
Comparing Trailing and Copying
for Constraint Programming
Christian Schulte
Programming Systems Lab, Universität des Saarlandes
Postfach 15 11 50, 66041 Saarbrücken, Germany
schulte@ps.uni-sb.de

Abstract

A central service of a constraint programming system is search. In almost all con-
straint programming systems search is based on trailing, which is well understood
and known to be efficient. This paper compares trailing to copying. Copying offers
more expressiveness as required by parallel and concurrent systems. However, lit-
tle is known how trailing compares to copying as it comes to implementation effort,
runtime efficiency, and memory requirements. This paper discusses these issues.

Execution speed of a copying-based system is shown to be competitive with
state-of-the-art trailing-based systems. For the first time, a detailed analysis and
comparison with respect to memory usage is made. It is shown how recomputa-
tion decreases memory requirements which can be prohibitive for large problems
with copying alone. The paper introduces an adaptive recomputation strategy that
is shown to speedup search while keeping memory consumption low. It is demon-
strated that copying with recomputation outperforms trailing on large problems
with respect to both space and time.

1 Introduction

A central service in every constraint programming system is search. It demands that
previous computation states must possibly be available at a later stage of compu-
tation. A system must take precaution by either memorizing states or by means to
reconstruct them. States are memorized by copying. Techniques for reconstruction
are trailing and recomputation. While recomputation computes everything from
scratch, trailing records for each state-changing operation the information neces-
sary to undo its effect.

Most current constraint programming systems are trailing-based. Many of
them, for example CHIP [2], cc(FD) [13], Eclipse [3], and clp(FD) [5], are built
on top of Prolog, which itself is trailing-based. But also systems that are not built
on top of Prolog, like Screamer [12] (Lisp), and ILOG Solver [6] (C++) use trailing.

Copying offers advantages with respect to expressiveness: multiple nodes of a
search tree are available simultaneously for further exploration. This is essential

Appears in: Danny De Schreye, editor, Proceedings of the Sixteenth International Conference
on Logic Programming, Las Cruces, NM, USA, pages 275–289. The MIT Press, November 1999.



for concurrent, parallel, breadth-first, and user-defined search strategies. Imple-
mentation can be simpler, since copying is independent of operations and is only
concerned with data structures.

On the other hand, copying needs more memory and might be slower since full
copies of the computation states are created. Hence, it is not at all clear whether
copying is competitive to trailing or not.

This paper shows that copying is competitive and that it offers a viable alter-
native to trailing for the implementation of constraint programming systems. The
following points are discussed:

� The paper clarifies how much more memory copying needs. It is examined
for which problems copying is competitive with respect to runtime and mem-
ory.

� For large problems with deep search trees the paper confirms that copying
needs too much memory. It is shown that in these cases recomputation can
decrease memory consumption considerably, even to a fraction of what is
needed by trailing.

� It is shown that recomputation can also decrease runtime. The paper intro-
duces adaptive recomputation that creates additional copies during search in
order to speed up execution.

The paper uses Mozart [9], an implementation of Oz, as copying-based con-
straint programming system. The competitiveness of Mozart is stressed by com-
paring it to several trailing based constraint programming systems.

Plan of the Paper. The next section introduces some basic notions and concepts.
Section 3 discusses the main implementation concepts. Section 4 introduces ex-
amples and criteria used for empirical evaluation. Section 5 gives an evaluation of
copying followed by a comparison to trailing in Section 6. Recomputation is dis-
cussed in Section 7 followed by the introduction of adaptive recomputation in the
next section. An empirical comparison of several constraint programming systems
is given in Section 9.

2 Search for Constraint Programming

A constraint problem consists of a collection of constraints and a distribution strat-
egy (also called labelling or enumeration strategy). The constraint problem defines
a search tree. Its nodes represent computation states, whereas its arcs represent
computation.

In the context of constraint programming, a computation state consists of a con-
straint store and propagators connected to the constraint store. The constraint store
hosts basic (primitive) constraints. In the context of finite domain programming,
for example, basic constraints are domain constraints like x

�
D where D is a finite

domain. Propagators implement more complex constraints (for example, arithmetic



constraints or task-serialization for scheduling). Propagators amplify the store by
adding new basic constraints (constraint propagation) to the constraint store.

Leafs in the search tree can be either failed (constraint propagation attempted
to tell a constraint incompatible with the store) or solved (no propagators are left).
Inner nodes are called choices. For a choice N, the distribution strategy defines how
to compute the descendants Ni of the node N. The Ni are also called alternatives (of
N). For example, in the context of finite domain programming the Ni are computed
by telling a basic constraint Bi to N’s constraint store that starts further constraint
propagation.

The computational service offered by a constraint programming system is to
explore the search tree of a given constraint problem. In the following we always
assume left-most, depth-first exploration. The system must be prepared to follow
several alternatives issuing from the same node N. This paper discusses the follow-
ing three approaches:

Copying. An identical copy of N is created before N is changed.

Trailing. Changes to N are recorded such that they can be undone later.

Recomputation. If needed, N is recomputed from scratch. Discussion of recom-
putation is postponed to Section 7.

Expressiveness. The main difference as it comes to expressiveness is the number
of nodes that are simultaneously available for further exploration. With copying,
all nodes that are created as copies are directly ready for further exploration. With
trailing, exploration can only continue at a single node at a time.

In principle, trailing does not exclude exploration of multiple nodes. However,
they can be explored in an interleaved fashion only and switching between nodes
is a costly operation. For this reason all current trailing-based constraint program-
ming systems do not support node-switching.

Having more than a single node available for exploration is essential to search
strategies like concurrent, parallel, or breadth-first. The same property is also cru-
cial for user-defined interactive exploration of search trees as implemented by the
Oz Explorer [10]. By making nodes of a search tree available as first-class entities
(as it is done in Oz [11]), the user can directly profit from the increased expressive-
ness.

Resource model. Copying essentially differs from trailing with respect to space
requirements in that it is pessimistic: while trailing records changes exactly, copy-
ing makes the safe but pessimistic assumption that everything will change. On the
other hand, trailing needs to record information on what changes as well as the
original state of what is changed. In the worst case — the entire state is changed —
this might require more memory than copying. This discussion makes clear that a
meaningful comparison of the space requirements for trailing and copying is only
possible by empirical investigations, which are carried out in Section 6.



3 Implementation Issues

This section gives a short discussion of the main implementation concepts and their
properties in copying- and trailing-based systems. The most fundamental distinc-
tion is that trailing-based systems are concerned with operations on data structures
while copying-based systems are concerned with the data structures themselves.

Copying. Copying needs for each data structure a routine that creates a copy and
also recursively copies contained data structures. A system that features a copying
garbage collector already provides almost everything needed to implement copy-
ing. For example in the Mozart implementation of Oz, copying and garbage col-
lection share the same routines parametrized by a flag that signals whether garbage
collection is performed or whether a node is being copied.

By this all operations on data structures are independent of search with respect
to both design and implementation. This makes search in a system an orthogo-
nal issue. Development of the Mozart system has proven this point: it was first
conceived and implemented without search and only later search has been added.

Trailing. A trailing-based system uses a trail to store undo information. Prior to
performing a state-changing operation, information to reconstruct the state is stored
on the trail. In a concrete implementation, the state changing operations considered
are updates of memory locations. If a memory update is performed, the location’s
address and its old content is stored on the trail. To this kind of trail we refer to
as single-value trail. Starting exploration from a node puts a mark on the trail.
Undoing the trail restores all memory locations up to the previous mark. This is
essentially the technology that is used in Warren’s Abstract Machine [14, 4].

In the context of trailing-based constraint programming systems two further
techniques come into play:

Time-stamping. With finite domains, for example, the domain of a variable can
be narrowed multiply. However it is sufficient to trail only the original value,
intermediate values need no restauration: each location needs to appear at
most once on the trail. Otherwise memory consumption is no longer bounded
by the number of changed locations but by the number of state-changing
operations performed. To ensure this property, time-stamping is used: as
soon as an entity is trailed, the entity is stamped to prevent it from further
trailing until the stamp changes again. Note that time-stamping concerns
both the operations and the data structures that must contain the time-stamp.

Multiple-value trail. A single-value trail needs 2n entries for n changed locations.
A multiple value trail uses the optimization that if the contents of n � 1
successive locations are changed, n � 2 entries are added to the trail: one
for the first location’s address, a second entry for n, and n entries for the
locations’ values. For a discussion of time-stamps and a multiple value trail
in the context of the CHIP system, see [1, 2].



Example Expl. Choices Fail. Sol. Depth Var. Constr.
Alpha all 7435 7435 1 50 26 21
100-Queens one 115 22 1 97 100 14850
100-S-Queens one 115 22 1 97 100 3
10-Queens all 6665 5942 724 29 10 135
10-S-Queens all 6665 5942 724 29 10 3
Magic one 13 4 1 12 500 501
18-Knights one 266 12 1 265 7500 11205

Table 1: Characteristics of example programs.

A general but brief discussion of issues related to implementation issues for
trailing-based constraint programming systems can be found in [7].

Trailing requires that all operations are search-aware: search is not an orthog-
onal issue to the rest of the system. Complexity in design and implementation is
increased: it is a matter of fact that a larger part of a system is concerned with
operations rather than with basic data structure management. A good design that
encapsulates update operations will avoid most of the complexity. To take advan-
tage of multiple value trail entries, however, operations require special effort in
design and implementation.

Trailing for complicated data structures can become quite complex. Consider
as an example adding an element to a dictionary with subsequent reorganization of
the dictionary’s hash table. Here the simple model that is based on trailing loca-
tions might be unsuited, since reorganizing data structures alters a large number of
locations. In general, copying offers more freedom of rearranging data structures,
for a discussion in the context of finite domain constraints see [8].

The discussion in this section can be summarized as follows. A system that
features a copying garbage collector already supports the essential functionality for
copying. For a system that does not require a garbage collector trailing might be as
easy or possibly easier depending on the number and complexity of the operations.

4 Criteria and Examples

This section introduces constraint problems that serve as examples for the empirical
analysis and comparison. The problems are well known, they are chosen to be
easily portable to several constraint programming systems (see Section 9).

The main characteristics of the problems are listed in Table 1. Besides of porta-
bility and simplicity they cover a broad range with respect to the following criteria.

Problem size. The problems differ in size, that is in the number of variables and
constraints, and in the size of constraints (that is the number of variables
each constraint is attached to). With copying, the size of the problem is an
important parameter: it determines the time needed for copying. It also partly
determines the memory requirements (which is also influenced by the search
tree depth). Hence, large problem sizes can be problematic with copying.



Amount of propagation. A problem with strong propagation narrows a large num-
ber of variables. This presupposes a large number of propagation steps,
which usually coincides with state changes of a large number of constraints.
The amount of propagation determines how much time and memory trail-
ing requires: the stronger the propagation, the more of the state is changed.
The more of the state changes, the better it fits the pessimistic assumption
“everything changes” that underlies copying.

Search tree depth. The depth of the search tree determines partly the memory re-
quirements for both trailing and copying. Deep search trees are a bad case for
trailing and even more for copying due to its higher memory requirements.

Exploration completeness. How much of the search tree is explored. A high ex-
ploration completeness means that utilization of the precaution effort under-
taken by copying or trailing is high.

The criteria are not independent. Of course, the amount of propagation deter-
mines the depth of the search tree. Also search tree depth and exploration com-
pleteness are interdependent: If the search tree is deep, exploration completeness
will definitely be low: Due to the exponential number of nodes, the part of the tree
that can be explored is relatively small.

All example problems are familiar benchmark problems. Alpha is the well-
known cryptoarithmetic puzzle: assign variables A, B, ����� , Z distinct numbers be-
tween 1 and 26 such that 25 equations hold. For the popular n-Queens puzzle
(place n queens on a n � n chess board such that no two queens can attack each
other) two different implementations are used. The naive implementation (called
n-Queens) uses O � n2 � disequality constraints. This is contrasted by a smarter pro-
gram (which is called n-S-Queens accordingly) that uses three propagators for the
same constraints: this leads to much better propagation in relation to the problem
size. The two different encodings of the n-Queens puzzle are chosen to analyze the
difference between many small propagators and few larger propagators.

The Magic puzzle is to find a magic sequence s of 500 natural numbers, such
that 0 	 xi 	 500 and i occurs in s exactly xi times. It uses for each element of the
sequence an exactly-constraint (each ranging over all variables xi) on all elements
of the sequence. The elements are enumerated in increasing order following a
splitting strategy. The goal in 18-Knights is to find a sequence of knight’s moves
on a 18 � 18 chessboard such that each field is visited exactly once and that the
moves return the knight to the starting field, which is fixed to the lower left field.

The paper prefers familiar benchmark programs over more realistic problems
such as scheduling or resource allocation. The reason is that the programs are also
intended for comparing several constraint programming systems. Choosing simple
constraints ensures that the amount of constraint propagation is the same with all
compared systems.



Example
Time Copy GC CGC Max
sec % % % KB

Alpha 7 
 80 20 
 8 3 
 5 24 
 3 19
10-Queens 3 
 49 30 
 8 3 
 7 34 
 5 20
10-S-Queens 2 
 54 18 
 4 2 
 7 21 
 1 7
100-Queens 2 
 96 51 
 3 16 
 6 67 
 9 21873
100-S-Queens 0 
 10 31 
 7 0 
 0 31 
 7 592
Magic 2 
 61 9 
 9 11 
 5 21 
 5 6091
18-Knights 23 
 53 36 
 1 31 
 5 67 
 6 121557

Table 2: Runtime and memory performance of example programs.

5 Copying

This section presents and analyses runtime and memory requirements for Mozart,
a copying-based implementation of Oz [9]. For more information on hardware and
software platforms see Appendix A.

Table 2 displays the performance of the example programs. The fields “Copy”
and “GC” give the percentage of runtime that is spent on copying and garbage col-
lection, the field “CGC” displays the sum of both fields. The field “Max” contains
the maximal amount of memory used in Kilobytes, that is how much memory must
at least be available in order to solve the problem.

The numbers clarify that for all but the large problems 100-Queens and 18-
Knights the amount of time spent on copying and garbage collection is around one
fourth of the total runtime. In addition, the memory requirements are moderate.
This demonstrates that for problems with small and medium size copying does
neither cause memory nor runtime problems. It can be expected that for these
problems copying is competitive.

On the other hand, the numbers confirm that copying alone for large problems
with deep search trees is unsuited: up to two third of the runtime is spent on mem-
ory management and memory requirements are prohibitive. The considerable time
spent on garbage collection is also a consequence of copying: the time used by a
copying garbage collector is determined by the amount of used memory.

The two different implementations of n-Queens exemplify that copying gets
considerably better for problems where a large number of small propagators is re-
placed by a small number of equivalent global propagators.

6 Trailing

As discussed before, one of the most essential questions in comparing trailing and
copying is: how pessimistic is the assumption “everything changes” that underlies
copying. An answer seems to presuppose two systems that are identical with the
exception of trailing or copying. Implementing two competitive systems is not
feasible.



0 10 20 30 40 50 60

18-Knights
Magic
10-S-Queens
100-S-Queens
10-Queens
100-Queens
Alpha

(percent)
multiple-value trail � single-value trail

Figure 1: Memory use of trailing versus copying.

Instead, the memory requirements of a trailing implementation are computed
from the requirements of a copying implementation as follows. Before constraint
propagation in a node N begins, a bitwise copy of the memory area occupied by N
is created. After constraint propagation has finished, this memory area is compared
to the now changed memory area occupied by N. The altered locations are those
that a trailing system must have trailed.

Figure 1 shows the percentage of memory needed by a trailing implementation
compared to a copying implementation. The total length of bars depicts the per-
centage needed by a single-value trail, whereas the dark-colored bar represents the
need of a multiple-value trail implementation.

The percentage figures for the multiple-value trail are lower bounds again. Lo-
cations that are updated by separate single update operations might happen to be
successive even though an implementation cannot take advantage of this fact. It is
interesting to note that a multiple-value trail offers some improvement only for 10-
S-Queens and 100-S-Queens (around 10%). Otherwise, its impact is quite limited
(less than 2%).

The observation that for large problems with weak propagation (100-Queens
and 18-Knights) trailing improves by almost up to two orders of magnitude coin-
cides with the observation made with respect to the memory requirements in Sec-
tion 5. For the other problems the memory requirements are in the same order of
magnitude and trailing roughly halves them.

What is not captured at all by the comparison’s method is that other design
decisions for propagators would have been made to take advantage of trailing, as
has already been argued in Section 3.

7 Recomputation

Recomputation trades space for time, a node N is reconstructed on demand by
redoing computations. The space requirements are obviously low: only the path in
the search tree leading to N must be stored (for example, as a list of integers). In
particular, the space requirements for recomputation are problem independent.



0 10 20 30 40 50 60 70 80 90 100

18-Knights (50)
Magic (5)
100-S-Queens (30)
100-Queens (30)

percent
memory time

Figure 2: Runtime and memory gain with fixed recomputation.

Basing exploration on recomputation alone is infeasible. Suppose a complete
binary search tree of height n, which has 2n leafs. To recompute a single leaf,
n exploration steps are needed. This gives a total of n2n exploration steps com-
pared to 2n � 1 
 2 exploration steps without recomputation (that is, the number of
arcs). Thus recomputation alone takes approximately n � 2-times the number of ex-
ploration steps both copying and trailing need.

The basic idea of combining recomputation with copying is as follows: copy a
node from time to time during exploration. Recomputation then can start from the
last copy N on the path to the root. Note that this requires to start from a copy of N
rather than from N itself, since N might be needed for further recomputation. The
implementation of recomputation is straightforward, see [11] for example.

A simple strategy for recomputation is fixed recomputation: limit the number
of steps needed to recompute a node by some fixed number n, to which we refer as
MRD (maximal recomputation distance). That is, after n exploration steps a copy
of the current node is memorized.

An important optimization is as follows: after all but one alternative A of a
copied node N have been explored, further recomputation from N always starts with
recomputing A. The optimization now is to do the recomputation step N � A only
once. This optimization corresponds to the trust me instruction in the WAM.

Fixed recomputation with a MRD of n guarantees that the number of stored
nodes decreases by a factor of n. Figure 2 displays the improvements obtained by
fixed recomputation, where the numbers in parentheses give the employed MRD.

The improvement in memory for 100-Queens and 18-Knights (the two prob-
lems for which Section 5 showed that copying entails prohibitive memory require-
ments) is by two orders of magnitude. 100-S-Queens enjoys the same memory-
improvement as 100-Queens, since the search trees are identical. The figures for
Magic exhibit that even for problems for which copying is perfectly adequate,
memory consumption can be decreased without a runtime penalty.

Our motivation for recomputation was the urge to save memory. However, the
numbers in Figure 2 exemplify that recomputation saves both memory and runtime.
In particular, the time savings from less copying are larger than the time spent on
recomputing.

Fixed recomputation uses less memory than trailing. Figure 3 shows the per-
centage of memory that fixed recomputation takes in comparison to the memory



0 20 40 60 80 100

18-Knights 82.4

Magic 67.0

100-S-Queens 13.6

100-Queens 44.2

percent

Figure 3: Memory use of fixed recomputation versus trailing.

(s
ec

on
ds

)

0

10

20

30

40

1

25.0

2

12.1

3

10.1

4

9.6

5

9.0

10

6.4

25

6.9

50

7.0

100

9.3

150

16.3

200

14.7

250

18.6

∞

33.4

(recomputation distance)
runtime copying time garbage collection time

Figure 4: Runtime for 18-Knights with fixed recomputation.

needed by trailing.
Trailing and copying are pessimistic in that they make the assumption that each

node needs reconstruction. Recomputation, in contrast, makes the optimistic as-
sumption that no node requires later reconstruction. For search trees that contain
few failed nodes, the optimistic assumption fits well. In particular, problems with
very deep search trees can profit from the optimistic assumption, since exploration
completeness will definitely be low (as argued in Section 4).

Figure 4 relates the runtime to different MRDs for the 18-Knights problem.
For a MRD from 1 to 10 the runtime is strictly decreasing because the time spent
on copying and garbage collection decreases, while the plain runtime remains con-
stant. With further increase of MRD the runtime increases due to the increasing
recomputation overhead.

Figure 4 shows a small peak at a MRD of 150. The search tree for 18-Knights
has five failed nodes at a depth of around 260. This means that recomputation has to
perform around 110 recomputation steps for each of the nodes. This phenomenon
can be observed quite often: slight changes in the MRD (like from 100 to 150 for
18-Knights) results in unexpected runtime behavior. This indicates that for some
parts of the search tree the assumption of recomputation is overly optimistic.



(s
ec

on
ds

)

0

5

10

15

20

25

1 2

12.0

3

10.2

4

9.7

5

9.1

10

6.5

25

6.6

50

6.7

100

7.9

150

10.0

200

9.7

250

10.0

∞

10.7

(recomputation distance)
runtime copying time garbage collection time

Figure 5: Runtime for 18-Knights with adaptive recomputation.

8 Adaptive Recomputation

In the last section we made the following two observations. Firstly, the optimistic
assumption underlying recomputation can save time. Secondly, the fixed choice of
a MRD can inhibit this.

If exploration exhibits a failed node it is quite likely that not only a single
node is failed but that an entire subtree is failed. It is unlikely that only the last
decision made in exploration was wrong. This suggests that as soon as a failed
node occurs during exploration, the attitude for further exploration should become
more pessimistic.

The following strategy is simple and shows remarkable effect. During recom-
putation of a node N2 from a node N1 an additional copy is created at the middle of
the path from N1 to N2. To this strategy we refer to as adaptive recomputation.

Figure 5 shows the runtime for adaptive recomputation applied to 18-Knights.
Not only the peak for a MRD of 150 disappears, also the runtime for large MRD
values remains basically constant. Even if copies are created during recomputation
only (that is the MRD is ∞) the runtime remains almost unaffected.

This is the real significance of adaptive recomputation: the choice of the recom-
putation distance is not as important as one would think. Provided that the distance
is not too small (that is, no excessive memory consumption), adaptive recomputa-
tion adjusts quickly enough to achieve good performance.

While adaptive recomputation is a good strategy as it comes to runtime, it does
not guarantee that memory consumption is decreased. In the worst case, adaptive
recomputation does not improve over copying alone.

Figure 6 shows the active heap memory for both fixed and adaptive recomputa-
tion applied to 18-Knights. The numbers exhibit that avoidance of peaks in runtime
is not paid by peaks in memory (for MRDs between 1 and 5 memory requirements
for both fixed and adaptive recomputation are almost identical and thus are left out).

For deep search trees the following technique could help limit the required
memory. As soon as exploration has reached a certain depth in the search tree,
it is quite unlikely that nodes high above are going to be explored. Thus, copies
remaining in the upper parts of the tree could be dropped. This would decrease



(M
B

)
0

5

10

15

20

25

30

5 10 25 50 100 150 200 250 ∞
(recomputation distance)

fixed recomputation adaptive recomputation

Figure 6: Memory requirements for 18-Knights.

memory consumption and would most likely not affect runtime.

9 Empirical Comparison

This section compares Mozart, a copying-based system, with several trailing-based
systems. For more information on the used software and hardware platforms, see
Appendix A. The point to compare systems in this paper is to demonstrate that a
system that is based on copying can be competitive with trailing based systems.

The runtimes of course do not depend only on the systems’ search capabili-
ties, but also on their finite domain implementation. It has been tried to keep the
examples’ implementations for the different systems as similar as possible. In par-
ticular, even if a system provides special propagators for a particular example, the
programs do not take advantage of them.

All systems support Alpha, 10-Queens, 100-Queens, and 18-Knights. The
propagators that are used for the 10-S-Queens and 100-S-Queens formulation are
available in Mozart and Solver only. Eclipse does not support the exactly-constraint
that is used in Magic.

Figure 7 shows a relative performance comparison of Mozart with Eclipse, SIC-
Stus, and Solver. The figures to the left are without recomputation, the figures to the
right use fixed recomputation (the same MRDs as in Figure 2 are used). A num-
ber of n below the middle line together with a light gray box means that Mozart
performs f -times better. Otherwise, the other system performs f -times better than
Mozart.

The figures clearly indicate that a system based on the copying approach is
competitive as it comes to runtime. It is worth noting that even for problems that
profit from recomputation performance is still competitive without recomputation.
In general, this is of course only true if the available memory is sufficient.

The numbers for Mozart with recomputation show that copying together with
recomputation for large problems and deep search trees can outperform trailing-
based systems.



Alp
ha

10
-Q

uee
ns

10
-S

-Q
uee

ns

10
0-

Quee
ns

10
0-

S-Q
uee

ns

M
ag

ic

18
-K

nigh
ts

10
0-

Quee
ns (R

)

10
0-

S-Q
uee

ns (R
)

18
-K

nigh
ts

(R
)

Eclipse
3 � 55 1 � 22

NA
1 � 31

NA NA
2 � 22

4 � 1

1 � 1

4 � 1

2 � 86
NA

7 � 43

Sicstus
1 � 14 1 � 62

NA
2 � 02

NA
4 � 23

1 � 31

4 � 1

1 � 1

4 � 1

1 � 86
NA

2 � 56

Solver
2 � 48 1 � 73 1 � 27 3 � 17

1 � 70

2 � 03 2 � 02

4 � 1

1 � 1

4 � 1

1 � 19 2 � 36 1 � 66

Mozart performs worse Mozart performs better

Figure 7: Empirical runtime comparison.

A Used Hardware and Software Platforms

All programs have been run on a single processor Sun ULTRASparc-1 170 with
300 Megabytes of main memory and using SunOS 5.5 as operating system. All
runtimes have been taken as wall time (that is, absolute clock time), where the
machine was unloaded: difference between wall and actual process time is less
than 5%. All numbers presented are the arithmetic mean of 25 runs, where the
coefficient of variation is less than 5% for all benchmarks and systems but 100-S-
Queens for Solver, where the deviation was less than 15%.

The following systems were used: Mozart 1.1.0, Eclipse 3.7.1, SICStus Prolog
3.7.1, and ILOG Solver 4.400.

Acknowledgements. I am grateful to Thorsten Brunklaus, Katrin Erk, Leif Korn-
staedt, Tobias Müller, Andreas Rossberg, and the anonymous referees for providing
comments that helped to improve the paper.

References



[1] Abderrahamane Aggoun and Nicolas Beldiceanu. Time Stamps Techniques
for the Trailed Data in Constraint Logic Programming Systems. In Actes
du Séminaire 1990–Programmation en Logique, pages 487–509, Tregastel,
France, May 1990. CNET.

[2] Abderrahamane Aggoun and Nicolas Beldiceanu. Overview of the CHIP
Compiler System. In Frédéric Benhamou and Alain Colmerauer, editors,
Constraint Logic Programming: Selected Research, pages 421–437. The MIT
Press, Cambridge, MA, USA, 1993.

[3] Abderrahamane Aggoun, David Chan, Pierre Dufresne, Eamon Falvey, Hugh
Grant, Alexander Herold, Geoffrey Macartney, Micha Meier, David Miller,
Shyam Mudambi, Bruno Perez, Emmanuel Van Rossum, Joachim Schimpf,
Periklis Andreas Tsahageas, and Dominique Henry de Villeneuve. ECLiPSe

3.5. User manual, European Computer Industry Research Centre (ECRC),
Munich, Germany, December 1995.

[4] Hassan Aı̈t-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction.
Logic Programming Series. The MIT Press, Cambridge, MA, USA, 1991.

[5] Philippe Codognet and Daniel Diaz. Compiling constraints in clp(FD). The
Journal of Logic Programming, 27(3):185–226, June 1996.

[6] ILOG. ILOG Solver: Reference manual, May 1997. Version 4.0.

[7] Joxan Jaffar and Michael M. Maher. Constraint logic programming: A survey.
The Journal of Logic Programming, 19 & 20:503–582, May 1994. Special
Issue: Ten Years of Logic Programming.

[8] Tobias Müller and Jörg Würtz. Extending a concurrent constraint language
by propagators. In Jan Małuszyński, editor, Proceedings of the International
Logic Programming Symposium, pages 149–163, Long Island, NY, USA,
1997. The MIT Press.

[9] Mozart Consortium. The Mozart programming system, 1999. Available from
www.mozart-oz.org.

[10] Christian Schulte. Oz Explorer: A visual constraint programming tool. In
Lee Naish, editor, Proceedings of the Fourteenth International Conference on
Logic Programming, pages 286–300, Leuven, Belgium, July 1997. The MIT
Press.

[11] Christian Schulte. Programming constraint inference engines. In Gert
Smolka, editor, Proceedings of the Third International Conference on Princi-
ples and Practice of Constraint Programming, volume 1330 of Lecture Notes
in Computer Science, pages 519–533, Schloß Hagenberg, Linz, Austria, Oc-
tober 1997. Springer-Verlag.



[12] Jeffrey Mark Siskind and David Allen McAllester. Screamer: A portable
efficient implementation of nondeterministic Common Lisp. Technical Report
IRCS-93-03, University of Pennsylvania, Institute for Research in Cognitive
Science, 1993.

[13] Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Design, imple-
mentation, and evaluation of the constraint language cc(FD). The Journal of
Logic Programming, 37(1–3):139–164, October 1998.

[14] David H. D. Warren. An abstract Prolog instruction set. Technical Note
309, SRI International, Artificial Intelligence Center, Menlo Park, CA, USA,
October 1983.


	Introduction
	Search for Constraint Programming
	Implementation Issues
	Criteria and Examples
	Copying
	Trailing
	Recomputation
	Adaptive Recomputation
	Empirical Comparison
	Used Hardware and Software Platforms

