from regions with supersonic velocity
dispersions (Mach > 1) in the colour scheme. The correlation between density and Mach number is quite weak. However, as shown in Fig. 5,
high-density regions exhibit lower Mach numbers on average. Thus, dense cores might naturally exhibit transonic to subsonic velocity dispersions,
because their sizes are expected to be comparable to the sonic scale. The sonic scale may be the transition scale to coherent cores (e.g., Goodman
et al. 1998). Although many of these “cores” here are transient, some of them are dense enough to become gravitationally bound, and accumulate
enough mass to decouple from the overall supersonic turbulent flow. See the online version for a movie, showing the time evolution of this figure.

statistics (e.g., Passot & Vázquez-Semadeni 1998; Li et al.
2003; Audit & Hennebelle 2010). The results of the present
study apply primarily to the dense interstellar molecular gas
for which an isothermal equation of state is an adequate ap-
proximation (Wolfire et al. 1995; Ferrière 2001; Pavlovski
et al. 2006; Glover et al. 2010).

– The numerical resolution of our simulations is limited.
As shown in Fig. 6, the high-density tails of the PDFs sys-
tematically shift to higher densities (see also Hennebelle &
Audit 2007; Kitsionas et al. 2009; Glover et al. 2010; Price
& Federrath 2010). However, the mean and the dispersions
are well converged at the numerical resolutions of 2563, 5123

and 10243 grid points used in this study. The inertial scaling
range is very small even at resolutions of 10243 grid cells.
However, the systematic difference in the inertial range scal-
ing between resolutions of 5123 and 10243 grid points is less
than 3% (see Appendix C), which is less than the typical

temporal variations between different realisations of the tur-
bulent velocity and density fields.

– Our simulations adopt periodic boundary conditions. This
implies that our simulations can only be representative of
a subpart of a molecular cloud, for which we study turbu-
lence statistics with high-resolution numerical experiments.
However, we cannot take account of the boundary effects
in real molecular clouds. Simulations of large-scale collid-
ing flows (e.g., Heitsch et al. 2006; Vázquez-Semadeni et al.
2006; Hennebelle et al. 2008; Banerjee et al. 2009) are more
suitable for studying the boundary effects during the forma-
tion of molecular clouds.

– We only analysed driven turbulence. However, there is on-
going debate about whether turbulence is driven or decaying
(e.g., Stone et al. 1998; Mac Low 1999; Lemaster & Stone
2008; Offner et al. 2008). We are aware of the possibility that
turbulence may in fact be excited on scales larger than the
size of molecular clouds (e.g., Brunt et al. 2009), but may be
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globally decaying (if not replenished by a mechanism acting
on galactic scales). As discussed in Sect. 2.1, this large-scale
decay can however act as an effective turbulence forcing on
smaller scales, because kinetic energy is transported from
large to small scales through the turbulence cascade.

– Centroid velocity and principal component analysis were
applied to PPV cubes constructed from the simulated ve-
locity and density fields assuming optically thin radiation
transfer to estimate the intensity of emission lines. This
approximation will of course not hold for optically thick
tracers. A full radiative transfer calculation taking account of
the level population (e.g., Keto et al. 2004; Steinacker et al.
2006; Pinte et al. 2009; Hauschildt & Baron 2009; Baron
et al. 2009) of self-consistently formed and evolved chemical
tracer molecules (e.g., Glover & Mac Low 2007a,b; Glover
et al. 2010) would be needed to advance on this issue.

– We neglected magnetic fields. In order to test the role of
magnetic fields in star formation (e.g., Crutcher et al. 2009;
Lunttila et al. 2008), we would have to include the effects
of magnetic fields and ambipolar diffusion. For instance, the
IMF model by Padoan & Nordlund (2002) requires magnetic
fields to explain the present-day mass function, while it is
still not clear whether magnetic fields are dynamically im-
portant for typical molecular clouds. However, Heyer et al.
(2008) showed that magnetohydrodynamic turbulence in the
Taurus MC may lead to an alignment of flows along the field
lines.

– The present study did not include the effects of self-gravity,
because we specifically focus on the pure turbulence statis-
tics obtained in solenoidal and compressive forcings. In a
follow-up study, we will include self-gravity and sink parti-
cles (e.g., Bate et al. 1995; Krumholz et al. 2004; Jappsen
et al. 2005; Federrath et al. 2010) to study the influence of
the different forcings on the mass distributions of sink par-
ticles. First results indicate that the sink particle formation
rate is at least one order of magnitude higher for compressive
forcing compared to solenoidal forcing. Vázquez-Semadeni
et al. (2003) argue that the star formation efficiency is mainly
controlled by the rms Mach number and the sonic scale
of the turbulence (cf. Sect. 8). However, our preliminary
results of simulations including self-gravity show that the
star formation efficiency measured at a given time (i.e., the
star formation rate) is much higher for compressive forc-
ing than for solenoidal forcing with the same rms Mach
number and sonic scale. This provides additional support
to our main conclusion that the type of forcing must be
taken into account in any theory of turbulence-regulated star
formation. This needs to be investigated in future, high-
resolution numerical experiments including self-gravity and
sink particles.

10. Summary and conclusions

We presented high-resolution hydrodynamical simulations of
driven isothermal supersonic turbulence, which showed that the
structural characteristics of turbulence forcing significantly af-
fect the density and velocity statistics of turbulent gas (see also
Schmidt et al. 2009). We compared solenoidal (divergence-free)
forcing with compressive (curl-free) turbulence forcing. Five
different analysis techniques were used to compare our simu-
lation data with existing observational data reported in the lit-
erature: probability density functions (PDFs), centroid veloc-
ity increments, principal component analysis, Fourier spectrum
functions, and ∆-variances. We find that different regions in

the turbulent ISM exhibit turbulence statistics consistent with
different combinations of solenoidal and compressive forcing.
Varying the forcing parameter ζ ∈ [0, 1] in Eq. (9), we showed
that a continuum of turbulence statistics exists between the two
limiting cases of purely solenoidal (ζ = 1) and purely compres-
sive forcing (ζ = 0). For ζ > 0.5, turbulence behaves almost like
in the case of purely solenoidal forcing, while for ζ < 0.5, tur-
bulence is highly sensitive to changes in ζ (cf. Fig. 8). Note that
ζ = 0.5 represents the natural forcing mixture used in many pre-
vious turbulence simulations. Because the behaviour of all forc-
ing mixtures with ζ > 0.5 is similar to that of purely solenoidal
turbulence with ζ = 1 (see Fig. 8), turbulence statistics is biased
towards finding solenoidal-like values. However, observations of
regions around massive stars that drive swept-up shells into the
surrounding medium (e.g., the shell in the Perseus MC and in
the Rosette MC) seem better consistent with models of mainly
compressive forcing (ζ < 0.5). Note that expanding HII re-
gions around massive stars, and supernova explosions typically
create such swept-up shells, which are considered to be impor-
tant drivers of interstellar turbulence (Mac Low & Klessen 2004;
Breitschwerdt et al. 2009)4. A detailed list of our results is pro-
vided below:

1. The standard deviation (dispersion) of the probability dis-
tribution function (PDF) of the gas density is roughly three
times larger for compressive forcing than for solenoidal forc-
ing. This holds for both the 3D density distributions (Fig. 4
and Table 1) and the 2D column density distributions (Fig. 7
and Table 3). We extended the density dispersion-Mach
number relations, Eqs. (18) and (19) originally investigated
by Padoan et al. (1997) and Passot & Vázquez-Semadeni
(1998). Based on the varying degree of compression ob-
tained by solenoidal and compressive forcing, we developed
a heuristic model for the proportionally constant b in the
density dispersion-Mach number relation, which takes ac-
count of the forcing parameter ζ (Federrath et al. 2008b).
In the case of compressive forcing the proportionality con-
stant b is close to b ≈ 1, which confirms the result by Passot
& Vázquez-Semadeni (1998). In contrast, solenoidal forc-
ing yields b ≈ 1/3, which is in excellent agreement with re-
cent independent high-resolution numerical simulations us-
ing solenoidal forcing (e.g., Beetz et al. 2008).

2. A parameter study of eleven models with varying forcing
parameter ζ = [0, 1], separated by ∆ζ = 0.1 showed that
the heuristic model given by Eq. (20) can only serve as
a first-order approximation to the forcing dependence of b
(cf. Fig. 8). We showed that b scales with the normalised
power of compressible modes in the velocity field, 〈Ψ〉.
A good approximation for b is given by b ≈

√
D〈Ψ〉, where

D = 3 in 3D turbulence.
3. We compared the density PDFs in our models with observa-

tions in the Perseus MC by Goodman et al. (2009). Goodman
et al. (2009) obtained the largest density dispersion in all of
the Perseus MC within a region that they call the Shell re-
gion. This Shell surrounds the massive star HD 278942, sug-
gesting that the Shell is an expanding HII region. Swept-up
shells represent geometries that can be associated with com-
pressive turbulence forcing, because an expanding spher-
ically symmetric shell is driven by a fully divergent ve-
locity field. This may explain why the Shell region in the
Perseus MC exhibits the largest density dispersion among
all of the subregions in the Perseus MC investigated by

4 See also Tamburro et al. (2009) for an observational study.
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Goodman et al. (2009). We emphasise that the Shell region
does not exhibit the highest rms Mach number, but has an
intermediate value among the examined subregions in the
Perseus MC (Pineda et al. 2008). Furthermore, as pointed
out by Goodman et al. (2009) the density dispersion-Mach
number relation of the form given by Eq. (19) for a fixed
parameter b is not observed for the Perseus MC. This ap-
parent contradiction with Eq. (19) for a fixed parameter b
is resolved, if different turbulence forcing mechanisms op-
erate in different subregions of the Perseus MC, such that b
is a function of the mixture of solenoidal and compressive
modes ζ as shown in Fig. 8.

4. The turbulent density PDF is a key ingredient for the analyt-
ical models of the core mass function (CMF) and the stellar
initial mass function (IMF) by Padoan & Nordlund (2002)
and Hennebelle & Chabrier (2008, 2009), as well as for the
star formation rate models by Krumholz & McKee (2005),
Krumholz et al. (2009) and Padoan & Nordlund (2009), and
the star formation efficiency model by Elmegreen (2008).
We showed that the dispersion of the density probability
distribution is not only a function of the rms Mach num-
ber, but also depends on the nature of the turbulence forc-
ing. All the analytical models above rely on integrals over
the density PDF. Since the dispersion of the density PDF is
highly sensitive to the turbulence forcing, we conclude that
star formation properties derived in those analytical mod-
els are strongly affected by the assumed turbulence forcing
mechanism.

5. The PDFs ps(s) of the logarithm of the density s = ln(ρ/〈ρ〉)
are roughly consistent with log-normal distributions for both
solenoidal and compressive forcings. However, the distri-
butions clearly exhibit non-Gaussian higher-order moments,
which are associated with intermittency. Including higher-
order corrections represented by skewness and kurtosis is
absolutely necessary to obtain a good analytic approxima-
tion for the PDF data, because the constraints of mass con-
servation (Eq. (11)) and normalisation (Eq. (12)) of the PDF
must always be fulfilled. Even stronger deviations from per-
fect log-normal distributions are expected if the gas is non-
isothermal (e.g., Passot & Vázquez-Semadeni 1998; Scalo
et al. 1998; Li et al. 2003), magnetised (e.g., Li et al. 2008) or
self-gravitating (e.g., Klessen 2000; Li et al. 2004; Federrath
et al. 2008a; Kainulainen et al. 2009), which often leads to
exponential wings or to power-law tails in the PDFs.

6. Non-Gaussian wings of the density PDFs are a signature of
intermittent fluctuations, which we further investigated us-
ing centroid velocity increments (CVIs). We find strong non-
Gaussian signatures for small spatial lags ℓ in the PDFs of
the CVIs (Fig. 9). These PDFs exhibit values of the kurto-
sis significantly in excess of that expected for a Gaussian
(see Fig. 10). Figure 10 can be compared with Hily-Blant
et al. (2008, Fig. 7), who analysed CVIs in the Taurus MC
and in the Polaris Flare. The values of the kurtosis K mea-
sured in the Polaris Flare are consistent with exponential val-
ues (K = 6) for short spatial lags, which is also compatible
with the results of solenoidal forcing. In contrast, compres-
sive forcing yields values of the kurtosis twice as large at
small lags, which indicates that compressive forcing exhibits
stronger intermittency. The scaling of the CVI structure func-
tions supports the conclusion that compressive forcing ex-
hibits stronger intermittency compared to solenoidal forc-
ing (see Fig. 12 and Table 4). The scaling exponents of the
CVI structure functions obtained for solenoidal forcing are in
good agreement with the results by Hily-Blant et al. (2008)

obtained in the Polaris Flare for the CVI structure func-
tions up to the 6th order using the extended self-similarity
hypothesis.

7. We applied principal component analysis (PCA) to our mod-
els. A comparison of the PCA scaling exponents αPCA with
the PCA study in the Rosette MC and in G216-2.5 by Heyer
et al. (2006) showed that solenoidal forcing is consistent
with the PCA scaling measured in G216-2.5 and with the
PCA scaling measured outside the HII region (Zone II) sur-
rounding the OB star cluster NGC 2244 in the Rosette MC.
On the other hand, the PCA scaling inside this HII region
(Zone I) is in good agreement with the PCA scaling obtained
for compressive forcing (Table 5). Similar to the Shell re-
gion in the Perseus MC, the HII region in the Rosette MC
(Zone I) displays signatures of mainly compressive forcing.
Recent numerical simulations by Gritschneder et al. (2009)
also show that ionisation fronts driven by massive stars can
efficiently excite compressible modes in the velocity field.

8. The Fourier spectra of the velocity fluctuations showed that
they follow power laws in the inertial range with E(k) ∝
k−1.86±0.05 for solenoidal forcing and E(k) ∝ k−1.94±0.05 for
compressive forcing. Both types of forcing are therefore
compatible with the scaling of velocity fluctuations inferred
from observations and independent numerical simulations.
The Fourier spectra of the logarithmic density fluctuations
scale as S (k) ∝ k−1.56±0.05 for solenoidal forcing and S (k) ∝
k−2.32±0.09 for compressive forcing in the inertial range.

9. The inertial range scaling of the velocity and logarithmic
density fluctuations inferred from the Fourier spectra was
confirmed using the ∆-variance technique.

10. We computed the sonic scale by integrating the velocity
Fourier spectra. The sonic scale separates supersonic turbu-
lent fluctuations on large scales from subsonic turbulent fluc-
tuations on scales smaller than the sonic scale. We found a
break in the density fluctuation spectrum S (k) for compres-
sive forcing roughly located on the sonic scale. The typical
density fluctuations computed by integration of S (k) over
scales larger than the sonic scale are consistent with the
logarithmic density dispersions derived from the probability
density functions for solenoidal and compressive forcings.
On the other hand, the typical density fluctuations on scales
smaller than the sonic scale are significantly smaller for both
forcing types, which may reflect the transition to coherent
cores (e.g., Goodman et al. 1998). Indeed, observations show
that cores typically have transonic to subsonic internal ve-
locity dispersions (e.g., Benson & Myers 1989; André et al.
2007; Kirk et al. 2007; Ward-Thompson et al. 2007; Lada
et al. 2008; Foster et al. 2009; Friesen et al. 2009; Beuther
& Henning 2009). This can be understood if cores form near
the sonic scale at the stagnation points of shocks in a globally
supersonic turbulent ISM (cf. Sect. 8).

11. We found that the correlations between the local densities
and the local Mach numbers are typically quite weak (Figs. 5
and 16). However, this weak correlation shows that the lo-
cal Mach number M decreases with increasing density as
M(ρ) ∝ ρ−0.06 for solenoidal forcing and M(ρ) ∝ ρ−0.05 for
compressive forcing for densities above the mean density.
This means that dense gas tends to have smaller velocity dis-
persions on average, consistent with observations of dense
protostellar cores.
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Fig. A.1. Top panels: same as Fig. 15. Middle panels: same as top panels, but instead of the Fourier spectra and ∆-variances of v, the Fourier
spectra and ∆-variances of the density-weighted velocity ρ1/2v are shown. The quantity ρ1/2v has physical reference to kinetic energy. Bottom
panels: same as middle panels, but the Fourier spectra and ∆-variances of the density-weighted velocity ρ1/3v are shown. The quantity ρ1/3v has
physical reference to a constant kinetic energy dissipation within the inertial range (Kritsuk et al. 2007; Schmidt et al. 2008).

Stefan Schmeja, and Nicola Schneider for interesting discussions and valu-
able comments on the present work. We thank the referee, Chris Brunt for
suggesting a parameter study with different forcing ratios ζ, and for clarifying
the effects of projection-smoothing and intensity-weighting in observations of
centroid velocity maps. The ∆-variance tool used in this study was provided
by Volker Ossenkopf and parallelised by Philipp Grothaus. We are grateful
to Alyssa Goodman, Jaime Pineda, and Nicola Schneider for sending us their
Perseus MC, and Cygnus X raw data. C. F. acknowledges financial support
by the International Max Planck Research School for Astronomy and Cosmic
Physics (IMPRS-A) and the Heidelberg Graduate School of Fundamental
Physics (HGSFP). The HGSFP is funded by the Excellence Initiative of the
German Research Foundation DFG GSC 129/1. This work was partly fin-
ished while C.F. was visiting the American Museum of Natural History as a
Kade fellow. R.S.K. and C.F. acknowledge financial support from the German
Bundesministerium für Bildung und Forschung via the ASTRONET project
STAR FORMAT (grant 05A09VHA). R.S.K. furthermore acknowledges finan-
cial support from the Deutsche Forschungsgemeinschaft (DFG) under grants
No. KL 1358/1, KL 1358/4, KL 1359/5, KL 1359/10, and KL 1359/11. R.S.K.
thanks for subsidies from a Frontier grant of Heidelberg University sponsored by
the German Excellence Initiative and for support from the Landesstiftung Baden-

Württemberg via their program International Collaboration II (grant P-LS-
SPII/18 ). M.-M. M. L. acknowledges partial support for his work from NASA
Origins of Solar Systems grant NNX07AI74G. The simulations used computa-
tional resources from the HLRBII project grant h0972 at Leibniz Rechenzentrum
Garching. The software used in this work was in part developed by the

DOE-supported ASC/Alliance Center for Astrophysical Thermonuclear Flashes
at the University of Chicago.

Appendix A: Fourier spectra and ∆-variance scaling

of the combined quantities ρ1/2v and ρ1/3v

In this section we present the Fourier spectra and ∆-variance re-
sults for the combined quantities ρ1/2v and ρ1/3v. Usually, the
pure velocity scaling is considered without density weighting.
However, for highly supersonic turbulence it is interesting to
investigate the scaling of combinations of density and velocity.
Note that CVIs (Sect. 4) and PCA (Sect. 5) also analyse convo-
lutions of density and velocity statistics. Figure A.1 (top panel)
shows a repetition of Fig. 15 (scaling of v) together with the scal-
ing of ρ1/2v (middle panel) and ρ1/3v (bottom panel) for direct
comparison. Since Fourier spectra and ∆-variance analyses al-
ways represent the mean squares of these quantities, ρ1/2v corre-
sponds to the scaling of the kinetic energy density ρ v2. As shown
by Kritsuk et al. (2007) (see also Henriksen 1991; Fleck 1996),
ρ1/3v corresponds to a constant energy flux within the inertial
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range. This idea was first proposed by Lighthill (1955). Using
the eddy turnover time tℓ as the typical evolution timescale of a
turbulent fluctuation on scale ℓ, the constancy of energy flux in
the inertial range is defined as

ρv2

tℓ
∝ ρv

2

ℓ/v
∝ ρv

3

ℓ
∝ const., (A.1)

which leads to the original Kolmogorov (1941) scaling (but now
including density variations),

ρ1/3v ∝ ℓ1/3 (A.2)

for the quantity ρ1/3v. Using the extended self-similarity hypoth-
esis (Benzi et al. 1993), we showed in Schmidt et al. (2008) that
the relative scaling exponents of ρ1/3v provide a more universal
scaling compared to the velocity scaling without density weight-
ing. Figure A.1 (bottom panel) shows that the absolute scaling
inferred from the Fourier spectra of ρ1/3v is indeed close to the
Kolmogorov (1941) scaling (scaling proportional to k−5/3) for
solenoidal forcing, which is in agreement with the results ob-
tained in Kritsuk et al. (2007). However, compressive forcing
yields significantly steeper scaling (also for ρ1/2v), which is close
to Burgers (1948) turbulence (scaling proportional to k−2). The
corresponding results inferred from the ∆-variance analyses are
compatible with the Fourier spectra to within the uncertainties.
Both quantities ρ1/2v and ρ1/3v show breaks in the scaling close
to the sonic wavenumber ks for compressive forcing.

Appendix B: Convergence test for the structure

functions of centroid velocity increments

For an accurate and reliable determination of the structure func-
tion scaling, it must be verified that the number of data pairs used
for sampling the structure functions was high enough to yield
converged results. There is no general rule to determine a priori
the number of data pairs necessary, because the required number
of data pairs depends on the underlying statistics of the mea-
sured variable itself and on the desired structure function order.
However, convergence can be tested by increasing the number of
data pairs used for computing the structure functions. Showing
that the computed structure functions do not change significantly
by further increasing the number of data pairs demonstrates con-
vergence. Furthermore, if convergence is verified for the highest
order under consideration, then the structure functions of lower
order are also converged. This is because the higher-order struc-
ture functions of a variable q reflect the statistics of higher pow-
ers of q than the lower order structure functions. This is reflected
in the definition of the pth order structure function in Eq. (26).

Figure B.1 demonstrates convergence for the structure func-
tions of CVIs with orders p ≤ 6 discussed in Sect. 4.2. We only
show the compressive forcing case for clarity, but we also veri-
fied convergence for the solenoidal forcing case with the same
method. Figure B.1 shows that sampling each structure func-
tion with roughly 1.7 × 1010 data pairs is sufficient to yield con-
verged results. The total number of data pairs used to construct
the CVI structure functions shown in Figs. 11 and 12 was thus
roughly 81 × 3 × 1.7× 1010 ≈ 4.1 × 1012 from averaging over 81
realisations of the turbulence and three projections along the x,
y and z-axes for each of these realisations.

Fig. B.1. The 1st (p = 1) and 6th (p = 6) order structure functions of
the centroid velocity increments sampled with different numbers of data
pairs is shown for a single snapshot at time t = 2 T in z-projection for
the case of compressive forcing. The number of data pairs used for sam-
pling is given in brackets. The structure functions of centroid velocity
increments are statistically converged for p ≤ 6 for sample sizes of at
least 1.7 × 1010 data pairs per turbulent realisation and per projection as
used throughout this study.

Appendix C: Resolution study of the Fourier

spectra and their dependence on the numerical

scheme

The resolution and type of numerical method adopted to model
supersonic turbulence are expected to critically affect the scaling
of Fourier spectrum functions in the inertial range (e.g., Klein
et al. 2007; Kritsuk et al. 2007; Padoan et al. 2007). In this sec-
tion, we investigate the dependence of our Fourier spectra on the
numerical resolution and on the numerical scheme used in the
present study.

C.1. Resolution study

Figure C.1 shows velocity Fourier spectra E(k) defined in
Eq. (32) for numerical resolutions of 2563, 5123 and 10243 grid
points. The inertial range scaling is indeed affected by the nu-
merical resolution. For solenoidal forcing, the inertial range
scaling exponent β at resolution of 2563 grid cells is roughly
13% higher than the scaling exponent at a resolution of 10243.
However, the difference between the inertial range scaling
at 5123 and 10243 is less than 3% for solenoidal forcing. For
compressive forcing, the difference between the inertial range
scaling exponents at resolutions of 5123 and 10243 grid cells is
less than 1%. This result indicates that the systematic depen-
dence of the inertial range scaling on the numerical resolution
is less than 3% for both solenoidal and compressive forcings.
It should be emphasised that variance effects introduced by dif-
ferent realisations of the turbulence are typically on the order
of 5−10% (see error bars in Fig. 15), which is higher than the
systematic errors introduced by resolution effects, as long as the
numerical resolution is at least 5123 grid cells.

C.2. Dependence on parameters of the piecewise parabolic
method

We used the piecewise parabolic method (PPM) (Colella &
Woodward 1984) to integrate the equations of hydrodynamics
(Eqs. (2) and (3)). PPM improves on the finite-volume scheme
originally developed by Godunov (1959) by representing the
flow variables with piecewise parabolic functions, which makes
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Fig. C.1. Time-averaged velocity Fourier spectra E(k) defined in Eq. (32) for numerical resolutions of 2563, 5123 and 10243 grid points obtained
with solenoidal forcing (left) and compressive forcing (right). The inferred inertial range scaling is converged to within less than 3% at the typical
resolution of 10243 grid points used throughout this study for both types of forcing.

Fig. C.2. Dependence of the time-averaged velocity Fourier spectra E(k) on parameters of the piecewise parabolic method (PPM) (Colella &
Woodward 1984) at fixed resolution of 5123 grid cells. Varying the PPM diffusion parameter K between 0.0, 0.1 and 0.2 affects the dissipation range
at wavenumbers k >∼ 40. However, the effect of varying the PPM diffusion parameter is negligible for k <∼ 40. Switching off the PPM steepening
algorithm for contact discontinuities has also virtually no effect on the Fourier spectra at k <∼ 40.

the PPM second-order accurate in smooth flows. However,
PPM is also particularly suitable for the accurate modelling of
turbulent flows involving sharp discontinuities, such as shocks
and contact discontinuities. For that purpose, PPM uses a lower
artificial viscosity controlled by the PPM diffusion parame-
ter K. In three simulations with resolutions of 5123 grid cells,
we varied the PPM diffusion parameter K between 0.0, 0.1
and 0.2. Note that K = 0.1 is the value recommended by Colella
& Woodward (1984), which was used for all production runs
throughout this study. The PPM algorithm furthermore includes
a steepening mechanism to keep contact discontinuities from
spreading over too many cells. In one additional run at 5123, we
switched off the PPM steepening algorithm to check its influence
on our results.

Figure C.2 shows that the velocity spectra E(k) decrease
faster with increasing diffusion parameter K for wavenumbers
k >∼ 40. It is expected that the scheme dissipates more kinetic
energy on small scales with increasing K, because the PPM dif-
fusion algorithm is designed to act on shocks only (Colella &
Woodward 1984, eq. 4.5). In contrast, Fig. C.2 demonstrates that
the Fourier spectra at wavenumbers k <∼ 40 are hardly affected
by the PPM diffusion algorithm for both solenoidal and com-
pressive forcings. Note that Kritsuk et al. (2007) reported that
their results for the inertial range scaling are highly sensitive

to the choice of PPM diffusion parameter in the ENZO code.
However, our results demonstrate that the choice of PPM diffu-
sion parameter only affects the inertial range scaling within less
than 1%, which is clearly less than the influence of the numerical
resolution and less than the typical snapshot-to-snapshot varia-
tions. Figure C.2 furthermore demonstrates that the PPM contact
discontinuity steepening has negligible effects for simulations of
supersonic turbulence.

The results obtained here support our conclusion in Sect. 6
that the Fourier spectra at resolutions of 10243 grid cells are ro-
bust for wavenumbers k <∼ 40.
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