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Abstract. Avalanches and subaqueous debris flows are two

cases of a wide range of natural hazards that have been pre-

viously modeled with non-Newtonian fluid mechanics ap-

proximating the interplay of forces associated with grav-

ity flows of granular and solid–liquid mixtures. The com-

plex behaviors of such flows at unsteady flow initiation

(i.e., destruction of structural jamming) and flow stalling

(restructuralization) imply that the representative viscosity–

stress relationships should include hysteresis: there is no rea-

son to expect the timescale of microstructure destruction is

the same as the timescale of restructuralization. The non-

Newtonian Herschel–Bulkley relationship that has been pre-

viously used in such models implies complete reversibility

of the stress–strain relationship and thus cannot correctly

represent unsteady phases. In contrast, a thixotropic non-

Newtonian model allows representation of initial structural

jamming and aging effects that provide hysteresis in the

stress–strain relationship. In this study, a thixotropic model

and a Herschel–Bulkley model are compared to each other

and to prior laboratory experiments that are representative

of an avalanche and a subaqueous debris flow. A numer-

ical solver using a multi-material level-set method is ap-

plied to track multiple interfaces simultaneously in the sim-

ulations. The numerical results are validated with analyti-

cal solutions and available experimental data using param-

eters selected based on the experimental setup and without

post hoc calibration. The thixotropic (time-dependent) fluid

model shows reasonable agreement with all the experimental

data. For most of the experimental conditions, the Herschel–

Bulkley (time-independent) model results were similar to the

thixotropic model, a critical exception being conditions with

a high yield stress where the Herschel–Bulkley model did not

initiate flow. These results indicate that the thixotropic rela-

tionship is promising for modeling unsteady phases of debris

flows and avalanches, but there is a need for better under-

standing of the correct material parameters and parameters

for the initial structural jamming and characteristic time of

aging, which requires more detailed experimental data than

presently available.

1 Introduction

A wide range of natural hazards involve gravity-driven

flows down a slope, for example, landslides (terrestrial or

submarine), flood-driven debris flows, mudflows, lahars,

avalanches, and volcanic lava flows. Such flows range from

relatively homogeneous particles (e.g., snow avalanches) to

extremely heterogeneous particles (terrestrial landslides) and

generally can be classified by solid concentration, material

type, and mean velocity (Pierson and Costa, 1987; Smith and

Lowe, 1991; Coussot and Meunier, 1996; Locat and Lee,

2002). Avalanches (e.g., snow, rock) are typically consid-

ered dry granular flows, whereas debris flows are liquid–solid

mixtures where the solids are a dominant forcing, which can

be contrasted to flood flows where sediment solids play a

secondary role (Iverson, 1997). In theory, avalanche flows

at the homogeneous end of the spectrum should be amenable

to direct modeling as particles (granular flows), although it

remains to be seen whether sufficient computer power can

ever be practically applied for large-scale natural hazards.

Flows with heterogeneous mixtures of liquids and solids pro-
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vide further challenges as we simply do not have an ade-

quate and proven theory for representing their behavior at

natural-hazard scales. Indeed, even if we develop a complete

and practical theory for the movement of a mixture of fluid,

particles, and entrained large objects across several magni-

tudes of scales, it is unclear how we would effectively cap-

ture the uncertainty associated with size and space distribu-

tion of solid objects (e.g., boulders in a landslide) that affect

the flow propagation in any model attempting to directly rep-

resent fluid-solid structural interactions.

Large-scale natural-hazard flows have been widely inves-

tigated with field observations, small-scale laboratory exper-

iments, and numerical models. A common observation is that

the complexity of the material composition and the effec-

tive rheological characteristics play important roles in ma-

terial movement (Malet et al., 2003; Bisantino et al., 2010;

Jeong, 2014; de Haas et al., 2015). This flow complexity is

illustrated by the classification of subaqueous mass move-

ments by Locat and Lee (2002) into five types with differ-

ent behaviors: slides, topples, spreads, falls, and flows. At

the “flow” end of the spectrum the water content is high, the

particle sizes are small, and the flowing conditions are rea-

sonably considered a fluid continuum. As the water content

decreases and/or the particle size distribution covers more

orders of magnitude, the theoretical basis for the fluid con-

tinuum approach becomes weaker and requires more em-

pirical parameterization to capture other behaviors. Further-

more, the transition from a non-moving to a flowing regime

can involve spatial heterogeneity and time-dependent behav-

ior that is not well-represented by parameterizations of the

flowing regime. Real-world debris flows include additional

complexity as they erode and entrain material along the bot-

tom and sides of the slope with the downstream flow. We

take these issues as motivational for the present work and re-

fer the reader to the recent review of Delannay et al. (2017)

for further insight on granular flows and Shanmugam (2015)

for heterogenous flows. The fundamentals physics of such

flows is presented in Iverson (1997). Herein, we do not seek

to distinguish between the differing physics of these vari-

ous complex flows but rather focus on advancing the use of

non-Newtonian viscosity models as a proxy for their general

behavior. For simplicity in exposition, we will use the term

“debris flow” to refer to any real-world mixture modeled as

a continuum fluid using a non-Newtonian model.

Following Ancey (2007), the existing approaches to simu-

lating debris flows can be categorized in three groups: (i) ap-

plying soil mechanics concept of coulomb behavior, which

provides reasonable solutions for heterogeneous granular

mass flows (Iverson and Denlinger, 2001; Iverson, 2003);

(ii) merging soil and fluid mechanics models; and (iii) rep-

resenting the heterogeneous debris as a continuum fluid with

behaviors similar to a non-Newtonian fluid (the approach

herein) where the transition from a stable structure to a mov-

ing fluid is handled as a viscous effect. This is not to imply

that such flows are actually non-Newtonian fluids but merely

that some of their behaviors can be captured with an appro-

priately parameterized viscosity model (e.g., Davies, 1986;

Pierson and Costa, 1987; Coussot and Meunier, 1996; Pu-

dasaini, 2012). Indeed, Iverson (2003) has referred to the

rheological approach to debris flows as a “myth” and ar-

gued for its replacement with mixture models using separate

solid–fluid components. However, their argument remains

contentious, and it is not clear that the present state of mix-

ture models is substantially less mythical than application

of a rheological model when considering heterogenous mix-

tures over a wide range of scales. Given that debris flow cov-

ers such diverse phenomena and complex physics, it seems

likely the “correct” model for the foreseeable future will be

the model that best fits a specific event, experiment, or flow

type of interest. In the absence of research that definitively

solves the conundrum of debris flow, we follow the long his-

tory of using rheological models as a proxy. Such models

are parsimonious in the number of coefficients and are ef-

fectively agnostic to the inherent uncertainties of fluid-solid

distributions and interactions. In using a non-Newtonian rhe-

ological model, the real-world interaction between solid par-

ticles and surrounding fluid in a heterogeneous mixture can

be thought of as similar to the microstructural behavior of a

homogeneous non-Newtonian fluid where the local fluid vis-

cosity is a function of the local stress. The main advantage of

this approach is that a non-Newtonian rheological model is

simply a time/space-dependent viscosity term for the Navier–

Stokes equations. It follows that the time/space-varying eddy

viscosities in a wide range of existing hydrodynamic codes

can be readily adapted to non-Newtonian behavior and used

for parameterized modeling of debris flows.

Note that the terminology of non-Newtonian flows can

be confusing as “time-independent” models have viscosi-

ties that can change with both space and time throughout

a flow. The difference between a “time-independent” and a

“time-dependent” non-Newtonian fluid is whether the rela-

tion between stress and viscosity (i.e., non-Newtonian equa-

tion itself) is allowed to change with time. Thixotropic (time-

dependent) fluids are defined as non-Newtonian fluids where

the process of “aging” during a flow changes the underlying

fluid microstructure and the relationship between stress and

viscosity (Moller et al., 2009). Herein, we examine how the

use of a thixotropic model provides the ability to model be-

haviors that cannot be represented with a time-independent

non-Newtonian model. Our goal is to provide insight into the

research needs for further experiments and model develop-

ment into the natural hazards of gravity-driven debris flows

across the transitions from inception to stalling.

Gravity-driven debris flows have a range of triggering

mechanisms, and their composition evolves from initiation

through motion and deposition or stalling, which can include

a variety of behaviors that make modeling a challenge (Iver-

son, 1997). Parameterized non-Newtonian fluid models are

an obvious approach to approximate these behaviors. Time-

independent rheological models have been widely used to
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simulate debris flows (e.g., Bovet et al., 2010; Pirulli, 2010;

Tsai et al., 2011; Manga and Bonini, 2012); however the real-

world flow characteristics include time-dependent behaviors

that could be categorized as “thixotropic” (Perret et al., 1996;

Crosta and Dal Negro, 2003; Bagdassarov and Pinkerton,

2004; Aziz et al., 2010). Our focus in this paper is examining

how a thixotropic model behavior compares to the more com-

mon time-independent (Herschel–Bulkley) non-Newtonian

fluid model.

From a macroscale perspective, debris flows have similar

behaviors to “yield-stress fluids” that have been studied as a

class of non-Newtonian fluids (Møller et al., 2006; Scotto

di Santolo et al., 2010). A yield-stress fluid is effectively

a solid (i.e., infinite viscosity) below a critical stress value

(yield stress). This behavior is similar to what might be ex-

pected from a debris mixture of liquid and solids that is ini-

tially at rest and is triggered into motion as the yield stress is

exceeded, which is the basis for prior time-independent non-

Newtonian models cited above. At the microscale under low-

stress (near-rest) conditions the fluid flow around the solids

in a debris mixture is inhibited by viscous boundary layers

and inertia of the solids, which provides effects similar to a

higher-viscosity fluid at the macroscale (i.e., low deforma-

tion under stress). Once the solids in the debris have acceler-

ated, the effects of particle lift, drag, and rotation induced by

the surrounding turbulent fluid flow, as well as solid–solid

impacts and particle disintegration, will provide behaviors

similar to a lower-viscosity fluid that deforms more easily

under stress. This change from high viscosity to low vis-

cosity under stress is readily simulated with a conventional

time-independent non-Newtonian Herschel–Bulkley model.

Arguably, what is missing from a time-independent model is

that the destruction of the initial microstructure of the debris

can change the effective macroscale viscosity and response to

stress. If the flow stalls either globally or locally, it may take

some time to reestablish its microstructure, so the yield stress

for a recently stalled flow should be different than the yield

stress after aging (consolidation). We can think of the behav-

ior of a debris flow as controlled, at least partly, by the evo-

lution of the microstructure and requiring a time-dependent

element in the non-Newtonian model.

The simplest non-Newtonian yield-stress fluids are Bing-

ham plastics. More complex behaviors are associated with

“shear thinning” and “shear thickening” where the effec-

tive viscosity nonlinearly changes with the rate of strain.

For these standard cases, the relationship between viscos-

ity and rate of strain is repeatable and time-independent.

The approach proposed by Herschel and Bulkley (1926) is a

common approach for representing the general case of time-

independent non-Newtonian fluids wherein the plastic vis-

cosity, η, is conditional on the yield stress, τ0, as

{

η = Kγ̇ n−1 + τ0

γ̇
if τ > τ0

γ̇ = 0 if τ ≤ τ0

, (1)

where K is the consistency parameter, n is the Herschel–

Bulkley fluid index, and γ̇ is the scalar value of the rate

of strain. The Herschel–Bulkley fluid index n controls the

overall modeled behavior, where 0 < n < 1 is shear thinning,

n > 1 is shear thickening, and n = 1 corresponds to the Bing-

ham plastic model (Bingham, 1916).

A recognized problem with numerical simulation using a

Herschel–Bulkley model is the viscosity is effectively infi-

nite below the yield stress; i.e., the condition γ̇ = 0 in Eq. (1)

is identical to η = ∞ for modeling a fluid continuum that be-

comes solid below the yield stress. An infinite (or even very

large) viscosity creates an ill-conditioned matrix in a discrete

solution of the partial differential equations for fluid flow.

Furthermore, the instantaneous transition from infinite to fi-

nite viscosity as the yield stress is crossed provides a sharp

change that can lead to unstable numerical oscillations. Dent

and Lang (1983) attempted to resolve this issue with a bi-

viscous Bingham fluid model for computing motion of snow

avalanches. Their approach was shown to be reasonable us-

ing comparisons with experimental data but was later deter-

mined to be invalid for conditions where the shear stresses

are much lower than the yield stress (Beverly and Tanner,

1992). A more successful approach was that of Papanasta-

siou (1987), who proposed modifying the Herschel–Bulkley

model with an exponential parameter, m. The Papanastasiou

model (presented in detail in Sect. 3, below), with appropri-

ate values for m, shows good approximations at low shear

rates for Bingham plastics (Beverly and Tanner, 1992).

Although a flow simulated with the Papanastasiou model

will have changes in the viscosity with time (as the shear

changes with time), the model is still deemed “time-

independent” as the relationship between viscosity and shear

is fixed by the selection of K , n, m, and τ0. Arguably, there

exist a wide range of debris flows over which the Papanas-

tasiou approach should be adequate, as the time-dependent

characteristics of debris flows are, at least theoretically, prin-

cipally confined to the initiation and cessation of the flow,

i.e., when the microstructure of the debris is evolving and

changing the relationship between shear and viscosity. It fol-

lows that steady-state conditions for debris flows should be

reasonably represented with time-independent models. In-

deed, O’Brien and Julien (1988) concluded, by their experi-

ments, that mud flows whose volumetric sand concentration

was less than 20 % showed the behavior of a silt–clay mix-

ture, which can be described reasonably well by the Bing-

ham plastic model at low shear rates and a time-independent

Herschel–Bulkley model at high shear rates. Liu and Mei

(1989) reported good agreement for theory and experiment

with a Bingham plastic model and a homogeneous mud flow

that provides a steady front propagation speed (necessarily

long after the initiation phase). The Herschel–Bulkley model

has also been used to simulate debris flow along a slope,

but reported results have discrepancies with experimental

data, especially in the early stages (Ancey and Cochard,

2009; Balmforth et al., 2007). Bovet et al. (2010) applied
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the time-independent Papanastasiou model to simulate snow

avalanches with some success, but again their results showed

more significant discrepancies with experiments during flow

initiation. De Blasio et al. (2004) simulated both subaerial

and subaqueous debris flows with a Bingham fluid model.

Their results for the subaerial debris flows were in a reason-

able agreement with laboratory data, but their subaqueous

simulations showed a significant discrepancy with measure-

ments. A clear challenge in validating models of debris flows

beyond steady conditions is that the most commonly avail-

able experimental data are focused on the steady or quasi-

steady conditions after the debris structure has (relatively)

homogenized.

Thixotropic (time-dependent) behavior, which is not rep-

resented in the Herschel–Bulkley model, provides an inter-

esting avenue for representing the expected macroscale be-

havior of a debris flow near initiation. At rest, debris solids

provide structural resistance to flow (for denser solids) and

a greater inertial resistance to motion than the fluid. Thus, it

is reasonable to expect initial behavior similar to a Bingham

plastic, i.e., initially infinite viscosity with a high yield stress.

However, the onset of motion for the debris flow begins the

destruction of the microstructure, homogenization of the de-

bris, and a change in the relationship between stress and vis-

cosity, which might be thought of as shear-thinning behav-

ior. A key difference between a Herschel–Bulkley model and

the real world is that the former requires a return to struc-

ture whenever the internal stress drops below the yield stress;

however, in a debris flow we expect the destruction of mi-

crostructure to significantly reduce the stress at which re-

newal of structure (consolidation) occurs. For a real debris

flow we expect different viscosity–stress behaviors during

initiation, steady-state, and slowing phases (consistent with

evolving microstructure), but a time-independent Herschel–

Bulkley model is effectively an assumption that the pro-

cesses of destruction of microstructure and renewal are ex-

actly reversible. For a thixotropic fluid the time dependency

can occur as part of spatial gradients that evolve over time;

e.g., high shear stress is localized in a small region by het-

erogeneity of particles, and in this region the fluid begins

to yield (Pignon et al., 1996). Thus, in a thixotropic fluid

there is spatial-temporal destruction of microstructure that

leads to changes in the effective viscosity that cannot be

represented in the standard time-independent models. Cous-

sot et al. (2002a) proposed an empirical viscosity model

for thixotropic fluids (presented in detail in Sect. 3, below),

which captures these fundamental behaviors.

Prior research on thixotropic flows has mainly focused on

laboratory experiments (Mohrig et al., 1999; Chanson et al.,

2006; Sawyer et al., 2012; Haza et al., 2013), although a

few studies have numerically investigated the characteris-

tics of thixotropic flow on a simple inclined plane (Huynh

et al., 2005; Hewitt and Balmforth, 2013). In general, nu-

merical simulation results have not been well validated by

the experimental data, arguably due to limitations in both

non-Newtonian viscosity models and the sparsity of available

laboratory data. Thixotropic flows modeled at the laboratory

scale typically use clays (e.g., bentonite, kaolin) to create the

microstructure controlling non-Newtonian behavior (Balm-

forth and Craster, 2001). Preparation of a homogenous clay

suspension for such experiments is a demanding task, the de-

tails of which can be found in Coussot et al. (2002b), Huynh

et al. (2005), and Chanson et al. (2006). Unfortunately, we

cannot expect the structure of a heterogeneous large-scale de-

bris flow to mimic the flow scales, yield stresses, and param-

eters for a homogeneous thixotropic laboratory flow. How-

ever, lacking data from a large-scale debris flow that could

be adequately used for model comparisons, herein we take

a first step by analyzing how thixotropic models compare to

time-independent models for laboratory-scale flows.

Validating the use of a non-Newtonian model to represent

a real-world debris flow presents challenges on two levels:

first, does the model correctly represent a non-Newtonian

flow? Second, does the non-Newtonian flow (when parame-

terized) represent a real-world debris flow? To date, success-

ful non-Newtonian models of real-world flows have been pa-

rameterized using a time-independent approach, which lim-

its the ability of the model to represent the transition phases,

i.e., flow initiation and stalling (e.g., Bovet et al., 2010; Pir-

ulli, 2010; Tsai et al., 2011; Manga and Bonini, 2012). Un-

fortunately, data on transition phases for real-world flows are

lacking and are severely limited even for laboratory-scale

flows.

In this paper we evaluate a time-independent Papanasta-

siou model and a time-dependent Coussot model for sim-

ulations of laboratory-scale avalanche and subaqueous de-

bris flows, with comparisons to available experimental mea-

surements. The governing equations are presented in Sect. 2,

and the non-Newtonian Papanastasiou and Coussot viscos-

ity models in Sect. 3. A key confounding issue for model–

experiment comparisons is the estimation of parameters for a

non-Newtonian fluid model (in particular the initial degree

of jamming), which we discuss in Sect. 4. The numerical

solver, using a multi-material level-set method, is presented

in Sect. 5. The solver is validated in Sect. 6 with the analyt-

ical solutions for the Poiseuille flow of a Bingham fluid. In

Sect. 7 the solver is used to model a laboratory flow that is

a reasonable proxy of a thixotropic avalanche. In Sect. 8 we

present the numerical simulations of subaqueous debris flows

with three interfaces – debris–water, debris–air, and water–

air – and compare our results to prior experimental data. We

discuss the results and summarize conclusions in Sect. 9.

2 Governing equations

The governing equations in conservation form for unsteady

and incompressible fluid flow can be written as (Ferziger and

Perić, 2002)
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∇ ·u = 0, (2)

∂u

∂t
+ ∇ · (u ⊗ u) = 1

ρ

(

− ∇p + ∇ · T + f
)

, (3)

where u is the velocity vector; ρ is the density; p is the pres-

sure; f includes additional forces such as gravitational force,

surface tension force, and Coriolis force; u⊗u is the dyadic

product of the velocity vector u; and T is the viscous stress

tensor:

T = 2ηD, (4)

where η denotes the plastic viscosity and D is the rate of

strain (deformation) tensor:

D = 1

2

[

∇u + (∇u)T
]

, (5)

where the superscript T indicates a matrix transpose. The η

in the above is constant in time and uniform in space for a

Newtonian fluid but is potentially some nonlinear function

of other flow variables for a non-Newtonian fluid.

The non-Newtonian fluid models herein use the local ve-

locity rate of strain to update the plastic viscosity, η, as shown

in Sect. 3, which makes the approach compatible with a wide

range of numerical solvers that include a time/space-varying

eddy viscosity.

Equations (2) and (3) can be integrated over a control vol-

ume; by applying the Gauss divergence theorem, we obtain

the basis for the common finite-volume numerical discretiza-

tion (Ferziger and Perić, 2002). For simplicity in the present

work, we limit ourselves to a two-dimensional (2-D) flow

field for a downslope flow and the orthogonal (near-vertical)

axis, which effectively assumes uniform flow in the cross-

stream axis. The external force term f represents the gravita-

tional force only, neglecting surface tension forces and Cori-

olis. The advection term is discretized with the fifth-order

WENO (weighted essentially non-oscillatory) scheme (Shi

et al., 2002) or the second-order TVD (total variation dimin-

ishing) Superbee scheme (Darwish and Moukalled, 2003) in

separate numerical tests. The diffusion term on the right-hand

side of Eq. (3) is discretized with the second-order central

differencing scheme. The time-derivative term for the mo-

mentum equations is integrated by the second-order Crank–

Nicolson implicit scheme. The deferred-correction scheme

(Ferziger and Perić, 2002) is applied, and ghost nodes are

evaluated by the Richardson extrapolation method for high

accuracy at the boundaries. The pressure gradient term is cal-

culated explicitly and then corrected by the first-order incre-

mental projection method (Guermond et al., 2006). To evalu-

ate the values at the cell surfaces, the Green–Gauss method is

used and the momentum interpolation scheme (Murthy and

Mathur, 1997) is applied. The code is parallelized with MPI

(Message Passing Interface), and PETSc (Portable, Extensi-

ble Toolkit for Scientific Computation) (Balay et al., 2016)

is used for standard solver functions (e.g., the stabilized ver-

sion of the biconjugate gradient squared method with pre-

conditioning by the block Jacobi method). The developed

code has been verified by the method of manufactured so-

lutions (further details provided in Jeon, 2015).

3 Non-Newtonian fluid models

The Herschel–Bulkley model, Eq. (1), was made more prac-

tical for modeling a fluid flow continuum by Papanastasiou

(1987), whose approach can be represented as

η =
{

Kγ̇ n−1 + τ0

(

1−e−mγ̇
)

γ̇
for all γ̇

Kγ̇ n−1 + mτ0 as γ̇ → 0
. (6)

Here m has dimension of time such that as m → ∞ we

recover the original Herschel–Bulkley model with η → ∞,

whereas m = 0 is a simple Newtonian fluid. The scalar value

of the rate of strain is obtained from γ̇ = 2
√

|IID|, where IID

is the second invariant of the rate of strain as (Mei, 2007)

IID = 1

2

[

(tr(D))2 − tr
(

D2
)]

= D11D22 − D2
12 (7)

and Dij denotes the (i,j) component of the strain tensor D

in Eq. (5). As with the Herschel–Bulkley model on which it

is based, the Papanastasiou model is time-independent.

In contrast, the time-dependent (thixotropic) model of

Coussot et al. (2002a) introduces dependency on a time-

varying microstructure parameter (λ) in the general form

η = η0

(

1 + ωλn
)

, (8)

where η0 is the asymptotic viscosity at high shear rate, ω is

a material-specific parameter, and n is the Herschel–Bulkley

fluid index. The microstructural parameter of the fluid, λ, is

evaluated using a temporal differential equation:

dλ

dt
= 1

T0
− αγ̇ λ, (9)

where T0 is the characteristic time of the microstructure, α is

a material-specific parameter, and γ̇ is the rate of strain (as

in the Herschel–Bulkley and Papanastasiou models, above).

Here α represents the strength of the shear effect associated

with inhomogeneous microstructure (Liu and Zhu, 2011).

That is, larger values of α require greater microstructure ho-

mogenization (smaller λ) to drive the system to steady-state

conditions (dλ/dt → 0).

4 Estimation of parameters for time-dependent

Coussot model

The time-dependent Coussot model requires parameters for

the asymptotic viscosity (η0), Herschel–Bulkley fluid index

www.nat-hazards-earth-syst-sci.net/18/303/2018/ Nat. Hazards Earth Syst. Sci., 18, 303–319, 2018
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(n), characteristic time (T0), and two material-specific pa-

rameters (ω and α) that control the response (destruction)

of the microstructure. Additionally, an initial condition for

λ0 is required to solve the ordinary differential equation pre-

sented as Eq. (9). The parameters η0 and n are easily ob-

tained from the time-independent Herschel–Bulkley model,

which are typically available in experimental studies. How-

ever, the other parameters of the Coussot model are more

troublesome.

As λ represents the microstructure in the Coussot model,

λ0 can be thought of as the initial degree of jamming caused

by the microstructure (i.e., the structure that must be broken

down to create fluid flow). As yet, there does not appear to

be an accepted method to estimate λ0. We propose two meth-

ods evaluating λ0 and test these in the accompanying simu-

lations. As discussed below, method A is a simple analytical

approach based on the critical stress, whereas method B uses

a graphical approach.

– Method A: assuming all other parameters of the fluid are

known, including the critical stress τc, the initial condi-

tion, λ0, can be evaluated using the Coussot equation for

the critical stress as (Coussot et al., 2002a):

τc =
η0

(

1 + ωλn
0

)

αT0λ0
. (10)

Unfortunately parameter values for ω and α also do not

have well-defined estimates in the literature, so herein

we adjust these to ensure real solutions for λ0. How-

ever, in some simulations (see Sect. 7) this method ap-

pears to overestimate shear stress. Furthermore, obtain-

ing real solutions for λ0 by perturbing α and ω can be

time-consuming.

– Method B: our second approach (which is preferred) is

to approximate the critical shear stress (τc) of a time-

dependent fluid model using the maximum shear stress

(τmax) of a time-independent fluid model. This implies

that, on a graph of stress vs. strain (τ : γ̇ ), the criti-

cal stress–strain point of the time-independent model

should match the maximum stress point of the time-

dependent model (i.e., the point where hysteresis causes

the time-dependent model to operate along a different

τ : γ̇ curve). This point is labeled Q in Fig. 1. It is a

relatively simple graphical trial and error exercise to ad-

just λ0, ω, and α to obtain the correct Q for a given T0,

η0, and n. In this approach, the most important question

is how to set the matching point, Q. In our avalanche

model (Sect. 7), the point Q is known because the criti-

cal shear stress is given in the experimental paper. How-

ever, for our debris-flow model (Sect. 8), only time-

independent parameters are given in the corresponding

experimental report. Thus, the matching point Q for this

case was set where the maximum rate of strain of the

thixotropic model was the same as the maximum rate of

strain of the Herschel–Bulkley model.

Figure 1. Concept of a graphical method B for estimating a consis-

tent set of λ0,α,andω parameters for the Coussot model.

The T0 of the Coussot model in Eq. (10) can also be trou-

blesome to estimate. This characteristic time for aging, which

Coussot et al. (2002b) described as “spontaneous evolution

of the microstructure”, is not widely, used and the literature

does not provide insight on how to evaluate T0 as a func-

tion of other rheological characteristics. Furthermore, T0 has

slightly different definitions by authors of several papers.

Chanson et al. (2006) defined it as the characteristic time

without any further measurement in their experiments, but

they provided another parameter, “rest time”, used to set up

the bentonite suspensions in laboratory experiments in the re-

sult tables. However, Møller et al. (2006) defined T0 as “the

characteristic time of build-up of the microstructure at rest”.

Their characteristic time is close to the rest time of Chanson

et al. (2006). Therefore, we make the assumption that the

rest time measured in the Chanson’s experiments is the same

with the T0 of Coussot for the thixotropic avalanche simu-

lations (Sect. 7). For simulations of subaqueous debris flow

(Sect. 8), the experiments did not report any timescales that

could be used to estimate T0, so we included it as an unknown

in the method B described above. In general, the graphical

method B provides a simple means to estimate a consistent

set of time-dependent parameters from the time-independent

parameters, which provides confidence that time-dependent

and time-independent models are being compared in a rea-

sonable manner.

5 Multi-material level-set method

Some types of debris flow, such as avalanches, can be rea-

sonably modeled as a single fluid with a free surface where

dynamics of the overlying fluid (in this example, air) are ne-

glected. In contrast, subaqueous debris flows are more likely

to require coupled modeling between lighter overlying water

(Newtonian fluid) and heavier non-Newtonian debris. It is

also possible to imagine more complex configurations where

simultaneous solution of multiple debris layers or perhaps

debris, water, and air might be necessary. For general pur-

poses, it is convenient to apply a multi-material level-set
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method so that any number of fluids with differing Newto-

nian and non-Newtonian properties can be considered. When

only two fluids are considered, the multi-material level-set

method corresponds to the general level-set method for two-

phase flow. The level-set method has a long history in multi-

phase fluids (Sussman et al., 1994; Chang et al., 1996; Suss-

man et al., 1998; Peng et al., 1999; Sussman and Fatemi,

1999; Bovet et al., 2010) and is based on using a φi distance

(level set) function to represent the distance of the i material

(or material phase) from an interface with another material

(Osher and Fedkiw, 2001).

The multi-material level-set method herein follows Merri-

man et al. (1994) with the addition of high-order numerical

schemes (Shu and Osher, 1989; Shi et al., 2002). The “level

set” of the ith fluid is designated as φi :

φi ≡
{

+di(x,Ŵi) if x inside Ŵi

−di(x,Ŵi) if x outside Ŵi

, (11)

where i = {1,2, · · ·,Nm}, Nm is the number of materials, Ŵi

is the interface of fluid i, and d is the distance from the inter-

face. The density and viscosity at a computational node for

the multiple-fluid system are evaluated from a combination

of the individual fluid characteristics based on an approxi-

mate Heaviside function that provides a continuous transition

over some ǫ distance on either side of an interface:

ρ ≡
Nm
∑

i=1

ρiHi, η ≡
Nm
∑

i=1

ηiHi, (12)

where the Heaviside function for fluid i is

Hi(φi) ≡















0 if φi < −ǫ

1
2

[

1 + φi

ǫ
+ 1

π
sin

(

πφi

ǫ

)]

if |φi | ≤ ǫ

1 if φi > ǫ

, (13)

where 2ǫ is therefore the finite thickness of the numerical

interface between fluids.

The level-set initial condition is simply the distance from

any grid point in the model to an initial set of interfaces,

i.e., φi = di . Note that each point has a distance to each i in-

terface. The level set is treated as a conservatively advected

variable that evolves according to a simple non-diffusive

transport equation (Osher and Fedkiw, 2001):

∂φi

∂t
+ u · ∇φi = 0. (14)

The above is coupled to a solution of momentum and con-

tinuity, Eqs. (2) and (3), to form a complete level-set solu-

tion for fluid flow. The continuous interface i at time t is

located where φi(x, t) = 0. In general, the i interface will be

between the discrete grid points of the numerical solution,

so it is found by multi-dimensional interpolation from the

discrete φi values. After advancing the level set from φ(t)

to φ(t + 1t), the values of the level set will no longer sat-

isfy the eikonal condition of |∇φi | = 1; that is, the level-set

values on the grid cells obtained by solving Eq. (14) are no

longer equidistant from the interface (i.e., the zero level set).

It is known that if the level sets are naively evolved through

time without satisfying the eikonal condition the Heavi-

side functions will become increasingly inaccurate (Sussman

et al., 1994). This problem is addressed with “reinitializa-

tion”, which resets the φ(t +1t) to satisfy the eikonal condi-

tion. The simplest approach to reinitialization is iterating an

unsteady equation in pseudo-time to steady state such that the

steady-state equation satisfies the eikonal condition (Suss-

man et al., 1998). Let φ̂ be an estimate of the reinitialized

value for φ(t + 1t) in the equation

∂φ̂i

∂T
+ S

(

φ̂i

)(

|∇φ̂i | − 1
)

= 0, (15)

where T is the pseudo-time, and S is the signed function as

(Sussman et al., 1998)

S(φ̂i) =











−1 if φ̂i < 0

0 if φ̂i = 0

1 if φ̂i > 0

. (16)

The time-advanced set of φ(t + 1t) is the starting guess for

φ̂, and the steady-state solution of φ̂ will satisfy |∇φ̂i | = 1 to

numerical precision.

For the present work, the advection term in Eq. (14) is dis-

cretized with the fifth-order WENO scheme, and the time-

derivative term is integrated by the third-order TVD Runge–

Kutta method (Shu and Osher, 1989). For the reinitializa-

tion step of Eq. (15), the second-order ENO (essentially non-

oscillatory) scheme (Sussman et al., 1998) and a smoothing

approach (Peng et al., 1999) are used for the spatial dis-

cretization (further details are provided in Jeon, 2015).

6 Poiseuille flow of Bingham fluid

A two-dimensional Poiseuille flow in a channel driven by a

steady pressure gradient of ∂p/∂x provides a validation case

for the non-Newtonian fluid solver. If gravity is considered

negligible and the flow is approximated as symmetric about

a centerline between two walls, then the analytical solution

for the flow on one side of the centerline is (Papanastasiou,

1987)

u(y) =























1
2η

(

− ∂p
∂x

)

(

F 2 − y2
)

−
(

τ0

η

)

(F − y)

for FD ≤ y ≤ F

1
2η

(

− ∂p
∂x

)

(

F 2 − F 2
D

)

−
(

τ0

η

)

(F − FD)

for 0 ≤ y < FD

, (17)

where F is the distance from the center to a channel wall, y

is the Cartesian axis normal to the flow direction with y =
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Table 1. Bingham fluid Herschel–Bulkley model parameters used

in Poiseuille flow test cases, from Filali et al. (2013).

Term Value

Herschel–Bulkley index (n) 1.0

Yield stress (τ0 , Pa) 4.0

Consistency parameter (K , Pa sn) 2.9

0 at the centerline of the flow between the two walls, τ0 is

the yield stress, and FD is a length scale representing the

relationship between yield stress and the pressure gradient:

FD = τ0
(

− ∂p
∂x

) .

A convenient set of Bingham fluid parameters for the

Poiseuille test cases can be extracted from the dip-coating

study of Filali et al. (2013) as shown in Table 1. In the sim-

ulations, the distance from the centerline to a side wall is

0.05 m. Our model grid uses 320 cells in the flow direc-

tion and 32 cells in the cross-stream direction. A Neumann

boundary condition is applied along the lower boundary of

the simulation domain, so the simulation includes only the

upper half-channel of this symmetric flow.

Using the Papanastasiou model of Eq. (6) to approximate

a Herschel–Bulkley model of a Bingham fluid requires time-

scale parameter m to provide smooth behavior across the

yield-stress threshold. We tested values of m = {100,400} s.

As shown in Fig. 2, the numerical results are in very good

agreement with the analytical solutions for both values. For

this simulation, the lower value of m = 100 s is reasonable

for a Papanastasiou model.

7 Thixotropic avalanches

An avalanche is a granular flow of an initially solid field that

is triggered from rest into a downslope flow. A thixotropic

model of an avalanche as a fluid continuum can represent

a rapid progression from local to global release of the ini-

tial structural jamming, λ0. Chanson et al. (2006) developed

dam-break experiments with a thixotropic fluid that provide

reasonable facsimiles of avalanche flows if the timescale to

remove the dam is smaller than the timescale for release of

structural jamming. The initial conditions of the Chanson ex-

periments are shown in Fig. 3 where θ , d0, and l0 represent

the angle of a slope, the height of the initial avalanche that

is normal to the slope, and the length of the avalanche along

a slope, respectively. We modeled this same setup with our

multi-material level-set solver.

The Chanson experiments identified four thixotropic flow

types that were functions of the relative effect of initial struc-

tural jamming. Weak jamming (i.e., small λ0) characterizes

type I, such that inertial effects dominate the downstream

u

y

0.00 0.03 0.06 0.09 0.12 0.15
0.00

0.01
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Analytical

m = 100

m = 400

Figure 2. Comparison of analytical and numerical solutions for

steady-state fluid velocity for Poiseuille flow of a Bingham fluid.

Figure 3. Definition sketch for initial conditions of an avalanche

along a slope.

flow (highest Re) and the flow only ceases when it reaches

the experiment outfall. It follows that type I is effectively a

model of an avalanche that propagates until it is stopped by

an obstacle or change in slope. Type II flows had intermedi-

ate initial jamming, which showed rapid initial flow followed

by deceleration until “restructuralization”, which effectively

stops the downstream progression. Type II is a model of an

avalanche that dissipates itself on the slope. The type III

flows, with the highest λ0, have complicated behavior with

separation into identifiable packets of mass (typically two,

but sometimes more) with different velocities. Type IV be-

havior was the extremum of zero flow. Chanson reported

28 experiments in total, but data on wave front propagation

were provided for only five experiments (Fig. 6 in Chanson

et al., 2006) of type I and II behavior. We simulated three of

these experiments that covered a wide range of characteris-

tics and behaviors, as shown in Table 2. Note that Chanson

et al. (2006) used τc2 to designate the critical shear stress

during unloading (restructuralization), which we consider an

approximation for the yield stress, τ0, for a time-independent

model.

We simulate the three cases of Table 2 with the time-

independent Papanastasiou model of Eq. (6) and the time-

dependent Coussot model of Eqs. (8) and (9). For a time-

independent Bingham model, we use n = 1 with K = η0

from the Chanson experiments. The smoothing value of

m = 100 was selected based on the Poiseuille flow modeled
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Table 2. Dimensions and data for thixotropic avalanche simulations

corresponding with experiments by Chanson et al. (2006).

Term Case 1 Case 2 Case 3

Chanson experiment no. 6 19 23

Thixotropic flow type II II I

Slope angle (θ , ◦) 15 15 15

Initial height (d0, m) 0.0727 0.0756 0.0732

Initial length (l0, m) 0.2908 0.3024 0.2928

Herschel–Bulkley index (n) 1.1 1.1 1.1

Yield stress (unloading, τ0, Pa) 31.0 21.1 14.0

Critical stress (loading, τc, Pa) 90 165 50

Asymptotic viscosity (η0, Pa s) 0.062 0.635 0.555

Density (ρ, kg m−3) 1099.8 1085.1 1085.1

Characteristic (rest) time (T0, s ) 300 900 60

in Sect. 6, above. For a time-independent Herschel–Bulkley

model, we use the same K and m as the Bingham plastic

model, but with n = 1.1 as was used in the detailed technical

report on the same experiments by Chanson et al. (2004). The

time-dependent model requires specification of parameters

{n, T0, α, η0, λ0, ω} as discussed in Sect. 4. The Herschel–

Bulkley index in the time-dependent model uses the same

value (n = 1.1) as the time-independent model. Two sets of

values for {α, λ0, ω} are determined by the two methods (A

and B) outlined in Sect. 4, above. Method A uses Eq. (10),

which requires a value for τc; herein this is taken as Chan-

son’s critical loading stress (τc1 in Chanson et al., 2006) dur-

ing the initial structural breakdown. Similarly, method B re-

quires a τmax for point Q in Fig. 1, which is also set to the

critical loading stress.

For all simulations, the no-slip wall condition is applied

to the bottom wall, and the number of computational cells is

512 × 80. The computational domain is rotated so the x axis

is along the sloping bed, which means that computational cell

faces are either orthogonal or parallel to the slope. The gravi-

tational constant (g = 9.81 m s−2) is divided into two compo-

nents of (g sinθ , −g cosθ ). The density and viscosity of air

are 1.0 kg m−3 and 1.0 × 10−5 Pa s, respectively.

The analytical relationships between shear stress and rate

of strain for the different viscosity models are presented in

Figs. 4 through 6. In these figures, “Herschel–Bulkley” and

“Bingham” lines are the results of Eq. (6) with n = 1.1 and

n = 1.0, respectively. The “case A” and “case B” lines de-

note results of methods A and B from Sect. 4 for determin-

ing time-dependent parameters with Eqs. (8) and (9). The es-

timated parameters of λ0, ω, and α by two methods that are

used in these figures are shown in Table 3. These results illus-

trate the challenge of using method A (the critical stress re-

lationship) for estimating λ0. The numerical solutions of the

Coussot model ordinary differential equation, Eq. (9), are ob-

tained by the Runge–Kutta fourth-order method. The result-

ing time-dependent stress–strain relationship can be far from
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Time-dependent: case A
Time-dependent: case B

Figure 4. Analytical stress–strain for thixotropic avalanche case 1:

shear stress (Pa) and rate of strain (s−1) with τ0 = 31 Pa and τc =
90 Pa. The τ axis is scaled for comparison with Figs. 5 and 6, while

the γ̇ axis has an individual scale for clarity.
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Figure 5. Analytical stress–strain for thixotropic avalanche case 2:

shear stress (Pa) and rate of strain (s−1) with τ0 = 21.1 Pa and τc =
165 Pa. The τ axis is scaled for comparison with Figs. 4 and 6, while

the γ̇ axis has an individual scale for clarity.

the time-independent relationship that is otherwise thought

to be a reasonable model.

Propagation of the fluid wave front provides a simple

means of directly comparing the temporal and spatial evolu-

tion of the model and experiments. To facilitate comparisons

across experimental scales, the non-dimensionalized front lo-

cation and simulation time after gate opening are x∗ = x/d0

and t∗ = t
√

g/d0, respectively. A simple theoretical estimate

for the wave front propagation suitable for short timescales
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Table 3. Parameters of the time-dependent fluid model for thixotropic avalanche simulations using method A and method B for setting

values.

Case

Term 1A 1B 2A 2B 3A 3B

Flow index (ω) 1.0 0.7 0.5 1.0 0.1 1.0

Material parameter (α) 5.67 × 10−6 1.0 × 10−6 3.56 × 10−6 1.0 × 10−6 5.33 × 10−5 1.0 × 10−5

Microstructural parameter (λ0) 0.6631 0.95 3.8576 0.74 5.9235 0.29
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Figure 6. Analytical stress–strain for thixotropic avalanche case 3:

shear stress (Pa) and rate of strain (s−1) with τ0 = 14 Pa and τc =
50 Pa. The τ axis is scaled for comparison with Figs. 4 and 5, while

the γ̇ axis has an individual scale for clarity.

was derived from equations of motion as Eq. (26) in Chanson

et al. (2006), repeated here as

x∗
s = sinθ

2

(

t∗
)2

. (18)

The simulation, experiment, and theory results are shown in

Figs. 7, 8, and 9 for cases 1, 2, and 3 of Table 2, respectively.

The dashed line represents the theoretical solution for prop-

agating the front of Eq. (18).

The most striking feature in the results is that the simula-

tions for cases 2 and 3 (smaller τ0) are relatively similar for

all the models, whereas the time-independent models (Bing-

ham and Herschel–Bulkley) completely fail for case 1 (larger

τ0) even though the time-dependent models continue to per-

form reasonably well. The failure appears to be due to an

inability of the time-independent models in case 1 to develop

sufficient strain to move out of the η = Kγ̇ n−1 +mτ0 regime

that governs viscosity below the yield stress in Eq. (6). In

contrast, the microstructural aging process that is inherent in

Eqs. (8) and (9) allows the time-dependent models in case 1

to develop reasonable flow conditions despite the higher τ0.
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Herschel-Bulkley (n = 1.1)

Time-dependent: case A

Time-dependent: case B

Figure 7. Thixotropic avalanche case 1: comparison of numerical

results and experimental data for non-dimensional front displace-

ment (x∗) as a function of non-dimensional simulation time (t∗).

No doubt the time-independent models could be made to per-

form better in case 1 by further manipulation of the model

coefficients; however, our approach was to use coefficients

that could be set a priori based on data from the experiments

and a plausible m value from Sect. 6.

We observe that the simplified theoretical front prediction

from Eq. (18), the dashed line in the figures, is a good rep-

resentation of Chanson’s type II flows (case 1 and case 2)

up until t∗ ∼ 3, but it diverges rapidly thereafter. Our 2-D

simulations consistently overpredict the experimental front

propagation in the early stages for cases 1 and 2 but show

better agreement with experiments than the simplified the-

ory for t∗ > 4. However, for case 3 (type I flow), the simpli-

fied theory is relatively poor, while the 2-D simulations have

good agreement up until t∗ ∼ 3 and then show significant un-

derprediction of the experiments. As noted by Chanson et al.

(2006), the case 3 (type I) experiments are at higher Reynolds

numbers that, although theoretically laminar, may be transi-

tioning to weakly turbulent. Because the simplified theory

of Eq. (18) is derived by neglecting inertia, it is not surpris-
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Figure 8. Thixotropic avalanche case 2: comparison of numerical

results and experimental data for non-dimensional front displace-

ment (x∗) as a function of non-dimensional simulation time (t∗).
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Figure 9. Thixotropic avalanche case 3: comparison of numerical

results and experimental data for non-dimensional front displace-

ment (x∗) as a function of non-dimensional simulation time (t∗).

ing that its performance degrades with increasing Reynolds

number.

Although the simulations results have reasonable global

agreement with experiments, on closer examination it can be

seen that the 2-D simulations predict a front movement that

is initially too rapid in type II flows (cases 1 and 2) and at

longer times is too slow for type I flows (case 3). The chal-

lenge, of course, is that the model error is integrative: if λ is

wrong at a given time, then the dλ/dt will be wrong as well

and the frontal position error will accumulate. Thus, an im-

portant issue for the time-dependent model appears to be se-

lecting the appropriate values of {λ0,α,ω} that are consistent

with experimentally determined values of {η0,τ0,τc,n,T0}.
Although the more parsimonious time-independent model

(with fewer parameters) performs reasonably well for our

cases 2 and 3, it performs poorly in case 1 and so should

only be used with caution and careful calibration.

The above observations lead to a conclusion that the accel-

erative behaviors in the simulations and experiments are not

well matched. The problem is shown most clearly in Fig. 7

for case 1, where the experiments initially follow the acceler-

ation implied by Eq. (18) but diverge with an inflection point

and deceleration occurring somewhere near t∗ ∼ 4. In con-

trast, the models initially show a more rapid acceleration and

an inflection point to deceleration at t∗ ∼ 1. Interestingly, the

simulated front locations in cases 1 and 2 are not unreason-

able predictions for t∗ > 4, but they get there along slightly

different paths than the experiments. The case 3 (type I) mod-

els show different behaviors: they perform quite well for

t∗ ≤ 3 and then show deceleration at the same time as the

experiment appears to be accelerating. Unfortunately, the ex-

periments of Chanson et al. (2006) did not extend beyond

t∗ ∼ 6.5, so it is impossible to know whether the experiments

are showing an inflection point to deceleration at t∗ ∼ 5, but

it seems likely given the results of the case 1 and 2 studies.

If there is an inflection point for case 3, then it would appear

that the consistent problem with the models is getting the

correct transition from frontal acceleration to deceleration.

To date, our experiments have not shown that we can signifi-

cantly alter the model acceleration inflection points by alter-

ing parameters, which may indicate that there is a need to fur-

ther consider the fundamental forms of the Coussot and Pa-

panastasiou models when used for thixotropic flows. An al-

ternative explanation may be that there are three-dimensional

controls on the front propagation in the experiment that can-

not be represented in the present 2-D model.

8 Subaqueous debris flows

In general, subaqueous debris flows are heterogenous gravity

flows where the interaction of the overlying water with the

downslope flow of the debris has a significant effect on mo-

mentum. Such flows are expected to be qualitatively similar

to the subaqueous mud flow examined in the laboratory by

Haza et al. (2013). We conducted simulations matching the

Haza et al. (2013) experimental cases with the largest den-

sity difference between the water and mud. These conditions

provide the largest effective negative buoyancy for the debris

and minimize effect of turbidity. The selected cases are 35

and 30 % KCC (kaolin clay content). The schematic design
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Figure 10. Submarine landslide.
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Figure 11. Subaqueous debris case 1: shear stress (Pa) and rate of

strain (s−1).

is shown in Fig. 10, with dimensions provided in Table 4. The

gravitational constant for all simulations is g = 9.81 m s−2.

The simulation uses 340 × 100 rectangular cells. The no-

slip wall boundary condition is applied to the bottom bound-

ary. The computational domain is rotated so the x axis is par-

allel to the slope, which allows the bottom to be represented

as a straight surface without using cut grid cells or unstruc-

tured grids. This rotation also provides convenience in mea-

suring the variables normal to the slope (e.g., front distance

and water/mud thicknesses at the front.) These simulations

include three fluids: mud, water, and air. The density of mud

for each case is shown in Table 6, and the densities of water

and air are 1000.0 and 1.0 kg m−3, respectively.

The parameters for the time-independent fluid model from

Haza et al. (2013) are shown in Table 5. For all simulations,

m = 100 for the exponential smoothing parameter is used

based on results from Sect. 6, above. The parameters for the

time-dependent fluid model are estimated from method B in

Sect. 4 and are shown in Table 6. The experiments did not

report a rest time, so T0 was set at a small positive value that

provided a reasonable match to the experiments. The ana-

lytical relationships between the shear stress and the rate of

strain for the time-independent and the time-dependent fluid

models are shown in Fig. 11 for case 1 and Fig. 12 for case 2.

Figure 13 provides a reference for measurements used

to compare the model and experiments. These include the
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Figure 12. Subaqueous debris case 2: shear stress (Pa) and rate of

strain (s−1). Axis scalings are identical to Fig. 11 for comparison

purposes.

Initial position

D

H

L U

Figure 13. Run-out and head flow.

height of head flow (H ), the water depth at the front of head

flow (D), the run-out distance from the initial position (L),

and the flow-front velocity (U ). Figure 14 shows evolution of

the zero level sets for water (φ2), which provides the contin-

uous line separating the water from both the debris and the

air. Figures 15 and 16 show the evolution of the run-out dis-

tance (L) for case 1 and case 2, respectively. It can be seen

that both time-independent and time-dependent models are

reasonable approximations of the limited experimental data.

Both types of models appear to underestimate the initial run-

out and slightly overestimate later times.

Figures 17 and 18 show a comparison of H and D for

simulations and experiments. Again, within the limited avail-

ability of experimental data, both time-independent and time-

dependent models provide reasonable agreement. Figures 19

and 20 show similar agreement for the front velocities, al-

though the experimental data are insufficient to validate the

wave-like oscillation of the velocity in the simulations.

These results indicate the multi-material level-set model

is capable of representing the key features in a subaque-

ous debris flow. For this flow, the use of the simpler time-

independent viscosity model seems justified, although this is
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Figure 14. Profiles of debris and water (φ2: water).

Table 4. Dimensions for simulations to match experiments by Haza

et al. (2013).

Term Value

Angle of a slope (θ , ◦) 3

Height of mud at a gate (h0, cm) 20.64

Height of mud at the end (d0, cm) 15.40

Length of mud (l0, cm) 100.0

Table 5. Parameters of the time-independent fluid model.

Term Case 1 Case 2

Herschel–Bulkley index (n) 0.5 0.42

Yield stress (τ0, Pa) 9.0 5.7

Consistency parameter (K , Pa sn) 20.36 12.68

likely a function of the experimental conditions. An impor-

tant limitation of the tested subaqueous debris flows is that

they do not have the restructuralization in the downstream

flow or the strongly jammed initial structure seen in the ex-

periments of Chanson et al. (2006)

9 Discussion and conclusions

This work shows that a multi-phase flow solver using

a multi-material level-set method with yield-stress mod-

els of non-Newtonian viscosity provides a means for nu-

merical approximation of avalanches and subaqueous de-

bris flows. This simulation approach was tested with both

time-independent (Herschel–Bulkley, Papanastasiou, Bing-

ham plastic) and time-dependent (thixotropic Coussot) mod-

els of viscosity, which are implemented using continuum me-

chanics solutions for multiple fluids. A key problem is that

the Coussot model requires more parameters than the time-

independent fluid models, but available experimental data are

insufficient to definitively set parameter values. To resolve

this issue, two different approaches were used to evaluat-

Table 6. Parameters of the time-dependent fluid model.

Term Case 1 Case 2

Density (ρ, kg m3) 1266.0 1236.0

Asymptotic viscosity (η0, Pa s) 3.12 2.1

Herschel–Bulkley index (n) 0.5 0.42

Flow index (ω) 1.0 1.0

Characteristic time (T0, s) 10.0 10.0

Material parameter (α) 1.0 × 10−5 1.0 × 10−5

Microstructural parameter (λ0) 0.1 0.1

t
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Herschel–Bulkley (L)

Time-dependent (L)

Figure 15. Subaqueous debris case 1: run-out distance (L, m) as a

function of simulation time (t , s).

ing the Coussot parameters. Overall, the numerical results

showed reasonable agreement with prior experimental data.

Although stress–strain relationships indicate the time-

dependent approach provides the hysteresis that is desirable

in a debris-flow model, in comparisons with experimental

data the time-dependent Coussot model provides a clear ad-

vantage for only for a single case – where the Herschel–
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Figure 16. Subaqueous debris case 2: run-out distance (L, m) as a

function of simulation time (t , s).

t

H
,D

0.0 1.0 2.0 3.0 4.0 5.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Experimental (H)

Experimental (D)

Herschel–Bulkley (H)

Herschel–Bulkley (D)

Time-dependent (H)

Time-dependent (D)

Figure 17. Subaqueous debris case 1: height of head flow (H , m)

and water depth (D, m) as a function of simulation time (t , s).

Bulkley and Bingham plastic models erroneously predicted

near-zero flow. Nevertheless, much of the complexity in real-

world behavior for debris mixtures is due to interactions

across spatial scales for heterogeneous mixtures, which leads

to significantly different stress–strain relationships during

structural breakdown and restructuralization that should re-

quire a time-dependent model. Unfortunately, for experimen-

tal simplicity most researchers expend significant effort to

create a homogeneous mixture as an initial condition for a

debris flow, and the extent to which the structural breakdown

results in temporary heterogeneous scales is unknown. Ex-

t
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Figure 18. Subaqueous debris case 2: height of head flow (H , m)

and water depth (D, m) as a function of simulation time (t , s).
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Figure 19. Subaqueous debris case 1: flow-front velocity (U ,

m s−1) as a function of simulation time (t , s).

isting laboratory data do not provide sufficiently detailed in-

sight into the processes controlling destruction of jamming

or the restructuralization of the flow, which leaves significant

uncertainty in specification of the correct parameters.

The time-independent viscosity–stress relationships that

are often used for non-Newtonian flow models of natural

hazards are a subset of possible viscosity–stress models.

We believe that more complex models may be necessary

for real-world heterogeneous mixtures that include hystere-

sis in the stress–strain relationship as microstructure evolves

with time. In particular, where a fluid at rest has a strongly
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Figure 20. Subaqueous debris case 2: flow-front velocity (U ,

m s−1) as a function of simulation time (t , s).

jammed structure or undergoes restructuralization as the flow

slows, the time-independent Bingham plastic and Herschel–

Bulkley models will likely be inadequate. Unfortunately, the

processes by which the initial jamming is locally overcome,

and the processes through which the structure is recovered,

are both poorly understood. For time-dependent thixotropic

models to be useful in modeling real-world avalanches and

debris flows, there is a need for a consistent approach to

defining the initial jamming (λ0), the characteristic time of

aging (T0), and the asymptotic shear viscosity (η0), along

with the material parameters ω and α for real-world systems.

As yet, these parameters are not well defined for either sim-

ple laboratory models or complex real-world flows. To im-

prove our understanding of the thixotropic model, there is a

need for a comprehensive sensitivity analysis of these five

driving parameters for the expected scales of real-world sys-

tems (which are as yet unknown). Furthermore, with or with-

out the thixotropic model, there is clearly a need for (1) more

detailed experimental measurements during flow initiation

and restructuralization, and (2) a better understanding of the

relationship between measurable microstructure parameters

and the effective stress–strain relationship. The present work

shows that a time-dependent (thixotropic) viscosity model

may be an effective proxy for representing the inception and

stalling of an avalanche or debris flow, but much work re-

mains to be done before real-world natural hazards can be

modeled in this manner.

Data availability. The experimental data in the figures can be

found in Chanson et al. (2006) and Haza et al. (2013). The simu-

lation data can be obtained from the corresponding author (Chan-
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