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Abstract We analyze in detail the predictions of “trimax-

imal” neutrino mixing, which is defined by a mixing ma-

trix with identical second column elements. This column

is therefore identical to the second column in the case of

tri-bimaximal mixing. We also generalize trimaximal mix-

ing by assuming that the other rows and columns of the

mixing matrix individually can have the same forms as for

tri-bimaximal mixing. The phenomenology of these alterna-

tive scenarios and their mixing angle and CP phase corre-

lations are studied. We emphasize how trimaximal mixing

scenarios can be distinguished experimentally from broken

tri-bimaximal mixing.

1 Introduction

Ten years after observation of the depletion of atmospheric

muon-neutrinos was established by the SuperKamiokande

collaboration [1], our knowledge of the neutrino oscillation

parameters has been noticeably sharpened by the ensuing

atmospheric [2–4], solar [5–12], reactor [13–16], and long-

baseline [17, 18] neutrino experiments. Recent global analy-

ses [19–22] limit the oscillation parameters to the 1σ and 3σ

ranges determined by Fogli et al., for example, to be [21, 22]

�m2
32 =

(

2.39
+0.11,0.42
−0.08,0.33

)

× 10−3 eV2,

�m2
21 =

(

7.67
+0.16,0.52
−0.19,0.53

)

× 10−5 eV2,

sin2 θ23 = 0.466
+0.073,0.178
−0.058,0.135,

sin2 θ12 = 0.312
+0.019,0.063
−0.018,0.049,

(1)
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while the reactor neutrino oscillation angle remains more

uncertain. In a recent analysis [21, 22] it is weakly (1.6σ )

constrained to be non-zero according to (see also Refs. [23,

24])

sin2 θ13 = 0.016 ± 0.010 (≤0.046). (2)

These mixing angles help to specify the Pontecorvo–

Maki–Nakagawa–Sakata (PMNS) mixing matrix defined in

the standard convention [25] by

UPMNS

=

⎛

⎜

⎜

⎝

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞

⎟

⎟

⎠

,

(3)

where cij = cos θij , sij = sin θij with δ the unknown CP-

violating Dirac phase. Harrison, Perkins, and Scott first em-

phasized that the experimentally obtained mixing matrix is

close to the simple tri-bimaximal mixing (TBM) form where

[26–31]

UTBM =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

√

2
3

√

1
3

0

−
√

1
6

√

1
3

−
√

1
2

−
√

1
6

√

1
3

√

1
2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (4)

The column vectors are just the eigenvectors of the three

diagonal U(3) operators. For exact tri-bimaximal mixing,
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the mixing angles are1

sin2 θ12 =
1

3
, sin2 θ23 =

1

2
, sin2 θ13 = 0, (5)

which are seen to be close to the present data quoted above

in (1).

In a top-down approach, the charged lepton mass matrix,

mℓ, and light Majorana neutrino mass matrix, mν , are spec-

ified in some model with particular family and flavor sym-

metries, often by invoking the seesaw mechanism. The two

mass matrices are diagonalized by two unitary transforma-

tions such that

U
†
ℓ m

†
ℓmℓUℓ = diag

(

m2
e,m

2
μ,m2

τ

)

,

UT
ν mνUν = m

diag
ν = diag(m1,m2,m3).

(6)

The PMNS mixing matrix then follows from UPMNSP =
U

†
ℓ Uν , where the diagonal Majorana phase matrix is given

by P = diag(1, eiα, eiβ). Note that without this matrix the

phase transformation required on the right side of UPMNS

(and hence on Uν itself) to bring it into the conventional

phase structure of (3) is not possible, when one demands real

positive diagonal neutrino mass entries in (6). The presence

of P allows one to compensate for the phase transformation

on the right side of UPMNS without altering Uν . In this top-

down approach one can then compare the UPMNS obtained

with UTBM.

Instead, one might employ a bottom-up procedure to

identify the μ–τ symmetric neutrino mass matrix in the fla-

vor basis as the most general one giving rise to tri-bimaximal

mixing,

(mν)TBM = U∗
TBMP ∗m

diag
ν P †U

†
TBM

=

⎛

⎜

⎜

⎜

⎝

A B B

· 1
2
(A + B + D) 1

2
(A + B − D)

· · 1
2
(A + B + D)

⎞

⎟

⎟

⎟

⎠

. (7)

The parameters A,B,D are in general complex and func-

tions of the neutrino masses and Majorana phases:

A =
1

3

(

2m1 + m2e
−2iα

)

, B =
1

3

(

m2e
−2iα − m1

)

,

(8)
D = m3e

−2iβ .

1The experimental results are so close to TBM that parameterizations

of the PMNS matrix with TBM as the starting point have been pro-

posed [32–35].

Another way to write the mass matrix is to decompose it in

terms of the three individual masses.

(mν)TBM =
m1

6

⎛

⎝

4 −2 −2

· 1 1

· · 1

⎞

⎠ +
m2e

−2iα

3

⎛

⎝

1 1 1

· 1 1

· · 1

⎞

⎠

+
m3e

−2iβ

2

⎛

⎝

0 0 0

· 1 −1

· · 1

⎞

⎠ . (9)

Since observable departures from exact tri-bimaximal

mixing are expected, it is of interest to study how deviations

may arise. In a recent paper the authors linearly perturbed

the matrix elements in (7) in order to observe how large

the departures of the mixing angles from their tri-bimaximal

values in (5) can be [36]. Allowing for up to 20% devia-

tions in the matrix elements in the normal hierarchy case

results in non-zero values for sin2 θ13 up to 0.001, for exam-

ple. We argued that larger deviations in connection with a

normal mass hierarchy would signal that the apparent nearly

tri-bimaximal mixing should be considered accidental in na-

ture, rather than the result of a softly-broken symmetry.

In this paper we study other mixing scenarios which de-

viate from tri-bimaximal mixing by leaving only one of

the columns or one of the rows invariant. We shall refer

to such scenarios as “generalized trimaximal mixing.” The

term “trimaximal mixing” [37] was originally introduced to

describe a mixing matrix in which only the second column

of (4) remains invariant with the absolute value of every el-

ement of that column equal to 1/
√

3. To distinguish the dif-

ferent versions, we label the original version of trimaximal

mixing considered in [37–41] as TM2, i.e.,

TM2: |Uα2|2 =
1

3
, ∀α = e,μ, τ. (10)

We shall also study the effects of allowing the other

two columns to remain independently invariant under tri-

bimaximal mixing perturbations and label them TM1 and

TM3, respectively. It is also of interest to allow one of the

rows to remain invariant for which we adopt the labeling

TMi, with i = 1, 2, or 3. In total there are six possibilities.

By examining these variations we shall learn that the three

mixing angles and the CP-violating Dirac phase are not all

independent and that restricted ranges of the deviations are

imposed by the present mixing data. In fact, keeping a row

or a column of UPMNS fixed leads to a 2-parameter scenario,

i.e., two of the four mixing observables in UPMNS are deter-

mined. In four of the six trimaximal variants we find an in-

teresting, characteristic and testable correlation between the

mixing parameters. Future more precise data will allow one

to test some of the trimaximal variations considered here.

In particular, we stress that while TM2 allows naturally for

non-zero θ13, non-maximal θ23 and for sin2 θ12 �= 1
3

, it pre-

dicts that sin2 θ12 ≥ 1
3

, while the current best-fit points all lie
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at sin2 θ12 ≤ 1
3

. Some of the alternative trimaximal scenarios

can accommodate this, while still allowing for non-zero θ13.

We would like to stress that in the present paper not

merely deviations from tri-bimaximal mixing are discussed,

but also novel and testable mixing scenarios are pre-

sented. Though tri-bimaximal mixing dominates the cur-

rent phenomenological and theoretical discussion in neu-

trino physics, alternative proposals are surely of interest,

and here we study one possible avenue.

In Sect. 2 we summarize the results obtained previously

for broken tri-bimaximal mixing in [36]. In Sect. 3 we de-

rive the results for the originally proposed trimaximal mix-

ing and for the variant forms of trimaximal mixing in Sect. 4.

A comparison of the results and conclusions are presented in

Sect. 5.

2 Deviations from tri-bimaximal mixing

In [36] we raised the issue of deviations in the mixing ob-

servables from tri-bimaximal mixing when the mass matrix

is perturbed. Our strategy was to perturb every entry of the

mass matrix with a small complex parameter ǫi , i.e.,

mν =

⎛

⎜

⎜

⎝

A(1 + ǫ1) B(1 + ǫ2) B(1 + ǫ3)

· 1
2
(A + B + D)(1 + ǫ4)

1
2
(A + B − D)(1 + ǫ5)

· · 1
2
(A + B + D)(1 + ǫ6)

⎞

⎟

⎟

⎠

,

(11)

where the complex perturbation parameters were taken to

be |ǫi | ≤ 0.2 for i = 1 − 6 with their phases φi allowed to

lie between zero and 2π . The results obtained for the oscil-

lation parameters depend on the neutrino mass values and

ordering. In case of a normal hierarchy (m3 ≫ m2 > m1),

the maximal expected values are

NH: |Ue3| �
2

3

√

�m2
⊙

�m2
A

|ǫ| ≃ 0.027,

(12)
∣

∣

∣

∣

1

2
− sin2 θ23

∣

∣

∣

∣

�
1

2
|ǫ| ≃ 0.1,

where |ǫ| denotes the absolute value of one of the six inde-

pendent breaking parameters in (11). Figure 1 shows for a

maximal 20% deviation the parameter |Ue3|2 as a function

of the smallest neutrino mass m1. Note that the maximal

value of |Ue3| depends linearly on ǫ. Hence, if the devia-

tion is allowed to range up to 50% for the normal hierarchy

case, one finds that |Ue3|2 can reach a maximum value of

roughly 0.005 for m1 � 4 meV. Even for a normal hierarchy

it turns out that sin2 θ12 can take values anywhere in its al-

lowed range. The latter is also true in case of an inverted hi-

erarchy (m2 ≃ m1 ≫ m3), for which one furthermore finds

Fig. 1 Scatter plot of the predictions for |Ue3|2 versus the smallest

neutrino mass for softly-broken tri-bimaximal mixing. Shown are the

normal mass ordering (upper plot) and the inverted one (lower plot)

that the other mixing observables are bounded from above

by

IH: |Ue3| �
1

3
|ǫ|

√

√

√

√

8

9
+

16

3

m3
√

�m2
A

≃ 0.12,

(13)
∣

∣

∣

∣

1

2
− sin2 θ23

∣

∣

∣

∣

�
8

9
|ǫ| ≃ 0.18.

Almost all of the 3σ range can be covered. The interesting

accessible range for |Ue3|2 as a function of the smallest neu-

trino mass m3 is also plotted in Fig. 1. If neutrinos are quasi-

degenerate, then the fully allowed parameter space can be

covered.

In Ref. [36] we also presented the results for some pre-

dictive SO(10) symmetric Grand Unified models exhibit-

ing a normal mass hierarchy. There we found that |Ue3|2 �

2 × 10−3, while | 1
2

− sin2 θ23| � 0.07 with sin2 θ12 typically

< 1
3

. Hence one can distinguish the results of these models

from softly-broken tri-bimaximal mixing once the value of

|Ue3|2 and the neutrino mass hierarchy is known.
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3 Trimaximal mixing deviations from TBM

We now turn to study the deviations from tri-bimaximal

mixing which can arise with the less restrictive symmetry

referred to as trimaximal mixing, defined by (10):

TM2:

⎛

⎜

⎝

|Ue2|2

|Uμ2|2

|Uτ2|2

⎞

⎟

⎠
=

⎛

⎜

⎝

1/3

1/3

1/3

⎞

⎟

⎠
. (14)

This is the original version of trimaximality, for which also

a model based on the �(27) flavor symmetry was proposed

[37, 41]. From the condition |Ue2|2 = 1
3

it follows that

sin2 θ12 =
1

3

1

1 − |Ue3|2
≥

1

3
. (15)

Note that TM2 predicts sin2 θ12 ≥ 1
3

, to be compared with

the current best-fit values and 1σ ranges of Ref. [21, 22],

sin2 θ12 = 0.312+0.019
−0.018, and Ref. [20]: sin2 θ12 = 0.304+0.022

−0.016.

Inserting the range |Ue3|2 = 0.016 ± 0.010 would give

sin2 θ12 = 0.339 ± 0.003.

The second prediction of trimaximal mixing can be ob-

tained from |Uμ2|2 = 1
3

and is

cos δ tan 2θ23

=
2 cos θ13 cot 2θ13
√

2 − 3 sin2 θ13

=
1 − 2|Ue3|2

|Ue3|
√

2 − 3|Ue3|2

≃
1

√
2

1

|Ue3|

(

1 −
5

4
|Ue3|2 + O

(

|Ue3|4
)

)

. (16)

We observe that the three mixing angles are not independent

but related as above. Because |Uτ2|2 is related by unitarity

with |Ue2|2 and |Uμ2|2, there is no third independent condi-

tion.

For δ �= π/2 (or δ �= 3π/2) and θ13 non-zero, θ23 is

non-maximal. On the other hand, for maximal CP violation

(δ = π/2 or 3π/2) it follows that sin2 θ23 = 1
2

, independent

of |Ue3|. We can use the expressions for sin2 θ12 and tan 2θ23

to evaluate the Jarlskog invariant for leptonic CP viola-

tion, which in general reads JCP = Im(U∗
e1U

∗
μ3Ue3Uμ1) =

1
8

sin 2θ13 cos θ13 sin 2θ23 sin 2θ12 sin δ. We find

JCP ≃
sin 2δ

6
√

2
√

cos2 δ
|Ue3|, (17)

where we have expanded the lengthy exact equation, which

is an odd function of θ13.

In Fig. 2 we show plots of sin2 θ12 and sin2 θ23 as func-

tions of |Ue3| and δ, respectively. As can be seen, solar

neutrino mixing is well within the allowed 2σ range, and

the possible deviation from maximal atmospheric neutrino

mixing is largest for CP conserving values of δ, grows

Fig. 2 Phenomenology of exact TM2 mixing. Shown are the solar

neutrino parameter sin2 θ12 against |Ue3|, the atmospheric neutrino pa-

rameter sin2 θ23 against δ for different values of |Ue3| and sin2 θ12

against sin2 θ23. Also given are the current best-fit value and the 1σ

as well as 3σ ranges from a global fit [21]

with |Ue3|, and can exceed the 3σ range. Also displayed

in Fig. 2 is a plot of sin2 θ12 vs. sin2 θ23, when |Ue3| is

allowed to vary. It is evident that the deviation from max-

imal atmospheric mixing can be larger than the deviation

from sin2 θ12 = 1
3

. Indeed, from θ23 = π/4 − ǫ, one obtains

the leading order expressions tan 2θ23 ≃ 1
2ǫ

and sin2 θ23 ≃
1
2
− ǫ. By taking only the first order term on the RHS of (16)
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one obtains the relation

(

1

2
− sin2 θ23

)2

≃
cos2 δ

2
|Ue3|2

≃
3 cos2 δ

2

(

sin2 θ12 −
1

3

)

. (18)

This expression shows that the deviation from maximal at-

mospheric neutrino mixing can be stronger than the devia-

tion from sin2 θ12 = 1
3

. In general, the deviation in |Ue3|2 ob-

tained here can be considerably larger than that entertained

in Sect. 2.

The trimaximal mixing matrix can be parametrized by

the application of a general 13-rotation from the right [40]

UTM2
= UTBMR13(θ;ψ), where

R13(θ;ψ) =

⎛

⎝

cos θ 0 sin θe−iψ

0 1 0

− sin θeiψ 0 cos θ

⎞

⎠ . (19)

It is easy to see that |Ue3|2 = 2
3

sin2 θ and sin2 θ12 = 1/(3 −
2 sin2 θ), which is equal to 1

3
/(1−|Ue3|2) as before. We find

furthermore that

sin2 θ23 =
1

2
+

1

2
√

3

sin 2θ cosψ

1 − |Ue3|2
and

(20)

JCP =
sin 2θ sinψ

6
√

3
,

where sin 2θ =
√

6|Ue3|
√

1 − 3
2
|Ue3|2. The CP phase δ in

this parameterization is related to the phase ψ .

By using the above form for UTM2
in (19), we can obtain

the corresponding neutrino mass matrix in the lepton flavor

basis from

(mν)TM2

= U∗
TM2

P ∗m
diag
ν P †U

†
TM2

=

⎛

⎜

⎜

⎝

A B + C B − C

· 1
2
(A + B + D − 2C) 1

2
(A + B − D)

· · 1
2
(A + B + D + 2C)

⎞

⎟

⎟

⎠

where we identify (with cθ = cos θ and sθ = sin θ )

A =
1

3

(

2m1c
2
θ + 2m3s

2
θ e2i(ψ−β) + m2e

−2iα
)

,

B =
1

3

(

m2e
−2iα − m1c

2
θ − m3s

2
θ e2i(ψ−β)

)

,

C =
1

√
3

(

m1e
−iψ − m3e

i(ψ−2β)
)

sθcθ ,

D = m3e
−2iβc2

θ + m1e
−2iψ s2

θ .

It is clear from this mass matrix that the additional C terms

break the original μ–τ symmetry present with tri-bimaximal

mixing in a well-defined way. Note that C vanishes for θ = 0

and that in this case (mν)TBM from (7) is recovered. Interest-

ingly, if we decompose the mass matrix for TM2 in terms of

the individual neutrino masses, as done for TBM in (9), we

find that m2 is multiplied with the same flavor-democratic

matrix as in (9). The other two masses are multiplied now

with more complicated matrices, having entries depending

on the angle θ .

Since we can now trade θ12 for θ13 with the use of

(15), it is possible to obtain a simple value for the effec-

tive mass 〈mee〉 governing neutrinoless double beta decay

(0νββ). With inverted hierarchy (m2 ≃ m1 ≫ m3) the gen-

eral result is 〈m〉 = c2
13

√

�m2
A

√

1 − sin2 2θ12 sin2 α. In case

of TM2 mixing we then find

〈m〉 ≃
√

�m2
A

[

√

1 −
8

9
sin2 α −

1 − 2
3

sin2 α
√

1 − 8
9

sin2 α

|Ue3|2
]

.

(21)

The 8
9

in the first term is of course the value of sin2 2θ12 in

case of tri-bimaximal mixing.

4 Variant trimaximal mixing scenarios

We have seen that the prediction of trimaximality implies

sin2 θ12 ≥ 1
3

, while the best-fit points are all below 1
3

. If this

trend continues, then one may introduce variants of trimax-

imal mixing, such as

TM1:

⎛

⎜

⎝

|Ue1|2

|Uμ1|2

|Uτ1|2

⎞

⎟

⎠
=

⎛

⎜

⎝

2/3

1/6

1/6

⎞

⎟

⎠
. (22)

Here we have fixed the first column of UPMNS to have the

same form as in the case of tri-bimaximal mixing. A conse-

quence of (22) is that sin2 θ12 ≤ 1
3

. Indeed, from |Ue1|2 = 2
3

one finds

sin2 θ12 =
1

3

1 − 3|Ue3|2

1 − |Ue3|2
≃

1

3

(

1 − 2|Ue3|2
)

. (23)

Using the range |Ue3|2 = 0.016 ± 0.010 gives sin2 θ12 =
0.322±0.007. Figure 3 shows sin2 θ12 as a function of |Ue3|.
In contrast to the original trimaximal mixing scheme, TM2,

the best-fit value of sin2 θ12 can be obtained (for |Ue3| ≃
0.179). Note that sin2 θ12 decreases with |Ue3|. As long as

|Ue3| � 0.06, sin2 θ12 is within its allowed 1σ range.
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Fig. 3 Phenomenology of exact TM1 mixing. Shown are the solar

neutrino parameter sin2 θ12 against |Ue3|, the atmospheric neutrino pa-

rameter sin2 θ23 against δ for different values of |Ue3| and sin2 θ12

against sin2 θ23. Also given are the current best-fit value and the 1σ

as well as 3σ ranges from a global fit [21]

The second independent condition in (22) involving

|Uμ1|2 = 1/6 gives

cos δ tan 2θ23 = −
1 − 5|Ue3|2

2
√

2|Ue3|
√

1 − 3|Ue3|2

≃
−1

2
√

2|Ue3|

(

1 −
7

2
|Ue3|2

)

. (24)

Here the results are qualitatively similar to the ones for tri-

maximal mixing treated in Sect. 3. In Fig. 3 we also show

sin2 θ23 as a function of δ. As for TM2 mixing, CP conserv-

ing values of δ maximize the deviations, but here the 3σ

range can easily be overshot. Finally, in Fig. 3, sin2 θ23 is

plotted against sin2 θ12. Again, the possible departure from

sin2 θ23 = 1
2

can be larger than the one from sin2 θ12 = 1
3

.

A mixing matrix with the TM1 property can be obtained

by multiplying UTBM with a 23-rotation of angle θ from the

right, UTM1
= UTBMR23(θ;ψ). The observables are in this

case

|Ue3|2 =
1

3
sin2 θ,

sin2 θ23 =
1

2
−

√

3
2

sin 2θ cosψ

3 − sin2 θ
,

sin2 θ12 = 1 −
2

3 − sin2 θ
,

JCP =
1

6
√

6
sin 2θ sinψ,

(25)

where the CP phase δ is again related to ψ . For the mass

matrix we find

(mν)TM1
= U∗

TM1
P ∗m

diag
ν P †U

†
TM1

=

⎛

⎜

⎜

⎝

A B + C B − C

· 1
2
(A + B + D + 4C) 1

2
(A + B − D)

· · 1
2
(A + B + D − 4C)

⎞

⎟

⎟

⎠

,

where we identify

A =
1

3

(

2m1 + m2c
2
θe

−2iα + m3s
2
θ e2i(ψ−β)

)

,

B =
1

3

(

−m1 + m2c
2
θe

−2iα + m3s
2
θ e2i(ψ−β)

)

,

C =
1

√
6

(

m2e
−i(ψ+2α) − m3e

i(ψ−2β)
)

sθcθ ,

D = m2e
−2i(ψ+α)s2

θ + m3c
2
θe

−2iβ .

Again we see that the original μ–τ symmetry is broken by

the extra terms involving C. We can decompose the mass

matrix for TM1 in terms of the individual neutrino masses

and find that m1 is multiplied with the same matrix as in (9).

If we would insist that the third column of UTBM remain

invariant instead, i.e., |Ue3|2 = 0, |Uμ3|2 = |Uτ3|2 = 1
2

, then

θ13 = δ = 0, θ23 = π/4, while θ12 is a free parameter. This

case (TM3 in our notation) is nothing other than the well-

known μ–τ symmetry.

It is also of interest to consider the case where one of the

rows of the tri-bimaximal mixing matrix remains invariant.

Again such a result can be obtained by multiplying with a

suitable two dimensional rotation matrix, but now from the

left. In fact, this class of deviations from tri-bimaximal mix-

ing corresponds to the charged lepton flavor matrix differing

from its diagonal mass matrix, thus introducing a U
†
ℓ factor



Eur. Phys. J. C (2009) 62: 599–608 605

in the PMNS mixing matrix, i.e., UPMNS = U
†
ℓ UTBM [42–

46].

Let us start with the case of the first row in UTBM remain-

ing invariant. We denote this with a superscript as

TM1:
(

|Ue1|2, |Ue2|2, |Ue3|2
)

=
(

2

3
,

1

3
,0

)

. (26)

As a result, θ23 is a free parameter, while sin2 θ12 = 1
3

, as

well as θ13 = δ = 0. With a rotation of UTBM by the matrix

R23(θ;ψ) from the left, the light Majorana neutrino mass

matrix becomes

(mν)TM1 = R∗
23(mν)TBMR

†
23. (27)

If we consider the second or third row we can correlate all

four mixing parameters. Starting with the second row, i.e.,

TM2:
(

|Uμ1|2, |Uμ2|2, |Uμ3|2
)

=
(

1

6
,

1

3
,

1

2

)

, (28)

one immediately finds from |Uμ3|2 = 1
2

:

sin2 θ23 =
1

2(1 − |Ue3|2)
≃

1

2

(

1 + |Ue3|2
)

≥
1

2
, (29)

i.e., atmospheric neutrino mixing on the “dark side,” with a

maximal value of sin2 θ23 ≃ 0.524 for |Ue3|2 = 0.046. In-

serting (29) in |Uμ2|2 = 1
3

gives a complicated and lengthy

expression including cos δ, sin2 θ12 and |Ue3|, which can be

approximated as

sin2 θ12 ≃
1

3
−

2
√

2

3
|Ue3| cos δ +

1

3
|Ue3|2 cos 2δ. (30)

Figure 4 shows the result for the TM2 scenario. The parame-

ter dependence is similar to the one for the TM1 and TM2

scenarios, the main difference being the exchanged roles of

θ12 and θ23.

On the other hand with the third row remaining invariant

under the transformation

TM3:
(

|Uτ1|2, |Uτ2|2, |Uτ3|2
)

=
(

1

6
,

1

3
,

1

2

)

, (31)

the same approximate formula with a relative sign for the

term of order |Ue3| is found. Now, however, one finds at-

mospheric neutrino mixing on the “bright side”:

sin2 θ23 =
1 − 2|Ue3|2

2(1 − |Ue3|2)
≃

1

2

(

1 − |Ue3|2
)

≤
1

2
. (32)

The maximal deviation occurs for the largest possible

|Ue3|2 = 0.046, in which case sin2 θ23 ≃ 0.476. In Fig. 5

the resulting correlations for the TM3 scenario are given.

As in the case of TM1, the UTM2 mixing matrix can be

obtained by a rotation of UTBM from the left by R13. For

Fig. 4 Phenomenology of exact TM2 mixing. Shown are the at-

mospheric neutrino parameter sin2 θ23 against |Ue3|, the solar neutrino

parameter sin2 θ12 against δ for different values of |Ue3| and sin2 θ12

against sin2 θ23. Also given are the current best-fit value and the 1σ as

well as 3σ ranges from global fit [21]

TM3, the rotation matrix is R12. For all three cases with the

first, second, or third row of UTBM remaining invariant, so-

lar neutrino mixing can occur in the complete 3σ range. The

deviations from tri-bimaximal mixing can be considerably

larger for θ13 in the normal hierarchical case than were ob-

served in Sect. 2 and Ref. [36].

Finally, it is amusing to compare the trimaximal mix-

ing schemes with the recently proposed tetramaximal one

[47]. Its name stems from the fact that it can be obtained

by four consecutive rotations each having a maximal an-
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Fig. 5 Phenomenology of exact TM3 mixing. Shown are the at-

mospheric neutrino parameter sin2 θ23 against |Ue3|, the solar neutrino

parameter sin2 θ12 against δ for different values of |Ue3| and sin2 θ12

against sin2 θ23. Also given are the current best-fit value and the 1σ as

well as 3σ ranges from a global fit [21]

gle of π/4, and with appropriately chosen phases: Utetra =
R23(π/4;π/2)R13(π/4;0)R12(π/4;0)R13(π/4;π). The

predictions are δ = π/2, sin2 θ23 = 1
2

, |Ue3|2 = 1
4
( 3

2
−√

2) ≃ 0.021 and sin2 θ12 = 1/( 5
2

+
√

2) ≃ 0.255. None of

the trimaximal variants discussed in this paper could be con-

fused with tetramaximal mixing.

5 Summary and conclusions

Although the present PMNS lepton mixing matrix deduced

from experiment is consistent with tri-bimaximal mixing, it

is of interest to study possible deviations which may arise

in the future. In a previous paper the authors considered lin-

ear complex perturbations of the neutrino matrix away from

the most general μ–τ symmetric texture which yields tri-

bimaximal mixing. Here we have considered variations of

trimaximal mixing which can arise, e.g., with a simple com-

plex rotation of the UTBM matrix from the right or the left.

The original trimaximal mixing matrix UTM2
preserves the

second column of UTBM for which each element has ab-

solute value of 1/
√

3. We have generalized this mixing sce-

nario here and refer to the other variations as TMk or TMk

according to which k = 1,2,3 column or row remains in-

variant, respectively. Independent of our comparisons with

tri-bimaximal mixing, the “trimaximal” mixing scenarios

considered here are alternative, novel and testable mixing

schemes.

We summarize our findings in Table 1 for the squares

of the sines of the three mixing angles. For broken TBM

where up to 20% deviations are allowed in every neutrino

mass matrix element, we had found that the allowed varia-

tions in sine squared of the mixing angles are uncorrelated

to a large extent. The perturbed solar and atmospheric neu-

trino mixing angles cover the entire mixing ranges presently

allowed, while |Ue3|2 = sin2 θ13 can range from zero up to

0.001 (0.014) for the case of normal (inverted) hierarchy.

These upper bounds depend sensitively on the lightest neu-

trino mass as shown in Fig. 1, especially for a normal order-

ing. The largest upper bounds presently allowed are reached

in the case of three-fold neutrino mass degeneracy.

For the six generalized trimaximal mixing cases consid-

ered, on the other hand, the mixing angles and Dirac CP

phase are characteristically correlated for four of the cases.

The exceptional cases arise for TM3 and TM1. For TM3

both |Ue3|2 and sin2 θ23 remain fixed at their TBM values,

while θ12 is a free variable and limited only by the present

experimental bounds. This case corresponds to the well-

known μ–τ symmetry. For TM1, |Ue3|2 and sin2 θ12 remain

fixed, while sin2 θ23 remains bounded only by experiment.

For TM1 and TM2 the solar mixing is tightly limited, with

the former ranging just below the TBM value and the latter

just above the TBM value of 1
3

. The atmospheric neutrino

mixing in these two cases can cover the full presently al-

lowed region with the former (latter) peaking at δ = 0(π)

and bottoming at δ = π(0). For TM2 and TM3 the oppo-

site situation holds, where the atmospheric neutrino mixing

range is tightly limited close to the TBM value in the bright

side or dark side, respectively, while the full range for solar

neutrino mixing can be realized.

When more refined ranges for the mixing angles are

known, one will be able to rule out or confirm the new
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Table 1 Summary of the

mixing angles obtained in the

exact and broken tri-bimaximal,

and generalized trimaximal

mixing schemes. We have for

the sake of illustration expanded

the exact correlations (see

Figs. 2–5). For the ranges given,

the present 3σ data bounds on

the three mixing angles have

been imposed

|Ue3|2 sin2 θ12 sin2 θ23

TBM 0 1
3

1
2

Broken TBM

NH �0.001 0.26 − 0.38 0.37 − 0.63

IH �0.014 0.26 − 0.38 0.35 − 0.64

TM1 ≤0.046 1
3
(1 − 2|Ue3|2) 1

2
−

√
2|Ue3|(1 − 1

2
|Ue3|2) cos δ

0.30 − 0.33 0.34 − 0.64

TM2 ≤0.046 1
3
(1 + |Ue3|2) 1

2
+ 1√

2
|Ue3|(1 + 1

4
|Ue3|2) cos δ

0.33 − 0.35 0.34 − 0.64

TM3 0 0.26 − 0.38 1
2

TM1 0 1
3

0.34 − 0.64

TM2 ≤0.046 1
3

− 2
√

2
3

|Ue3| cos δ + 1
3
|Ue3|2 cos 2δ 1

2
(1 + |Ue3|2)

0.26 − 0.38 0.50 − 0.52

TM3 ≤0.046 1
3

+ 2
√

2
3

|Ue3| cos δ + 1
3
|Ue3|2 cos 2δ 1

2
(1 − |U2

e3)

0.26 − 0.38 0.49 − 0.50

mixing scenarios discussed here and narrow down the ac-

ceptable deviations from tri-bimaximal mixing we have dis-

cussed in this paper.
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