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normal (see Milligan 1985). This assumption is unlikely
in ecology. Curtis & McIntosh (1951), Goodall (1954),
Bray & Curtis (1957), Dagnelie (1960), van Groenewoud
(1976), Whittaker (1978), Austin (1985) and Austin &
Smith (1989) among others, suggest that the distribution
of species form a continuum along environmental gradi-
ents. If this assumption is reasonable, well-defined
clusters (‘natural-groups’) may not exist (Belbin 1992).
One implication is that between any pair of samples,
there exists in theory, a sample of intermediate species
composition. Clusters could therefore be considered the
result of inadequate sampling.

The problem in evaluating different clustering strat-
egies for use in ecology is to provide data that is
‘ecological’ in its characteristics and where the ‘struc-
ture’ of the data is known. It is not difficult to find
ecological data sets. Neither is it difficult to construct
artificial data where all characteristics are perfectly
known. The problem is in the marriage; to construct data
sets that have an ecological character and where the
structure is known. In classification, cluster member-
ship defines the structure. Jain & Dubes (1991) provide
a variety of definitions of what can constitute a cluster.
Our definition in this study is reasonably broad-minded
as the section on data generation should infer.

This paper uses the COMPAS algorithm of Minchin
(1987) to simulate ‘ecological data’. We evaluated the
extent of the recovery of the known clusters by three
types of classification algorithms. The methods evalu-
ated were ALOC (Belbin 1987), TWINSPAN (Hill
1979a), and a flexible variant of UPGMA (see Sneath &
Sokal 1973) by Belbin, Faith & Milligan (in press).
These methods were selected because they are sup-
ported examples of the major classification alternatives
(non-hierarchical, hierarchical divisive and hierarchical
agglomerative).

Test data

The simulated data contained a predetermined
number of clusters in a two-dimensional (Euclidean)
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Introduction

Classification and ordination provide fundamental
tools for the exploratory analysis of ecological data.
Such pattern finding techniques are usefully employed
at an early stage to detect errors, suggest trends, identify
outliers and generally provide a succinct summary of
multivariate data. The problem with such methods is
however the selection of appropriate strategies from an
increasing range of choices. Ordination could be con-
sidered to be a more powerful class of pattern analysis
techniques than classification. Ordination can better
detect gradients and the nature of clusters, but is
computationally more demanding and more likely to
mislead. For example, the inclusion of an outlier will
have a significant effect on all ordination methods but
no side-effects on clustering.

The need for efficient classification algorithms for
ecological data is undeniable. Systematic evaluations of
alternatives in ecology are however extremely scarce.
Milligan (1980, 1989), Milligan & Cooper (1986, 1987)
provide a number of useful comparisons of clustering
algorithms using ‘non-ecological’ data. These studies
provided evidence of the utility of techniques such as
UPGMA and non-hierarchical methods such as k-means
(McQueen 1967). The possible restriction in applying
these results generally in ecology is that the ‘data-
generator’ used assumed groups that were multivariate
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‘environmental-space’. Gauch & Whittaker (1981) used
a similar method to evaluate classification methods. Our
first step used the RAND algorithm (Belbin 1991) to
generate 10 sample configurations (named 0-9) of 80
sample sites in a two-dimensional environmental space.
The first column contains uniform random values (0 -
100) representing co-ordinates on the first dimension.
Similarly, values in the second column corresponded to
co-ordinates on the second dimension and ranged from
0 - 80. Each dataset used a different random number
seed.

Each of the 10 data sets contained either 2, 3, 4, 5 or
8 clusters. Flexible-UPGMA and ALOC can extract a
given number of clusters but TWINSPAN tends to
produce 2, 4, 8, 16, 32, 64 … 2n clusters where n is the
number of dichotomies. TWINSPAN can produce an
odd number of clusters if a group is too small to split or
outliers exist. For this reason, we assisted TWINSPAN
by generating two clusters plus an outlier for the 3-
cluster cases and four clusters plus an outlier for the
5-cluster cases.

Eliminating 30 of the 80 sample points in the envi-
ronmental space for all 10 sample configurations
produced the ‘true-clusters’. Such clusters were readily
identifiable by eye, so they were well-defined, yet they
had few other regular features. For example, there was
no regularity in cluster outline, shape, size or density.
Classifying the 50 sites using Euclidean distance on
the environmental co-ordinates and UPGMA (β = 0)
verified the identity of the clusters. Note that the con-
clusions drawn from this study would be as equivocal
as the cluster definitions. If the clusters were too ‘fuzzy’,
conclusions would be equivocal. On the other hand,
extreme cluster separation and regular boundaries are
unrealistic.

The second step in the data simulation involved the
use of COMPAS (Minchin 1987) to generate the species
response surfaces on the two gradients. Beta functions
(Austin 1976; Minchin 1987) provided a method of
generating the abundance of the species in the environ-
mental space. With these functions, the alpha and gamma
values determine the shape of the surface. In this study,
alpha and gamma varied (independently) from 0.5 to
4.0. This permitted a considerable variation in curve
shape from symmetric to skewed with the latter pre-
dominating. We constructed six sets of species defini-
tions. This procedure generates a multidimensional ‘spe-
cies-space’ with each species abundance (0 to a potential
maximum of 100) represented as one axis. The mean
species widths and standard deviations for the long
gradient models were 66/33 (primary axis) and 100/50
(secondary axis) respectively. For the short gradient, the
associated parameters were 100/50 and 120/60 respec-
tively. It is important to realise that the clustering

algorithms operate directly within this species-space
and only indirectly with the underlying two-dimen-
sional environmental space.

Van Groenewoud (1992) concluded that correspond-
ence analysis (Hill 1974), detrended correspondence
analysis (Hill 1979b) and TWINSPAN (Hill 1979a)
failed badly when secondary gradients approached pri-
mary gradients in length. In this study the ratio of the
second to the first gradients for the long and the short
models was 0.66 and 0.83 respectively. We believed
that this strategy would enable us to assess van Groene-
woud’s (1992) conclusions.

The third data generation step used COMPAS to
amalgamate the site and species definitions into 480
data sets. To enhance the ecological character of the
data, we added a number of factors that were either
‘off’ or ‘on’. The first factor modified the abundance
of the species to introduce the notion of a varying
carrying capacity across the environmental space. This
is equivalent to a site standardisation, for example,
dividing abundance values in one site by the total site
abundance. The second factor also modified the abun-
dance of the species, this time to introduce an element
of ‘competition’. The application of this factor permit-
ted ‘shoulders’ and multi-modalities in the species
response surfaces. The last factor introduced ‘noise’;
modifying the abundance of a species by a factor pro-
portional to the square root (Minchin 1987). These
amendments to the site and species specifications are
additional to the procedures used to generate test data
by van Groenewoud (1992).

The COMPAS program of Minchin (1987) repre-
sents a comprehensive and sophisticated tool in
simulating ‘ecological data’. We feel that any shortfalls
in the production of the data sets used here reside with
the authors and not COMPAS. Limitations in ‘quantify-
ing nature’ will remain for some time to come. There is
no doubt that more realistic generators of ‘ecological-
data’ will be forthcoming as statistical models of species
distributions based on environmental data are estab-
lished, for example Whittaker (1956), Whittaker &
Niering (1965), Westerman (1975, 1991), Austin (1976),
Austin et al. (1983, 1989).

Clustering methods

The agglomerative algorithms have been by far the
most popular in ecology as well as most other disciplines.
Flexible-UPGMA (Belbin, Faith & Milligan in press) is
based on UPGMA (see Sneath & Sokal 1973). The
divisive methods are attractive from a theoretical point of
view but have not, until  TWINSPAN (Hill 1979a) had
a  large  following. ALOC  provides  an  example  of  a
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non-hierarchical algorithm that can accommodate tens
of thousands of samples with good cluster recovery
(Belbin 1987). We provide a basic outline of the three
clustering algorithms; the primary literature provides
more comprehensive details. On the recommendation of
Faith, Minchin & Belbin (1987), the Bray & Curtis
(1957) association  measure was applied to the data
standardised by maximum species abundance (UPGMA
and ALOC). TWINSPAN’s default recoding of abun-
dance to a 1 - 5 scale was deemed appropriate and its
measure of association (χ2) in-built.

Flexible-UPGMA

Flexible-UPGMA (Belbin, Faith & Milligan in press)
provides the same extension to UPGMA (Unweighted
Pair Group using ArithMetic Averaging; see Sneath &
Sokal 1973) as the flexible procedure of Lance &
Williams (1967) did to WPGMA (Weighted Pair group
using ArithMetic Averaging). Flexibility means the abil-
ity to contract or dilate the multivariate space (see
Belbin 1975, 1991) by altering a parameter β in the
Lance & Williams flexible formula. As dilation in-
creases (β is moved from 0 toward – 1) clusters appear
increasingly well-defined, regardless of true data struc-
ture. With contraction (β is moved from 0 toward +1),
the opposite occurs and clusters tend to show a chaining
effect (see Williams, Clifford & Lance 1971). A recom-
mended β value of – 0.1 (Belbin, Faith & Milligan in
press) was used.

ALOC

The ALOC algorithm (Belbin 1987) produces a parti-
tioning of the data into clusters, not a hierarchy. This
aspect is appealing for there is little reason to consider
survey sites as being hierarchically related. The algo-
rithm has four distinct phases. The first phase makes a
single pass over all sites, sequentially comparing each
site to one or more ‘seed-sites’. The first site is nomi-
nally chosen as the only seed. If any site exceeds a
user-defined threshold association (radius) to all seeds,
it becomes an additional seed. This procedure samples
the volume of the multivariate space. Defining a small
radius results in more clusters than a large radius. The
second phase allocates all sites to their closest seeds.
The third phase replaces the seeds with cluster-centroids
based solely on group membership. The last phase is
iterative. Each site is extracted from its assigned cluster
(centroid re-calculated) and the distance to all cluster-
centroids determined. The site is then allocated to the
closest centroid. This process of extraction, testing and
re-allocation continues until cluster membership stabi-
lises (no sites change cluster membership).

TWINSPAN

Two-Way INdictor SPecies ANalysis (TWINSPAN,
Hill; 1979a, p. 3) is based on a ‘hand’ method of con-
structing two-way tables of sites and species from
Mueller-Dombois & Ellenberg (1974, Chapter 9). TWIN-
SPAN dichotomises sites based on the first reciprocal
averaging axis. This axis is divided roughly in the
middle. Differential species are defined by a preference
for sites on one or other side of the dichotomy. This is
the primary ordination. A refined ordination of sites is
then constructed by assigning weights to those species
which are preferential to either side of the dichotomy.
Preferential species weights are summed for each site
and the location of the dichotomy re-positioned. The
last step is an indicator ordination; the weights of the
most preferential species are summed across each site.
The indicator ordination is an attempt to reproduce the
refined ordination using minimal few species. It is a
diagnostic tool, providing a simplified key to the di-
chotomies and not used here for group definition. The
default options for TWINSPAN suited the simulated
test data sets.

TWINSPAN applies a similar strategy to classify
the species. This aspect was not examined because it
was considered that sites and species are not as inter-
changeable as the mathematics may indicate. This applies
particularly in this context to reciprocal averaging where
average site scores are calibrated by species and vice-
versa. While sites may generally be represented by
points in environmental-space, species will occupy a
finite volume with a varying density distribution.

Evaluation criteria

Each of the three clustering methods was constrained,
as far as possible, to produce the known number of
clusters. While the true number of clusters is rarely if
ever known in real data, a viable alternative procedure
could not be established without introducing mitigating
evaluation factors. The three clustering algorithms were
applied to all 480 data sets and results compared with
the known clusters of the 50 sites using the Hubert &
Arabie (1985) version of the Rand statistic (1971). Hubert
& Arabie modified the original statistic to take a value
of zero as the number of agreements reached those
expected by chance (the null model). A value of one
implies a perfect match between the clusters. The meas-
ure also accommodates comparison of different numbers
of clusters.
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it easier for the clustering algorithms to partition the
data in this direction. One would expect that this would
be relevant to TWINSPAN where dichotomisation is
always along the primary gradient. Gradient length ×
algorithm was not however significant at p< 0.05.

The most interesting of the significant interactions
was algorithm × sample configuration. This showed that
the average TWINSPAN recovery for each of the ten
configurations was significantly less than the next best
algorithm (either flexible-UPGMA or ALOC) except for
sample 7. In this case ALOC was significantly better than
flexible-UPGMA and TWINSPAN (p < 0.001). Over all
ten sample configurations, flexible-UPGMA won six
times, ALOC four and TWINSPAN nil (Table 1).

A typical dataset was selected to enable a more
detailed examination of the differences in recovery by
algorithm. A dataset identified as ‘d-120106’ provided a

Results

An analysis of variance was applied to the recovery
levels (Rm) across all factor-combinations. Results in-
dicate three significant (P< 0.001) single factors and
two two-factor interactions. Flexible-UPGMA provided
the best mean recovery overall (0.786). ALOC was next
best with a mean recovery of 0.767. The difference
between ALOC and flexible-UPGMA was not signifi-
cant (p> 0.05). TWINSPAN with a recovery of 0.635
was significantly less than both flexible UPGMA or
ALOC (p< 0.001).

Recovery was significantly better for the ‘long’ gra-
dient in five out of the ten configurations (see Table 1).
For configuration 8 this was reversed. In the other four
cases no significant difference was observed. One ex-
planation could be that the longer gradient simply made

Fig. 1. (a) True configuration of the 50 sites and four groups in sample six, (b) TWINSPAN configuration, (c) flexible UPGMA
configuration and, (d) ALOC configuration.

a b

c d
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Table 1. Recovery measures for the significant factor levels.
Values are the means of the Rand statistic for each factor
listed.

Configuration 0 1 2 3 4 5 6 7 8 9 Mean
Clusters 3 8 2 5 8 5 4 4 2 3

TWINSPAN .48 .68 .70 .59 .77 .64 .59 .68 .67 .54 .63
ALOC .58 .81 .85 .69 .80 .70 .78 .78 .81 .87 .77
Flex-UPGMA .62 .86 .82 .84 .95 .76 .78 .67 .74 .82 .79

Short gradient .51 .79 .76 .71 .84 .67 .65 .64 .80 .74 .71
Long gradient .61 .78 .83 .71 .84 .73 .79 .78 .67 .74 .75
Mean .56 .78 .79 .71 .84 .70 .72 .71 .74 .74

Fig. 2. Abundance of the significant species at the 50 true site
configuration of sample 6. Values are scaled 0 (absent) to 5.

a b

c d

e
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close fit to the mean recovery values for each algorithm;
0.65, 0.77 and 0.77 for TWINSPAN, ALOC and flex-
ible UPGMA respectively. This set used the short
gradient model, no species interactions, a ‘linear ramp’
carrying capacity, no noise and sample configuration 6.
Fig. 1a shows the sample configuration of ‘d-120106’ in
the environmental-space with the true clusters imposed.
Figs. 1b-d display respectively, the TWINSPAN, flex-
ible UPGMA and ALOC clusters.

Discussion

Why have TWINSPAN, flexible UPGMA and
ALOC produced their respective partitions from ‘d-
120106’? Was there a pattern in how particular species
contributed to the partitioning? There are potentially
two ways to examine the contribution of each species.
One could examine the role of species at each stage in
the clustering procedure. However, TWINSPAN is  the
only procedure that directly identifies preferential spe-
cies. An alternative is to examine the ability of species
to discriminate between the resulting clusters. This pro-
cedure was used to evaluate flexible-UPGMA, ALOC
and the ‘true’ cluster composition. In the discussion
below, ‘cluster’ is used to refer to the ‘true-groups’
while ‘groups’ refer to the results produced by the
algorithms.

Cluster 3 was the only one fully identified by TWIN-
SPAN (Fig. 1b). Out of the 50 sites, 18 or 36 % were
mis-classified. The notable error was lumping of clus-
ters 1 and 2 into TWINSPAN group 1 (compare Figs. 1a
and 1b). To compensate for this, cluster 4 was split into
TWINSPAN’s group 2 and 4. Once cluster 4 splits, the
divisive nature of TWINSPAN precludes re-connec-
tion. This highlights probably the most severe drawback
of divisive clustering methods; an early error has sig-
nificant implications. The distance between the closest
neighbours from clusters 1 and 2 was 0.44 (Bray &
Curtis). This compares with 0.34 between the closest
neighbours across the gap in cluster 4. In other words, a
good partitioning of the sites should have preferred to
split across the obvious gap between clusters 1 and 2
rather than split cluster 4. This corroborates van
Groenewoud’s conclusion (1992, p. 245) that “groups
of sample points that straddled division points were split
at that point”.

TWINSPAN’s best negative preferential on the first
dichotomy was species 42 (Fig. 2a). This species was
localised in sites to TWINSPAN groups 1 and 2. The
best positive preferential was species 15 (Fig. 2b), in
TWINSPAN groups 3 and 4. It appeared that
TWINSPAN did not split clusters 1 and 2 on the basis
that both shared 18 of the 50 species. The problem with

this is that 13 of these 18 species showed virtually no
overlap in abundance values. TWINSPAN (by default)
looks at the merit of each species on the basis of a single
abundance code (1-5). Examining the differences be-
tween cluster 1 and 2 revealed that 14 species showed a
significant preference for one or other. This is weighty
evidence for these clusters to be separated.

Given that the Reciprocal Averaging axis is from the
southeast to the northwest corners of the environmental
space, it is understandable why TWINSPAN split where
it did. The slight gap in cluster 4 and the gap between
clusters 1 and 3 line-up about half way along the first
RA-axis. The largest gap in sites along this line between
cluster 2 and the rest occurs in the northwest third of the
gradient. Failing to recognise this gap is most evident
when TWINSPAN groups 1 and 2 were created. These
groups are separated along a line running from south-
west to northeast. This highlights a significant feature of
TWINSPAN; groups separated by angles that are near
perpendicular to the primary reciprocal averaging axis
will not be identified at that stage of division.

TWINSPAN’s second dichotomy placed the gap
between cluster 1 and 4 too far ‘south’, incorporating
two sites of cluster 1 into cluster 4. The indicator species
here (26, Fig. 2c) was localised to cluster 1. The two
mis-classified sites, in common with cluster 4, had no
species 26. There are however another ten species that
would have correctly discriminated all members of these
two clusters. TWINSPAN correctly identified clusters 3
and 4. Species 23 (Fig. 2d) and 6 (Fig. 2e) were the best
discriminators of all four TWINSPAN groups. All the
discriminating species were relatively frequent, ranging
from 28 sites for species 22, 34 sites for species 15, 39
sites for species 23, 40 sites for species 42 and 46 sites
for species 6.

Fig. 1c shows that flexible UPGMA incorrectly
placed five sites from cluster 4 into group 1. The den-
drogram from the classification showed that cluster 4
would have been sub-divided into east and west sub-
groups (as in TWINSPAN) at an association value just
slightly below the four cluster level. This was to be
expected. Why did the 5 sites from cluster 4 get classi-
fied into group 1? The 2 group-1 sites just off-centre to
the southwest on Fig. 1c are the catalyst. These two sites
are slightly closer (using the Bray & Curtis dissimilar-
ity), to the other group 1 sites to the northeast than to the
group-1 sites to the southwest. The fusion of these two
sites with the northeast group moves the group centre
southwest to facilitate a subsequent fusion into the com-
plete group 1. The distance between the closest pair of
sites between cluster 4 and group 1 was greater than the
gaps within group 1. Considering the dissimilarity val-
ues, the logic here is justifiable and highlights the
imperfect relationship between the species-space and
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the environmental-space; all clustering methods are simi-
larly disadvantaged.

14 species showed excellent discrimination among
the four flexible-UPGMA groups. These species had
little or no overlap in abundance values (highly signifi-
cant f-values). Species 42 (Fig. 2a) and 22 (Fig. 2f) were
the most discriminating species. These same species
were identified as the best discriminators for both the
‘true’ and ALOC configurations.

In the case of ALOC (Fig. 1d), four sites from cluster
4 were mis-classified as group 3. The seed samples were
within clusters 3 and 4, but the distance of the mis-
classified sites to the centroid of cluster 3 was 10 %
closer than to cluster 4. ALOC is not sensitive to the fact
that there were very small dissimilarity values between
the mis-classified sites and adjacent sites in cluster 4.

Why did TWINSPAN achieve a better average re-
covery than UPGMA for sample configuration 7 (see
Table 1), even if this difference was not significant?
Sample configuration 7 was the only sample distribu-
tion where groups could be readily split on the primary
RA axes. All four clusters are approximately equal in
size and show good separation at a point half way along
the primary ordination axes. This situation would be
uncommon.

Conclusions

From the test data, flexible-UPGMA and ALOC
provide a better recovery of true cluster structure than
TWINSPAN. The insignificant difference between flex-
ible-UPGMA and ALOC was unanticipated (we expected
ALOC not to perform as well as flexible UPGMA).

TWINSPAN appears to have two identifiable prob-
lems; dependence on a predominant primary gradient
(noted by van Groenewoud 1992) and dichotomising at
an inappropriate point on this axis. There is no doubt
about the use of ordination axes to identify predominant
gradients. Problems arise when second or subsequent
gradients exist in the data. The placement of the first
RA-axis is crucial; groups cannot be re-formed once
split. The difficulty in identifying the primary gradient
with the first RA-axis depends on the relative signifi-
cance of subsequent gradients. If the primary gradient is
not accurately detected, separation between groups on
this gradient is lost. Any offset of the RA-axis from the
primary gradient results in groups being incorrectly split
(Fig. 1b). Once this occurs, subsequent dichotomisations
compound the problem.

Even if TWINSPAN detects the primary gradient,
groups arranged along this axis may not be accurately
recovered (Fig. 1b). The primary RA-axis is ca. 25 ° off.
This error could have been countered if the first

dichotomisation separated the northwest group (cluster
2, Fig. 1a). A secondary axis could then be placed
trending northeast-southwest with the possibility of split-
ting cluster 1 from clusters 3 and 4. This did not occur
because TWINSPAN opted in the secondary species
scoring phase to dichotomise at a point approximately
50% along the primary axis. The failure to recognise the
large gap around cluster 2 is significant.
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