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Abstract A Lagrangian stochastic (LS) micromixing model is used for estimating concen-

tration fluctuations in plumes of a passive, non-reactive tracer dispersing from elevated and

ground-level compact sources into a neutral wall shear-layer flow. SPMMM (for sequential

particle micromixing model) implements the familiar IECM (interaction by exchange with the

conditional mean) micromixing scheme. The parametrization of the scalar micromixing time

scale is identical to that proposed in a previously reported LS–IECM model (Cassiani et al.,

Atmos Environ 39:1457–1469, 2005a). However, while SPMMM is mathematically equiv-

alent to the previously reported model, it differs in its numerical implementation: SPMMM

releases N independent particles sequentially, whereas the previously reported model releases

N independent particles simultaneously. In both implementations, the trajectories of the N

particles are governed by single-point velocity statistics. The sequential particle implementa-

tion is computationally efficient, but cannot be applied to the case of reacting species. Results

from both implementations are compared to experimental wind-tunnel dispersion data and

to each other.

Keywords Concentration fluctuations · Micromixing modelling · Scalar dissipation

1 Introduction

We build on earlier efforts by others to model the dispersion of a passive scalar using the

‘interaction by exchange with the conditional mean’ (IECM) micromixing model (Fox 1996;

Pope 1998) coupled to a single-particle Lagrangian stochastic (LS; see Wilson and Sawford

1996 for a review) trajectory model. Each particle has a position, a velocity, and a concentra-

tion variable assigned to it. The LS trajectory model governs the evolution of the position and
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the velocity, while the IECM micromixing model governs the evolution of the concentration.

Combined, the LS and IECM models allow for the prediction of the higher-order moments

of the scalar concentration field.

Heuristically, conditional scalar mixing can be thought of as occurring between all fluid

elements that occupy the same eddy. Given their similar velocities and their proximity to one

another, these fluid elements are more likely to remain together for times comparable to the

Lagrangian integral time and, therefore, are more likely to mix (Fox 1996; Pope 1998). It is

important for a mixing model to properly represent the bulk motions (such as meandering)

and the in-plume, variance-dissipating motions (such as entrainment and viscous dissipa-

tion). By conditioning on velocity, the IECM model segregates out the relevant length and

velocity scales that contribute to the scalar dissipation (Sawford 2004a). Bulk motions of the

plume are captured by the LS model.

Sawford (2004b) showed that the IECM model can be related to a meandering plume

model (Gifford 1959) and applied the technique successfully to simulate concentration

statistics due to a continuous line source in grid turbulence. Recent applications of IECM

models to atmospheric flows include simulations of dispersion of passive (i.e. non-buoyant),

non-reactive (i.e. no chemistry) scalars within the neutral boundary layer (Cassiani et al.

2005a), within the convective boundary layer (Cassiani et al. 2005b; Luhar and Sawford

2005a,b) and within a canopy layer (Cassiani et al. 2005c, 2007).

There are two approaches to LS–IECM modelling to be considered in this article, both

of which involve the release of N particles to compute the required conditional mean con-

centrations, but differ in how the particle trajectories are treated. One approach computes

the trajectories of the N particles simultaneously (meaning that the particles move together,

albeit on independent trajectories), calculating the conditional mean concentrations at each

timestep (Cassiani et al. 2005a for example). The other approach computes the trajectories of

the N particles sequentially and pre-calculates the conditional mean concentrations (Luhar

and Sawford 2005a for example). In both approaches, the trajectories of the particles are cal-

culated using single-point velocity statistics. The model presented herein utilizes the latter

approach. Regardless of the technique, the IECM model must not alter first-order statistics

such as the mean concentration. In other words, the mean concentration field produced by

the LS–IECM model must be consistent with the mean concentration field produced by the

underlying LS model.

In theory, the IECM model can predict all moments of the scalar concentration field. In

practice however, this is limited by the availability of the computational resources. The use

of sequential particle trajectories results in computational simplicity, but comes at the cost of

prohibiting the calculation of the concentration field of reactive species, which could be com-

puted if simultaneous particle trajectories were used. Since we only consider non-reactive

species in this article, this is not a cause for concern.

While the use of simultaneous trajectories allows for the incorporation of chemistry, the

computer code of such a model is much more difficult to parallelize since the particles are

interactive in that at each timestep the conditional mean concentration must be calculated

based on the particles that occupy a particular region of space. If the particles within a region

are being processed by different computer processors, then there will be a large computa-

tional communication overhead since at each timestep, the processors will have to pause,

share particle data, then continue. That said, modern parallel algorithms (e.g. Rembold et al.

2008) frequently utilize domain decomposition which keeps the computer processor com-

munication to a minimum, and can result in approximately 80% parallel efficiency.

However, the sequential particle trajectory framework allows for trivial parallelization and

an almost linear increase in performance—the time required to run the sequential particle
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trajectory LS–IECM on Np computer processors is a fraction (∼1/Np) of the time required

to run it on one computer processor. The only time the processors must communicate is

when sharing the plume extent data at the beginning of the simulation. Decreased simulation

times would be invaluable in situations where simulation results are needed as soon as pos-

sible, such as in the case of an emergency where evacuations may be required: an accidental

or intentional release of chemical, biological, nuclear or radiological agents into a densely

populated area, for example.

2 Model Equations

Under the assumption that the velocity and position of a fluid element are jointly a contin-

uous Markov process, and assuming validity of the Kolmogorov similarity relationship for

the Lagrangian second-order structure function, it follows that the motion of N independent

tracer particles is governed by the following stochastic equations:

dU ′
i = ai (X,U ′t)dt + bi j (X,U ′, t)dξ j (t), (1)

dX i =
(

〈ui 〉 + U ′
i

)

dt, (2)

where X i is the particle position, U ′
i is the Lagrangian velocity fluctuation relative to the

Eulerian mean (viz., U ′
i = ui − 〈ui 〉), dt is a small timestep and dξ j (t) represents an incre-

mental Wiener process with zero mean and variance dt . On the right-hand side of Eq. 1, we

have the deterministic term ai dt , and the stochastic diffusion term bi j dξ j .

Before determining the deterministic coefficient in Eq. 1, the form of the probability den-

sity function (PDF) of the Eulerian velocity fluctuations must be specified. For many cases

of practical importance and interest, a stationary Gaussian form is sufficient:

ga(x,u′) =
[det(R−1)]1/2

(2π)3/2
exp

(

−
1

2
u′

i R−1
i j u′

j

)

, (3)

where Ri j = 〈u′
i u

′
j 〉 is the Reynolds stress tensor, and R−1

i j is its inverse. Using the well-mixed

condition (Thomson 1987), the ‘simplest’ (but non-unique) three-dimensional solution for

ai is obtained:

ai = T
(0)

i + T
(1)

i j U ′
j + T

(2)
i jk U ′

j U
′
k, (4)

with

T
(0)

i ≡
1

2

∂ Riℓ

∂xℓ

, (5)

T
(1)

i j ≡ −
1

2
(C0ε)R−1

i j +
1

2
R−1

jℓ

∂ Riℓ

∂xk

〈uk〉,

= −
1

2
(C0ε)R−1

i j + T
(2)

i jk 〈uk〉, (6)

T
(2)

i jk ≡
1

2
R−1

jℓ

∂ Riℓ

∂xk

, (7)
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where C0 is the universal1 Kolmogorov constant, ε is the turbulent kinetic energy (TKE)

dissipation rate, and 〈uk〉 is the mean Eulerian velocity. Consistency of the LS model and

Kolmogorov’s theory of local isotropy (Monin and Yaglom 1975) is assured by the following

specification for the coefficient of the stochastic term in Eq. 1,

bi j = δi j (C0ε)
1/2. (8)

Together, Eqs. 1 and 2 can only provide information about first-order statistics such as

the mean concentration. A micromixing model may be used to calculate the higher-order

moments of the concentration field, in which case the compound Markovian state variable is

enlarged to (U ′
i , X i , φ), where φ represents the scalar concentration.

The rate of change in concentration as calculated by the IECM micromixing model is

dφ

dt
= −

1

tm
(φ − 〈φ|u〉), (9)

where tm is the scalar micromixing time scale, and 〈φ|u〉 is the mean scalar concentration

conditioned on the local velocity (also called the conditional mean concentration).

The parametrization of the micromixing time scale used here was originally proposed by

Cassiani et al. (2005a; hereafter referred to as CASS). For completeness, we summarize their

parametrization for non-homogeneous, non-isotropic turbulence (local equilibrium and local

isotropy are assumed). For short and medium times we assume that

tm = µ

(

σ 2
r

σ 2
U r

)1/2

. (10)

The micromixing constant, µ, is empirically determined and depends upon the type of tur-

bulence, the source configuration, and the stage of development of the plume. It is treated as

a ‘tuning’ parameter. The instantaneous plume width is denoted by σr . The variance of the

Lagrangian relative velocity fluctuations σ 2
U r

is in general very difficult to calculate. How-

ever, it represents the fraction of the energy responsible for expansion of the plume about

its instantaneous centreline. By constructing a ratio of the instantaneous plume width to the

length scale of the largest eddies L , Franzese (2003) and Cassiani et al. (2005a) modelled

σ 2
U r

as

σ 2
U r

= σ 2
(σr

L

)2/3
, (11)

with

σ 2 =
σ 2

u + σ 2
v + σ 2

w

3
=

2k

3
, (12)

where the streamwise, spanwise and vertical velocity variances are represented by σ 2
u , σ 2

v and

σ 2
w respectively, and k is the TKE. The length scale of the most energetic eddies is calculated

as

L =
(3σ 2/2)3/2

ε
, (13)

1 While considered as being a universal constant, its value has yet to be determined with great certainty and

values from 2 to 7 are considered acceptable, depending on the particulars of the Lagrangian model (e.g.

first-order or second-order), the prevailing context (e.g. degree of complexity of the turbulent flow), and the

focus (e.g. mean concentration, or higher-order statistics).
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and wherever σr > L , the constraint σ 2
U r

= σ 2 is imposed. The instantaneous plume spread

is modelled as

σ 2
r =

d2
r

1 + (d2
r − σ 2

0 )/(σ 2
0 + 2σ 2TLt)

, (14)

where TL ≡ 2σ 2/(C0ǫ) is the Lagrangian time scale and dr is the root-mean-square sepa-

ration between particle pairs in the instantaneous plume. This separation is calculated using

Richardson’s law as

d2
r = Crǫ(t + t0)

3, (15)

where Cr is the Richardson constant. This equation is discretized by invoking linearization,

viz.

d2
r (t + �t) = d2

r (t) + 3Crε(t + t0)
2�t, (16)

and enforcing the constraint σ 2
r (t + �t) ≥ σ 2

r (t). The constant t0 = ts/C
1/3
r (where ts =

(σ 2
0 /ε)1/3 is the characteristic time scale of the source and σ0 is the initial source distribution)

ensures that tm → ts as t → 0.

2.1 Description and Implementation of the Model

The micromixing model used in this work is called SPMMM, which is an acronym for

Sequential Particle MicroMixing Model. In contrast to the simultaneous release of N parti-

cles to determine the concentration statistics (as used by CASS), SPMMM releases a single

particle at a time. The particle samples a pre-calculated conditional mean concentration field

that is provided by a program called MEANS.

The velocity statistics and TKE dissipation rate used for driving MEANS and SPMMM

are supplied in discretized form. These velocity statistics can be obtained from discretizations

of analytical equations, from interpolations of experimentally measured flow fields, or pro-

vided by another model. Perfectly reflective boundary conditions were used on the upstream

face and at the top and bottom faces of the simulation domain. Periodic boundary conditions

were used on the lateral faces. However, for the compact source simulations described below,

care was taken to ensure that the plume did not impinge upon the lateral or top faces of the

simulation domain.

2.2 The MEANS Pre-Calculation Program

MEANS is a numerical implementation of Eqs. 1 and 2, and its purpose is to pre-calculate the

conditional mean concentration field 〈φ|u〉 needed by SPMMM. The first step in MEANS

is to determine the extent of the plume in both the spatial (x, y, z) and velocity (u, v, w)

domains. To maximize the spatial resolution of the model, the calculation of the conditional

mean concentrations is carried out on a dynamic grid that encompasses the plume, as was

done in CASS. The spatial extent of the plume is determined by recording the trajectories of

a small sub-ensemble of particles, released from the source, and allowed to propagate out of

the simulation domain through x > xmax (the axes are aligned such that x is the direction

of mean motion). The source was chosen to be a two-dimensional isotropic Gaussian distri-

bution in the yz-plane centred on the location (xs, ys, zs) = (0, ys, zs) and with a variance

of σ 2
0 . To account for uncertainties in the exact behaviour of the flow around the source, the

initial source distribution was modelled as σ0 = µsds, where the source constant µs is a
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tunable parameter and ds is the diameter of the source. This approach was also used in the

CASS model.

The extent of the velocity domain is determined from the driving velocity statistics. For

each position in the spatial domain, the mean velocities and the velocity variances are known.

From these, the global velocity extrema can be determined. With the extents of the spatial

and velocity domains known, the spatial domain is discretized into Nx streamwise bins, Ny

spanwise velocity bins and Nz vertical bins. Likewise, the velocity domain is discretized

into Nu streamwise velocity bins, Nv spanwise velocity bins and Nw vertical velocity bins.

Upper-case subscripts are used to denote this discretization: (x, y, z) ⇒ (x I , yJ , zK ) and

(u, v, w) ⇒ (uL , vM , wN ). Since the motion of the particle is described by six dimensions,

the position and velocity are indexed as (x I , yJ , zK , uL , vM , wN ). Equations 1 and 2 are dis-

cretized with a forward difference scheme. The coefficients of Eq. 1 are calculated using the

discretized velocity statistics discussed above. Consequently, ai is constant while the particle

occupies a particular position–velocity bin, and bi j is constant while the particle occupies

the particular position bin.

To determine the conditional mean concentrations, Nφ particles are released from the

source and tracked downstream until they leave the spatial domain. The timestep was chosen

to be a fraction of the Lagrangian integral time scale

�t = µt min[TLu , TLv , TLw ], (17)

where µt ≪ 1 is the timestep constant and the Lagrangian integral time scales associated

with the streamwise, spanwise and vertical velocities are calculated as

TLu =
2σ 2

u

C0ε
, (18a)

TLv =
2σ 2

v

C0ε
, (18b)

TLw =
2σ 2

w

C0ε
. (18c)

By accurately accounting for how long each particle spends in a position–velocity bin,

MEANS accumulates conditional residence times tv
r = tv

r (x I , yJ , zK , uL , vM , wN ) for each

bin in the simulation domain. At the beginning of each timestep, the position and velocity

bins of the particle are known. Based on the current velocity of the particle, MEANS cal-

culates how far the particle will step in each spatial direction and checks if the particle will

remain in the same position bin, or move into a new one. If the particle is to remain within

the same position bin, the full timestep is accumulated in the current position–velocity bin

of the particle. If the particle is to change position bins, then the timestep is decomposed

into the required number of sub-timesteps (two if the particle is to visit two position bins,

three if the particle is to visit three position bins, and so on), and the position of the particle

is updated in the same number of substeps, propagating to the nearest position bin boundary

at each sub-timestep. At the position bin boundary, the sub-timestep is accumulated into the

appropriate position–velocity bin, then the position bin is updated, and then the remainder

of the timestep is carried out. For the majority of timesteps, the velocity bin of the particle is

constant, since the velocity of the particle is updated at the end of the timestep. The exception

is when a particle is reflected off a boundary, in which case the velocity (and velocity bin) of

the particle changes during the timestep. MEANS treats reflection boundaries as bin bound-

aries, and utilizes the sub-timestep process to properly accumulate the conditional residence

times in this situation.
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From these conditional residence times tv
r , the conditional mean concentration field (for a

given source configuration and flow) can be determined. The conditional mean concentration

in bin (x I , yJ , zK , uL , vM , wN ) is computed as

〈φ|u〉 = 〈φ|u〉(x I , yJ , zK , uL , vM , wN ) =
Q tv

r

V N v
φ

, (19)

where N v
φ = N v

φ(x I , yJ , zK , uL , vM , wN ) is the number of particles during the simula-

tion that visit position–velocity bin (x I , yJ , zK , uL , vM , wN ), Q is the source strength and

V = V(x I , yJ , zK ) is the volume of a position bin. Owing to computer memory limitations,

N v
φ is not computed from the stochastic paths. Instead, it is estimated deterministically from

the PDF of the driving velocity statistics fu as

N v
φ = Nφ fu�u�v�w, (20)

giving

〈φ|u〉 =
Q tv

r

V Nφ fu�u�v�w
. (21)

The result of the MEANS pre-calculation program is a file containing the conditional mean

concentrations to be used by SPMMM.

2.3 The SPMMM Micromixing Model

SPMMM is a numerical implementation of Eqs. 1, 2 and 9. Once the conditional mean

concentration field has been computed by MEANS, the next step is to use the SPMMM mi-

cromixing model to simulate mixing to provide information on the higher-order moments of

the concentration field. The first step is to compute the micromixing time scales on the spatial

grid. Again a small sub-ensemble of particles is released from the source region sequentially

and tracked downstream. As the particles pass through bins in the spatial domain, tm is com-

puted according to Eqs. 10–16. Since the particles will all follow different trajectories, the

computed value of tm may differ greatly from particle to particle in a given position bin. Once

all the particles in the sub-ensemble have exited the spatial domain through x > xmax, the

mean micromixing time scale in bin (x I , yJ , zK ) is calculated for use in the next stage of the

simulation. If the micromixing time scale is larger than the turbulence time scale τ = k/ε,

then tm is reset to τ , similar to that done in Cassiani et al. (2007). Furthermore, for regions

outside the plume, mixing still occurs and does so at a rate governed by the turbulence time

scale, hence for these regions tm = τ . For the remainder of the SPMMM simulation, the

timestep is modified to include the micromixing time scale

�t = µt min[TLu , TLv , TLw , tm]. (22)

These preparations accomplished, to simulate micromixing SPMMM releases N parti-

cles (which need not be equal to Nφ used for the MEANS pre-calculation simulations), one

at a time, uniformly on the upstream face of the spatial domain. If the particle originates

outside of the source region, then it is given an initial concentration of φ0 = 0, otherwise

it is given an initial concentration of φ0 = φsrc, where φsrc is the source concentration. The

SPMMM source region is the area on the upstream face of the simulation domain where

particles would have been initialized in the MEANS simulations. Virtually all of the particles

initialized within the MEANS source will be within five standard deviations of the centre of

the source (0, ys, zs). Therefore, a particle is considered to be within the SPMMM source
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region if r ≤ 5σ0. The distance from the particle position to the source centre in the yz-plane

is calculated as r2 = (y − ys)
2 + (z − zs)

2. The concentration profile for a Gaussian source

is

φsrc =
Q

2πσ 2
0 U

exp

(

−r2

2σ 2
0

)

. (23)

This equation results in φ0 ≈ 0 for particles beyond approximately three standard deviations

from the source centre (i.e. r � 3σ0).

As the particle travels downstream, its concentration is compared to the conditional mean

concentration of the position–velocity bin that it presently occupies. Under the assumption

that 〈φ|u〉 is approximately constant (it is in fact very slowly varying for sufficiently small

timestep �t), Eq. 9 can be solved to give

φ(t + �t) = φ(t) exp(−�t/tm) + 〈φ|u〉(1 − exp(−�t/tm)), (24)

which is used by SPMMM to update the concentration of the particle. Equation 24 always

results in the concentration of the particle mixing towards the conditional mean concentra-

tion. During downstream propagation, the particles pass through user-specified extraction

planes and their positions and concentrations are saved to file for future processing. Given

the stochastic nature of the models described above, the data contains statistical noise. A

Savitzky–Golay smoothing filter was used to remove this noise while maintaining the signal.

3 Results

3.1 Model Evaluation

We use three performance measures to evaluate SPMMM. In the following definitions, an

observed quantity (e.g. from a full-scale, wind-tunnel or water-channel experiment) is denoted

by Qo and a predicted quantity (e.g. a result from a model) is denoted by Qp. An overbar

indicates an arithmetic mean of all (or some subset of) the available observations or predic-

tions.

The fractional bias,

F B =
(Qo − Qp)

0.5(Qo + Qp)
, (25)

is a measure of the systematic bias of the model. A perfect model would have F B = 0. How-

ever, if the model both underpredicts and overpredicts the results, it is possible for F B = 0

due to the cancellation of errors. The normalized mean square error,

N M SE =
(Qo − Qp)2

Qo Qp

, (26)

is a measure of the mean relative scatter of the model results. A perfect model would have no

scatter and thus have N M SE = 0. The fraction of data within a factor of 2 of the observations,

F AC2 = fraction of data that satisfy 0.5 ≤
Qp

Qo
≤ 2.0, (27)

is a robust performance measure as it is not susceptible to outliers in the data. A perfect

model would have F AC2 = 1, that is 100% of all data would be within a factor of two of the
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observations. Chang and Hanna (2004) suggest that for an acceptable model the performance

measures would satisfy: −0.3 < F B < 0.3, N M SE < 4 and F AC2 > 0.5.

3.2 Experimental and Computational Set-Up

To evaluate SPMMM, we simulated the concentration fluctuations due to a continuous source

emitting into a neutral wall shear-layer flow, which is arguably the simplest regime of atmo-

spheric turbulence. In particular, in the constant stress layer well-known analytic profiles of

the key observables (mean wind speed, shear stress, TKE and its dissipation rate) satisfy

appropriately simplified governing equations.

The Fackrell and Robins (1982; hereafter referred to as FR82) experiments were designed

to investigate the effects of the source size on the concentration fluctuations. They were

carried out in the Marchwood Engineering Laboratories’ open-circuit wind tunnel, measur-

ing 24 m×9.1 m×2.7 m. A neutral wall shear-layer, corresponding to a natural atmospheric

boundary layer, was grown within the wind tunnel. The boundary-layer depth was δ = 1.2 m

and the mean streamwise velocity at the top of the boundary layer (the free-stream veloc-

ity) was 〈u〉δ = 4.0 m s−1. The friction velocity was reported as u∗ = 0.188 m s−1, and

the roughness length as z0 = 2.88 × 10−4 m. To ensure Reynolds number independence, a

roughness Reynolds number of Rer = u∗z0/ν ≥ 1, where ν ≈ 1.5 × 10−5 is the kinematic

viscosity of air, is required (Snyder and Castro 1997, 2002). The roughness Reynolds number

for the FR82 experiments was Rer ≈ 3.6.

A neutrally buoyant mixture of propane and helium was released isokinetically from

ground-level and elevated compact sources. The sources were horizontally oriented circular

pipes with various diameters. The ground-level sources (GLSs) had diameters of 3, 9 and

15 mm, while the elevated sources had diameters of: 3, 8.5, 9, 15, 25 and 35 mm. The height of

the elevated sources was zs = 0.19δ = 0.228 m. Propane concentration measurements were

extracted at several downstream locations with a modified flame-ionization detection sys-

tem described in Fackrell (1980). From these measurements, FR82 calculated experimental

concentration statistics.

The measured velocity statistics and the TKE dissipation rate for the FR82 flow are shown

as symbols in Fig. 1. The solid lines are the profiles used to drive MEANS and SPMMM. For

the mean streamwise velocity and the TKE dissipation rate, the solid lines represent standard

analytical formulations for neutral wall shear-layers:

〈u〉 =
u∗
kv

ln(z/z0), (28)

and

ε =
u3

∗
kvz

. (29)

For the velocity variances and covariance, the solid lines represent cubic spline interpolations

to the experimental measurements. For z/δ � 0.05 (i.e. below the height of the lowest data

measurement), the values of the stresses were held constant to represent the constant stress

layer. The flow was treated as horizontally homogeneous and stationary.

For the simulations described below, the spatial domain was discretized into 60 bins in the

x , y and z directions: Nx = 60, Ny = 60 and Nz = 60. The conditional mean concentrations

were calculated in a velocity domain that was discretized into 20 bins in the u, v and w

directions: Nu = 20, Nv = 20 and Nw = 20. The timestep constant was µt = 0.02. All

MEANS simulations utilized 2 ×107 particles while the number of particles in the SPMMM
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Fig. 1 Dimensionless velocity statistics and TKE dissipation rate for the FR82 neutral wall shear-layer flow.

The symbols are extracted from Fig.1 of Fackrell and Robins (1982). The lines are the fitted profiles used to

drive the MEANS and SPMMM models. In the case of the mean streamwise velocity and the TKE dissipation

rate, the solid lines represent Eqs. 28 and 29 respectively. For the stresses, the solid lines represent cubic spline

interpolations of the experimental data

simulations ranged from 5×106 to 5×107 depending on the source size, with larger sources

having fewer particles.

Altogether there are four parameters that need to be set in SPMMM: the Kolmogorov

constant C0, the initial source distribution σ0, the Richardson constant Cr and the micro-

mixing constant µ. The best fit of simulated vertical profiles of mean concentration to FR82

experimental data was realized with a Kolmogorov constant of C0 = 6.0, the value used for

all simulations herein. The optimal values of µ = 0.75 and Cr = 0.45 were determined by

comparing FR82 experimental data to a simulated streamwise transect of the concentration

fluctuation intensity (defined by FR82 as max(σφ)/ max(〈φ〉), where σφ = σφ(x, y, z) is

the standard deviation of the concentration) from a 9- mm elevated source. By this same

method, σ0 =
√

(2/3)ds was determined to provide the best agreement with experimental

data for the values of σ0 examined. Examples of the resulting profiles, and values of the

performance measures, can be found below. With the exception of σ0, the optimized values

of the SPMMM free parameters mentioned above differ from those of the CASS simulations,

which used C0 = 5.0, µ = 0.8(3/2)−1/2 ≈ 0.65 and Cr = 0.30. There are a few reasons

for these discrepancies: CASS optimized the micromixing constant by comparing with two-

particle LS data (Thomson 1990) for a different flow and source geometry; they predicted

the Richardson constant to agree with the value reported in Borgas and Sawford (1994); and

their numerical implementation differs (in the ways described earlier) from that of SPMMM.

3.3 Dispersion from Elevated Sources

With the free parameters optimized, simulations of dispersion from elevated sources with

diameters of 3, 9, 15, 25 and 35 mm, and from a 15-mm ground-level source were carried out.

The resulting streamwise transects of concentration fluctuation intensity from these simula-

tions are displayed in Fig. 2. The symbols are FR82 observations, the solid lines are SPMMM

simulation results, and the dashed lines are CASS simulation results. As it was shown in FR82
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Fig. 2 Streamwise transects of the concentration fluctuation intensity for elevated sources (ES) of various

sizes, and for a ground-level source (GLS). The symbols are from the FR82 wind-tunnel experiments. The

solid lines are SPMMM simulation results, and the dashed lines are CASS simulation results. Recall that the

9-mm elevated source data was used to optimize the values of µ, Cr and σ0 in SPMMM

Table 1 Performance measures corresponding to the streamwise transects of the concentration fluctuation

intensities from SPMMM simulations of dispersion from compact sources simulations shown in Fig. 2

Source FB NMSE FAC2

3-mm ES 0.046 0.058 1.00

9-mm ES −0.038 0.0056 1.00

15-mm ES 0.040 0.016 1.00

25-mm ES 0.15 0.033 1.00

35-mm ES 0.17 0.052 1.00

15 GLS −0.069 0.0093 1.00

that the relative fluctuation intensity for ground-level sources was not sensitive to the source

size, we only display the results for a 15-mm ground-level source. The simulation results

for the 3-mm and 9-mm ground-level sources agreed well with the observations of FR82.

Table 1 lists the performance measures for the six SPMMM simulations shown in Fig. 2. All

are within their acceptable ranges.

The profiles for the elevated sources all display the same trend, an initial rise followed

by a slow decay. Since the model was tuned to the 9-mm profile it is not surprising that

profile displays the best fit to the FR82 observations, showing good agreement with the

FR82 experimental data along the full fetch, and by the performance measures in Table 1.

When compared to the FR82 data, the initial rise of the concentration fluctuation inten-

sity is too low for the 3-mm elevated source but captured reasonably well for the 15-mm,

25-mm, and 35-mm sources. Farther downstream, it appears that the mixing is too vigorous

for 0.80 � x/δ � 2.0. In this range, the modelled fluctuations from the 15-mm, 25-mm, and

35-mm sources are approximately 10–15% too low. The SPMMM simulations for the elevated
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sources consistently produced concentration fluctuation intensities with 10–15% lower max-

imum intensities than the corresponding CASS results, although the general shapes of the

curves are the same.

For the 9-mm results, there is approximately a 9.1% difference between the maximum

fluctuation intensities (at x/δ ≈ 0.6) of the SPMMM and CASS simulations. An SPMMM

simulation with an 8.5-mm source (not shown) had approximately a 4.6% difference with

the CASS simulation. Therefore, approximately 50% of the difference between the SPMMM

and CASS predictions for the 9-mm source is due to the differing source sizes, the remainder

is likely due to differences in model parameters and the numerical implementation of the two

models.

The SPMMM model results reproduced the FR82 data with fair accuracy, and are very

similar to the results of the CASS model. It is interesting to compare the resulting profiles

from the 15-mm elevated source simulations to those from the 15- mm ground-level source

simulations. Both profiles start at approximately the same value but the profile for the elevated

source increased substantially before undergoing a slow decay whereas the profile for the

ground-level source exhibits a very small rise and then stays approximately constant. Physi-

cally this is caused by increased stretching, twisting and folding of the material lines due to

increased velocity shear near ground level. This figure shows that the parametrization for the

micromixing time scale captures reasonably well this effect.

In addition to the simulations discussed above, a simulation with an 8.5-mm elevated

source was performed to compare the vertical profiles of mean concentration and concen-

tration variance to the FR82 data. A comparison of the MEANS and SPMMM-simulated

vertical profiles of the mean concentration on the plume centreline at five downstream loca-

tions is shown in Fig. 3. A characteristic time scale τa/TL is provided for each position,

where τa = x/〈u(zs)〉 is the advection time scale. These results demonstrate the required

first-order consistency of SPMMM. First-order consistency in SPMMM is dependent upon

the complexity of the driving velocity statistics and the resolution of the discretized velocity

domain—more velocity bins are needed as the complexity of the PDF of the driving velocity

statistics increases. For the FR82 velocity field, Nu = Nv = Nw ≥ 15 was required to assure

first-order consistency. Very slight improvements were seen in the performance measures by

increasing the number of velocity bins in u, v and w space to 20, after which no improvements

were seen.

The vertical profiles of the normalized mean concentration on the plume centreline at five

downstream locations are shown in Fig. 4. The performance measures for the SPMMM sim-

ulations are: F B = −0.0045, N M SE = 0.015 and F AC2 = 0.92, all within the acceptable

limits. There is a general agreement amongst all three data sets shown in the figure. Small

differences between the SPMMM and CASS results are likely due to the different values of

C0 utilized, and perhaps small differences in the velocity statistics used to drive the models.

Figure 5 shows vertical profiles of the normalized concentration variance on the plume

centreline at the same locations as in Figs. 3 and 4. The shaded grey areas represent ±1

standard error. The performance measures for this simulation are: F B = 0.14, N M SE =
0.12, F AC2 = 0.74, poorer than the performance measures for the mean concentration, but

still within the acceptable ranges. In the first panel from the left (x/δ = 0.96) the agreement

between SPMMM and the FR82 measurements is generally quite good. Farther downstream

(last four panels), the modelled maximum variance is always at a greater height than the

FR82 measurements and the modelled variance close to the ground is underpredicted when

compared with the FR82 measurements. The general shapes of the modelled profiles are very

similar to the experimental profiles but they appear to be shifted upwards in height.
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Fig. 3 Vertical profiles of the mean concentration on the plume centreline for an 8.5-mm elevated source at

five downstream locations from MEANS (solid line) and SPMMM (dashed line) simulations. These results

demonstrate the first-order consistency of SPMMM

Fig. 4 Vertical profiles of the normalized mean concentration on the plume centreline for an 8.5- mm elevated

source at five downstream locations. The open circles are from the FR82 wind-tunnel experiments. The solid

lines are SPMMM simulation results and the dashed lines are the CASS simulation results

The CASS vertical profiles of concentration variance displayed a better agreement with the

FR82 measurements for z/δ � 0.2. One possible explanation for this lies in the nature of the

two models. The CASS model utilized simultaneous particle trajectories, and the conditional

mean concentration in a bin was computed ‘on the fly’ at each timestep by considering the

concentrations and velocities of the particles that occupied that bin at a particular timestep.

It is therefore conceivable that conditional mean concentration in the bin would vary slightly

from step to step. Mixing towards this varying conditional mean concentration may result

in increased concentration fluctuations. In contrast, the conditional mean concentrations in

SPMMM are pre-calculated and remain the same throughout the simulation. For each step
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Fig. 5 Vertical profiles of the normalized concentration variance on the plume centreline for an 8.5- mm

elevated source at five downstream locations. The open circles are from the FR82 wind-tunnel experiments.

The solid lines are simulation results from SPMMM and the dashed lines are the CASS simulation results.

The area shaded grey represents ±1 standard error

in a particular bin, a particle mixes with the unchanging conditional mean concentration of

that bin. If the concentration of the particle reaches the conditional mean concentration, then

no more mixing will occur. In practice, this will not happen due to the exponential nature

of the relaxation towards the conditional mean. However, the concentration of the particle

will closely approximate the conditional mean concentration. If many particles that travel

through this bin reach the conditional mean concentration, then concentration fluctuations

will decrease.

This hypothesis is supported by two pieces of evidence. First, the agreement between

SPMMM and the FR82 measurements in the left-most panel of Fig. 5 is quite good. This

panel corresponds to the earliest available travel time, and therefore the concentrations of

the particles have not yet had much time to mix towards the conditional mean concentration.

Second, increasing the mixing time scale (by increasing µ) resulted in a better fit to the

normalized data in the figure. A longer mixing time scale results in the concentrations of the

particles mixing more slowly to the conditional mean concentrations. This hypothesis may

also explain why Cassiani et al. (2005a) used smaller values of µ and Cr than that were used

with SPMMM.

Another possible source of the discrepancy (again related to the implementation of the

models) is that by calculating the conditional mean concentration at each timestep, or ‘on the

fly’, the CASS model contains more bias error than SPMMM, which has the pre-calculated

conditional mean concentration supplied to it. A bias towards overprediction would improve

the results of the SPMMM simulations, although it would be due to error and not model accu-

racy. Given that both the CASS model and SPMMM utilize the same micromixing model, it

is possible that the better results obtained by Cassiani et al. (2005a) for the vertical profiles

of normalized concentration variance are due to bias and may be fortuitous. However, dif-

ferences in numerical implementation, representation of the driving velocity statistics, and

model constants are likely responsible for the majority of the discrepancies.
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Table 2 Performance measures corresponding to the sensitivity of SPMMM to the number of streamwise

position bins

Statistic Nx FB NMSE FAC2

20 −0.0006 0.015 0.92

〈φ〉/ max 〈φ〉 60 −0.0045 0.015 0.92

100 −0.007 0.016 0.92

20 0.18 0.14 0.71

σ 2
φ
/ max σ 2

φ
60 0.14 0.12 0.74

100 0.120 0.12 0.74

Sensitivity tests to the number of streamwise position bins were performed for Nx = 20

and Nx = 100. All of the other parameters were kept the same. The results are summarized

in Table 2. From these data, it is shown that the ability of SPMMM to predict the normal-

ized mean concentration and the normalized concentration variance in the FR82 flow is not

strongly affected by the streamwise resolution of the spatial domain. The performance mea-

sures for the normalized mean concentration are very similar for the three simulations, and

there is only a slight improvement of the performance measures for the normalized concen-

tration variance with increasing streamwise spatial resolution. Qualitatively, the results from

the three simulations were indistinguishable.

3.4 Dispersion from a Ground-Level Source

We now consider dispersion from a 15- mm ground-level source. Figure 6 shows the vertical

profile of the normalized mean concentration on the plume centreline at three downstream

locations. The filled circles are FR82 data in the downstream region 1.67 ≤ x/δ ≤ 5.92. The

‘plus’ signs are from CASS simulation results, and the other symbols correspond to SPMMM

simulation results at the specified extraction locations. The vertical coordinate has been scaled

by the vertical plume halfwidth δz to display the self-preserving nature of the plume (i.e. the

scaled shape of the plume from any extraction location is invariant). Excellent agreement

between SPMMM and the FR82 experiments is realized in this figure. Performance measures

were not calculated for this simulation.

Shown in Fig. 7 are vertical profiles of the normalized concentration variance from the

SPMMM and CASS simulations for the same locations shown in Fig. 6, along with FR82

experimental data. The predicted variance profile for the ground-level source is in very good

conformance with the FR82 experimental data, much better than the predicted variance pro-

files from the elevated source. Performance measures were not calculated for this simulation.

Recall that the TKE production and dissipation rates increase towards the ground. This leads

to increased mixing and dissipation of the concentration fluctuations near the ground. Evi-

dently, the parametrization of the micromixing time scale used by SPMMM captures this

effect.

The results from the SPMMM simulations of dispersion from a ground-level source are

slightly more accurate than the CASS results, as seen in Figs. 6 and 7. There is a significant

positive bias (overestimation) in the CASS simulation results for both the mean concentration

and the concentration variance for z/δz � 1.8, which is absent in the SPMMM simulation

results, the latter of which agree very well with the FR82 experimental data. This discrepancy

in the CASS simulation results may be due to increased bias and statistical errors in the esti-

mation of the conditional mean concentration obtained from using an ‘on the fly’ approach
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Fig. 6 Vertical profiles of the normalized mean concentration on the plume centreline for a 15- mm ground-

level source. The filled circles are from the FR82 wind-tunnel experiments in the downstream region 1.67 ≤
x/δ ≤ 5.92. The plus signs are from CASS simulation results, and the other symbols are SPMMM simulation

results. The vertical coordinate has been scaled by the vertical plume halfwidth to display the self-preserving

nature of the plume

Fig. 7 Vertical profiles of the normalized concentration variance on the plume centreline for a 15- mm ground-

level source. The filled circles are from the FR82 wind-tunnel experiments in the downstream region 1.67 ≤
x/δ ≤ 5.92. The plus signs are CASS simulation results, and the other symbols are SPMMM simulation

results. The vertical coordinate has been scaled by the vertical plume halfwidth to display the self-preserving

nature of the plume

at each timestep. This seems to provide further supporting evidence that the better results

for concentration variance obtained for the elevated source in Fig. 4 for CASS compared

to SPMMM are probably rather fortuitous—they may be the result of increased bias and
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statistical errors in CASS simulations compensating for model inaccuracies. However, for

the ground-level source, this increased bias and statistical error worked against CASS simu-

lations, that are poorer (in the mid to upper plume fringes) than the SPMMM simulations that,

(1) predict the proper shape of the self-similar mean concentration and concentration variance

profiles, and (2) are completely consistent with the FR82 experimental measurements (both

magnitude and shape).

4 Conclusions

The ability of a sequential particle micromixing model called SPMMM to simulate dispersion

from elevated and ground-level sources in the FR82 wall shear-layer flow was investigated.

The four free parameters of the model were optimized to: C0 = 6.0, µ = 0.75, Cr = 0.45,

and σ0 =
√

(2/3)ds. These optimized values resulted in an acceptable agreement with the

measured streamwise transects of the concentration fluctuation intensity for elevated sources

of various sizes, as well as good agreement for a ground-level source. The modelled profiles

for the elevated sources were 10–15% lower than the measured values in the downstream

range 0.80 � x/δ � 2.0. The initial rise of the concentration fluctuation intensity from the

SPMMM simulation results was also about 10–15% lower than the CASS simulation results.

After the initial rise, the results from the two models showed a closer agreement.

The SPMMM-simulated vertical profiles of normalized mean concentration from an

8.5- mm elevated source were in good agreement with the FR82 measurements, and with

the CASS simulation results. The SPMMM-simulated vertical profiles of normalized con-

centration variance were in reasonable agreement with the FR82 measurements, although

not as accurate as the CASS simulation results. The SPMMM simulations produced variance

levels near ground level that were too low compared to the measurements. For dispersion

from a 15- mm ground-level source the SPMMM simulated profiles of normalized mean

concentration and normalized concentration variance were in excellent agreement with the

FR82 experimental results, and slightly more accurate than the CASS results, most notably

for z/δz � 1.8.

The majority of the discrepancies between the SPMMM and CASS simulation results are

likely due to the representation of the driving velocity statistics, differing model constants,

and to the numerical implementations of the models—the CASS model utilized simulta-

neous particle trajectories and the conditional mean concentration field was computed at

each timestep, whereas SPMMM utilized sequential particle trajectories and a pre-calculated

conditional mean concentration field. It is conceivable that calculating the conditional mean

concentration field at each timestep may result in slight differences in the field and introduce

more concentration variance into the model. As shown in Figs. 2, 5 and 7, the CASS model

results do display greater concentration variance relative to the SPMMM results.

Overall the sequential particle, pre-calculation approach of the SPMMM model shows

promise. All simulations presented in this article produced acceptable results, and in the case

of dispersion from ground-level source, good results were obtained. The velocity shear, and

TKE production and dissipation rates are maximized near ground level, where SPMMM was

shown to produce good results for ground-level sources. This suggests that SPMMM may

also be effective at simulating dispersion from ground-level (or near to it) sources in other

flows with large shear and TKE production and dissipation rates, such as canopy flow.
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