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Abstract

Various simple mathematical models have been used to investigate dengue transmis-
sion. Some of these models explicitly model the mosquito population, while others
model the mosquitoes implicitly in the transmission term. We study the impact
of modeling assumptions on the dynamics of dengue in Thailand by fitting dengue
hemorrhagic fever (DHF) data to simple vector–host and SIR models using Bayesian
Markov chain Monte Carlo estimation. The parameter estimates obtained for both
models were consistent with previous studies. Most importantly, model selection
found that the SIR model was substantially better than the vector–host model for
the DHF data from Thailand. Therefore, explicitly incorporating the mosquito pop-
ulation may not be necessary in modeling dengue transmission for some populations.
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1. Introduction

Dengue infection is one of the leading causes of illness in the tropics and subtrop-
ics, where it inflicts substantial health, economic and social burdens [1]. Humans
are infected with dengue viruses by the bite of an infective female mosquito Aedes
aegypti, the principal vector of dengue. Once a person gets bitten by an infective
mosquito, the virus undergoes an incubation period of about 4 to 7 days, after which
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the person enters the acute phase of infection. The acute phase can be as short as 2
days and as long as 10 days. If other female A. aegypti mosquitoes bite the ill person
during this acute phase, those mosquitoes may become infected and subsequently
begin the transmission cycle anew. Dengue infection is generally characterized by a
sudden onset of fever and other nonspecific signs and symptoms, including frontal
headache, body aches, nausea and vomiting [2]. Symptoms range from mild fever to
high fever with severe headache and joint pain, and even to internal hemorrhaging,
circulatory failure and death. Cases are classified, in order of increasing severity
as dengue fever, dengue hemorrahagic fever (DHF) and dengue shock syndrome [3].
Dengue has been recognized in over 100 countries and an estimated 50–100 million
cases of dengue fever and several hundred thousand DHF cases occur yearly, depend-
ing on epidemic activity [4]. Particularly, in Thailand, dengue disease incidence has
increased from 9 per 100 000 in 1958 to 189 per 100 000 in 1998, with the largest
reported incidence of 325 per 100 000 in 1987, making dengue a severe public health
problem in Thailand [5].

Several mathematical models have been proposed to investigate dengue epidemi-
ology, some of which explicitly model the mosquito population [e.g. 3, 6, 7], while
others implicitly model it in the transmission term [e.g. 8–10]. Although both kinds
of models have been extensively used for dengue, little guidance exists for which type
of model should be preferred. In particular, there has been no comparison of how
well these models explain observed incidence. In this study, we considered simple
dengue models with and without explicitly modeling mosquitoes, fit both models to
DHF incidence data, and used model selection to compare the models.

Fitting models to data validates the model as well as provides estimates of un-
known model parameters. There are some examples in the literature where dengue
models have been fit to data. Chowell et al. [11] estimated the transmissibility of
dengue during a 2002 epidemic in the Mexican state of Colima using municipal epi-
demic data to evaluate the effect of spatial heterogeneity. Ferguson et al. [12] used
longitudinal incidence of serious dengue disease from Thailand and estimated the
basic reproductive number R0 to gain insight into the transmission dynamics and
epidemiology of dengue. We fit a simple vector–host dengue model as well as an
SIR-type dengue model and obtain estimates of unknown parameters like recovery
rate, probability of severe form of disease, mosquito mortality rate, etc.

The goal of the present study is to understand the impact of some modeling
assumptions on quantifying estimates of epidemiological metrics for dengue. We ap-
plied Bayesian Markov chain Monte Carlo (MCMC) estimation on a simple vector–
host dengue model as well as an SIR-type dengue model to estimate model parame-
ters using monthly DHF incidence data in Thailand for January 1984 to March 1985.
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The Bayesian MCMC techniques that we used in this study have been commonly
used to estimate model parameters of infectious diseases [13–16]. We use the poste-
rior distribution of the model parameters obtained from Bayesian MCMC to perform
uncertainty and sensitivity analysis of basic reproductive number R0 and thereafter,
use model selection on a set of vector–host and SIR models to find a model which
agrees with the data most parsimoniously.

2. Methods

We built two mathematical models of dengue transmission, one in which the
mosquitoes are explicitly tracked and another without explicit mosquito populations.
We then used Bayesian MCMC to fit DHF data from Thailand to these two models.
In this section, we outline the data source, models and methods and refer to more
detailed descriptions in the Supplementary Material.

2.1. Data Source

The Thailand Ministry of Public Health have been recording the number of DHF
cases since 1972. Cases are diagnosed using criteria established by the World Health
Organization. We obtained the monthly incidence of DHF for Thailand from 1983
to 1997 (Figure 1) [17]. We chose one epidemic, from January 1984 to March 1985
(Figure 2), to fit the dengue models: this particular epidemic was chosen as a clear,
representative example among this data. More specifically, we used the cumulative
monthly number of DHF cases for the period January 1984 to March 1985. Cumula-
tive incidence is generally smoother than the original incidence data and thus easier
to fit and it also easily handles delayed reporting on holidays and weekends.

2.2. Vector–host model

The Ross–Macdonald model, originally developed for malaria, is a standard math-
ematical model for vector-borne pathogens that tracks infections in both humans and
mosquitoes [18]. Following this framework, we built a vector–host model for dengue
consisting of three human host compartments, susceptible (the number of susceptible
humans isHS), infectious (HI) and recovered (HR), and two mosquito compartments,
susceptible (VS) and infectious (VI). Mosquitoes do not recover from infection. The
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model is the system of differential equations

dHS

dt
= BH −mcβH

VI
V
HS − µHHS,

dHI

dt
= mcβH

VI
V
HS − γHHI − µHHI ,

dHR

dt
= γHHI − µHHR,

dVS
dt

= BV − cβV
HI

H
VS − µV VS,

dVI
dt

= cβV
HI

H
VS − µV VI ,

(1)

where H = HS +HI +HR and V = VS +VI are the human and mosquito population
sizes, respectively. A susceptible human gets infected with force of infection mcβH

VI

V
,

where m is number of mosquitoes per person, c is mean rate of bites per mosquito
and βH is the mosquito-to-human transmission probability per bite. Infectious peo-
ple recover at rate γH . The force of infection for mosquitoes is cβV

HI

H
, where βV is

the human-to-mosquito transmission probability. For simplicity, we ignored disease-
induced mortality in both humans and mosquitoes, which is small [19]. Because we
only fit the model to an epidemic lasting about a year, we assumed the human pop-
ulation was constant size by using the birth rate BH = µHH. We also assumed the
mosquito population was constant size (BV = µV V ), neglecting seasonal fluctuations
for simplicity.

Standard mathematical analysis of the model (Supplementary Material S1) shows
that the basic reproductive number, the number of new human infections caused by
a single infected human in an otherwise completely susceptible population, is

R0 =
mc2βHβV

µV (µH + γH)
. (2)

In addition, there are two equilibrium points, the disease-free equilibrium and the
endemic equilibrium. An equilibrium point is asymptotically stable if nearby orbits
converge to it as time increases, and it is globally asymptotically stable if all orbits,
not just those nearby, converge to the equilibrium [20]. For R0 > 1, the disease-free
equilibrium is unstable and the endemic equilibrium is locally asymptotically stable.
The disease-free equilibrium is globally asymptotically stable when R0 ≤ 1 (and the
endemic equilibrium is out of the relevant state space, having HI and VI negative,
and unstable).

To simplify the parameter estimation, rather than fitting human mortality rate
along with the other parameters, we fixed µH = 1/69 y−1 based on the average
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human duration of life in Thailand in 1984 of about 69 years [21]. The remain-
ing unknown parameters are the human recovery rate (γH), the mosquito mortality
rate (µV ), the probability of DHF (p), the mosquito biting rate (c), the number
of mosquitoes per person (m), the mosquito-to-human transmission probability (βH)
and the human-to-mosquito transmission probability (βV ). The biting rate, c, always
appears in the model multiplied with either βH or βV . Similarly, m always appears
multiplied with βH . Therefore, only 2 of these 4 parameters can be separately esti-
mated, which we chose to be βaH = mcβH and βaV = cβV . In addition, the initial
proportion of humans recovered in the host population (hR(0) = HR(0)/H) as well as
initial proportion of mosquitoes infected in the vector population (vI(0) = VI(0)/V )
are unknown and must be determined. Thus, we estimated a total of 5 unknown
parameters and 2 initial conditions for the vector–host model. We used the inci-
dence data for January 1984 and Thailand’s population in year 1984 to calculate
initial conditions for initial proportion of hosts infected, i.e. hI(0) = HI(0)/H(0),
where HI(0) = 454 and H(0) = 46 806 000. Since both the human and mosquito
populations are constant, initial proportions of susceptible humans and mosquitoes
were calculated using the other initial conditions, i.e. hS(0) = 1− hI(0)− hR(0) and
vS(0) = 1− vI(0).

2.3. SIR model

Dengue transmission has been extensively modeled using SIR-type models, which
only explicitly track human infections [e.g. 8–10]. These SIR models are simpler than
vector–host models, making analysis and parameter estimation easier. SIR models
for dengue have typically been constructed directly [e.g. 8]. Alternately, an SIR model
can be derived from a vector–host model by assuming that infection dynamics in the
vector are fast compared to those of the host, a quasi-equilibrium approximation
[22].

We used a standard SIR model,

dHS

dt
= BH − β

HI

H
HS − µHHS,

dHI

dt
= β

HI

H
HS − γHHI − µHHI ,

dHR

dt
= γHHI − µHHR,

(3)

where H = HS + HI + HR is the human population size. Again, we kept the
population size constant by setting the birth rate to BH = µHH. A susceptible
person gets infected with force of infection βHI

H
, where β is the composite human-

to-human transmission rate. Comparing the equilibria of the vector–host model and

5



the SIR model (Supplementary Material S2) provides β in terms of the parameters
of the vector–host model:

β ≈ mc2βHβV
µV

. (4)

SIR model (3) is a standard mathematical model for directly transmitted pathogens
like influenza and has been thoroughly analyzed [e.g. 23]. The basic reproductive
number is

R0 =
β

µH + γH
. (5)

As with vector–host model (1), there are two equilibrium points, the disease-free
equilibrium and the endemic equilibrium: for R0 > 1 the disease-free equilibrium is
unstable and the endemic equilibrium is globally stable, while the disease-free equi-
librium is globally asymptotically stable for R0 ≤ 1 (with the endemic equilibrium
having HI < 0 and being unstable).

The unknown parameters are the transmission rate (β), the recovery rate (γH) and
the probability of DHF (p), along with the initial proportion of humans recovered
(hR(0) = HR(0)/H). As in the vector–host model, we used the fixed value for
the human mortality rate µH = 1/69 y−1 to simplify the parameter estimation.
Again, the initial proportion of infected humans is given by hI(0) = HI(0)/H(0)
with HI(0) = 454 and H(0) = 46 808 000. Like the vector–host model, the other
initial condition is hS(0) = 1− hI(0)− hR(0).

2.4. Bayesian Markov chain Monte Carlo estimation

To estimate the unknown parameters, we used a Bayesian MCMC technique.
Bayesian inference uses prior information of the model parameters from previous
studies, which is then combined with new data to generate estimates in the form of a
probability distribution for the parameters. More precisely, for parameters θ and data
D, with the prior parameter distribution Pr(θ) and likelihood function Pr(D | θ),
the posterior parameter distribution Pr(θ | D) is given by Bayes’s Theorem:

Pr(θ | D) =
Pr(D | θ) Pr(θ)

Pr(D)
(6)

or, alternately,
Pr(θ | D) ∝ Pr(D | θ) Pr(θ). (7)

Because there are no general closed-form solutions, MCMC or other methods must
be used to generate approximate samples from the posterior parameter distribution
Pr(θ | D).
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The connection between the data and the parameters is made by the likelihood
function L(θ) = Pr(D | θ), which is the conditional probability of obtaining the data
(D) for the given parameter values (θ). Therefore, L(θ) needs to be maximized to
obtain best-fit parameter set. In our case, the likelihood function is derived from
the vector–host and SIR models, the solutions to which provide estimates of the
DHF monthly incidence data. We added a compartment to each model to calculate
the cumulative number of DHF infections (HC). We assumed that a fraction p of
infections were diagnosed as DHF, with p constant in time. We added differential
equations for the HC compartment,

dHC

dt
= pmcβH

VI
V
HS, (8)

for the vector–host model, and

dHC

dt
= pβ

HI

H
HS, (9)

for the SIR model, which are precisely the rates of new infections multiplied by p.
The “ode15s” function in Matlab was used to numerically solve the vector-host model
(1) & (8) and the SIR model (3) & (9). These numerical solutions give the predicted
monthly cumulative DHF incidence, yi = HC(ti)/H, where ti = 0, 30, 60, ... days.
Using the least-squares error between the cumulative DHF data Di and the model
prediction,

E2 =
15∑
i=1

(
Di − yi(θ)

)2
, (10)

we assumed the errors were Gaussian, giving the likelihood function

L(θ) = Pr(D | θ) = exp
(
−E2

)
. (11)

For the prior parameter distributions, we assigned wide uniform distributions,
with ranges chosen to represent our general understanding about where the param-
eter values may lie. In the absence of any information on parameters estimates, we
used least-squares fitting to find best-guess estimates of parameters. Estimates of γH ,
µV and µH from the literature (γH = 1/7 d−1, µV = 1/14 d−1 and µH = 1/69 y−1)
were used and the vector–host model was fitted to the data using least squares
in Berkeley Madonna to find initial point estimates βaH = 0.002, βaV = 1.8 and
p = 0.04. We used these initial point estimates to form uniform priors for these
parameters such that their point estimates lie inside the range of priors. For the
transmission term β of the SIR model, we simply choose a very wide uniform prior.
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Where parameters were common to both models, both models used the same prior
(Table 1).

To generate the posterior parameter distribution, we used an MCMC method
based on the Metropolis algorithm using a Gaussian jumping distribution with an
adaptive covariance matrix. For each model, we simulated 4 independent MCMC
chains and used the Gelman–Rubin test to determine when the chains had converged
to the stationary distribution, i.e. the parameter posterior distribution. The Gelman–
Rubin test signals convergence when the variance between independent chains is
similar to the variance within the chains. (See Supplementary Material S3 for more
details.) Once the Gelman–Rubin test passed, we continued sampling from one of
the chains for 10 000 more iterations without updating the covariance matrix, saving
every 5th iterate as the posterior parameter distribution.

3. Results

We estimated 7 total parameters for the vector–host model and 4 total parameters
for the SIR model by Bayesian MCMC using the cumulative DHF incidence data.
Both models with their maximum-likelihood (ML) parameter estimates fit the data
well (Figure 3), with the vector–host model fitting slightly better. (More on model
fitting and model selection below.)

The estimates of the human recovery rate were similar for both models (Fig-
ure 4(d) and Table 1). The average duration of human dengue infection is between
2 and 7 days approximately, with ML estimates of about 2 to 3 days. The initial
proportion of humans recovered (hR(0)) was estimated to be small in both models,
indicating that the human populations were almost entirely susceptible when the
outbreak started.

Estimates of the probability of DHF differed somewhat between models: ML of
around 3 DHF cases per 1000 infections from the vector–host model and around 14
DHF cases per 1000 infections from the SIR model. The vector–host model includes
several parameters not present in the SIR model. From the vector–host model, the
range of average lifespan of mosquitoes (1/µV ) was found to be approximately 13 to
26 days, with ML estimate of about 15 days. The initial proportion of mosquitoes
infected was very small (ML of about 0.5%), so that the outbreak had just started
in the mosquitoes as well as the humans.

The transmission rates are not common between the models, but comparison of
equilibria of both the models allowed us to compare the composite transmission rate
β from the SIR model with β = βaHβaV /µV for the vector–host model (Figure 4(c)).
Although, the ML estimates of β from both models are similar, the distribution from
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the vector–host model has more weight at higher values of β than the distribution
from the SIR model: e.g. the median estimates are 0.4882 and 0.3243 respectively.

The basic reproductive number (R0), the expected number of secondary cases
produced by a single infection in a completely susceptible population, was calculated
using equations (2) and (5) for the respective models, for each MCMC parameter
sample (Figure 4(i)). For all parameter samples, R0 > 1 as expected since the data
show an epidemic, but the R0 values from the vector–host model (ML: 1.57) are
higher than from the SIR model (ML: 1.10).

Because R0 is an important metric for an infectious disease, we performed uncer-
tainty and sensitivity analysis of R0 for both models using partial rank correlation
coefficients (PRCC). The PRCC measures the independent effect of each input pa-
rameter on R0, assuming the parameters to be independent [24]. The ordering of
these PRCCs directly corresponds to the level of statistical influence, the impact
that uncertainty in the estimate of a parameter has on the variability of R0 [25]. We
used the “prcc” function of the R library epiR [26].

For both models, all of the parameters were significantly different from 0 (p-value <
2.5×10−135). For the vector–host model, all parameters except hR(0) and vI(0) were
most influential in determining the magnitude of R0 (|PRCC| > 0.5), while only β
and γH for the SIR model were most influential on the magnitude of R0. A positive
PRCC value indicates that an increase in that parameter leads to an increase in R0,
while a negative value shows that increasing that parameter decreases R0. For the
parameters that appear explicitly in the R0 equations (2) and (5), the signs of the
PRCCs were as expected. Of the remaining parameters, p and vI(0) have a negative
influence on R0, while hR(0) has a positive influence on R0.

Parameter estimates for both models suggest that the initial proportion of humans
recovered and the initial proportion of vectors infectious are very small. As a result,
we tried fitting both models by fixing hR(0) = 0 and vI(0) = 2hI(0) and estimating
the other parameters in order to decrease the complexity of the models (Figure 6).
We fit the vector–host model by fixing hR(0) only, fixing vI(0) only and fixing both
hI(0) and vI(0). Similarly we fit the SIR model by fixing hR(0).

We used the Akaike Information Criterion (AIC) to compare the competing 6
models (Table 2). The AIC is a measure of the relative goodness of fit of a statistical
model, balancing fit with number of parameters, finding the simplest model that
best approximates the true, but unknown mechanisms generating the data. The
SIR model with fixed hR(0) had the minimum AIC value, implying this model was
the best among the models. The difference in AIC between the best model and
the others (∆AIC) gave “considerably less support” for all the vector–host models
and “substantial support” for both SIR models [27]. Alternatively, Akaike weights

9



provide the probability that a model is the best among the set of candidate models.
The Akaike weight for the SIR model with fixed hR(0) gave 62% probability of it
being the better model whereas the SIR model where hR(0) is also estimated was
26% likely to be the better model. There was only a 12% probability that any of the
vector–host models was best.

4. Discussion

The fitting of dengue incidence data from Thailand to simple vector–host and SIR
model provided estimates of model parameters. The estimates of human recovery
rate from both the models suggest a recovery period of 2 to 7 days, which is consistent
with the estimates used in previous studies [2, 8]. The estimates of the probability
of DHF from the vector–host model and the SIR model are that about 3 and 14
out of 1000 infections develop into DHF, respectively for the two models. Based on
the annual number of dengue infections and DHF cases [2], 5 out of 1000 infections
develop into DHF.

The ML estimate of the basic reproductive number (R0) for the SIR model is 30%
smaller than the estimate for the vector–host model. This is driven by the recovery
rate (γH) being estimated as 68% larger in the SIR model. The MLE probability of
DHF (p) is 4.9 times larger for the SIR model. The two models—one with high R0

and low p, the other with low R0 and high p—both fit the data well. The PRCC
result showing a negative influence of p on R0 confirms the relationship between these
two parameters.

Dengue had been causing annual outbreaks in Thailand for some time prior to
the 1984 epidemic [5]. Despite this, our estimates of the initial proportion of people
immune (hR(0)) from both models are very small. A high birth rate [28] and the
reemergence of dengue serotypes 3 and 4 [5] could explain this low immunity. In
addition, mosquito seasonality may be important to explain the monthly variation
in dengue incidence [6], and keeping the mosquito population constant for simplicity
in our model could have contributed towards small estimates of hR(0).

The vector–host model fits the data slightly better than the SIR model, but the
fewer number of parameters results in the SIR model being strongly selected by the
AIC. Alternative measures for model selection like the Bayesian Information Cri-
terion and the Deviance Information Criterion more strongly penalize the number
of parameters than AIC, so we expect the result of model selection to remain un-
changed. This suggests that incorporating mosquito populations explicitly in dengue
models may not be necessary to estimate incidence.

We believe that for any vector-borne pathogen, explicitly including vector popu-
lations may generally be unnecessary to model prevalence or incidence in human or
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other primary host. We expect that models with and without explicit vectors will
fit primary-host data about equally well and then the fewer parameters of the model
without explicit vectors will result in it being preferred by formal model selection.
Other factors like seasonality in mosquito abundance may be crucial to fit some
long-term data (e.g. Figure 1), which could result in explicit-vector models fitting
the data significantly better than implicit-vector models. In addition, explicit-vector
models are necessary when interventions are targeted at the disease vector, e.g. in-
secticide or genetically modified mosquitoes. When the desired model output is the
effectiveness or cost-effectiveness of an intervention that acts on the primary host,
our result suggests that implicit-vector models are likely to be sufficient.

The composite transmission parameter (β) for the vector–host model was ob-
tained from the equilibria of the two models and may not be a good approximation
for our comparison of the dynamics of the models. This may explain the difference in
the estimates of the composite transmission parameter (β) between the two models.
This is reinforced by the fact that the SIR model fits the observed data well, but not
for the same β values as the vector–host model. Thus, in addition to being preferred
by model selection, use of the SIR model is justified when only the equilibrium values
are of interest.

We chose to use DHF cases because the data was available monthly, while we are
only aware of annually reported DF cases [5]. Moreover, a person infected with DHF
is more likely to visit hospital due to the severity of the disease, and so more likely
to be diagnosed and reported. Therefore, data on reported DHF cases may be more
accurate to actual DHF cases than DF data is to DF cases.

We used a Bayesian MCMC technique for estimation, though other estimation
methods have also been used in the literature. In particular, least-squares error fitting
is popular [e.g. 29] and the expectation maximization (EM) algorithm has seen some
use [30, 31]. We choose Bayesian MCMC approach as it provides a huge amount of
modeling flexibility and enables analysis of all the model parameters or functions of
parameters. It also has advantage of providing a complete distribution for parameters
as posterior distributions instead of point estimates. Moreover, posterior summaries
such as mean, medians, maximum likelihoods, maximum, minimum and credible
intervals are easy to obtain as well.

In this paper, we fitted dengue incidence data from Thaiand to vector–host and
SIR models and obtained estimates of model parameters including average duration
of dengue infection in humans, lifespan of mosquitoes and the probability of the severe
form of disease. The parameter estimates were consistent with existing published
values and PRCC values showed that all the parameters except initial conditions have
significant influence on the magnitude of the basic reproduction number R0. Both the
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vector–host model as well as the SIR model fit the incidence data well, however AIC
model selection found the SIR model with fixed hR(0) to be substantially better than
the vector–host model, implying that incorporating mosquito population explicitly
in a dengue model may not be necessary to explain the incidence data from Thailand.
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Figure 1: Monthly dengue hemorrhagic fever (DHF) incidence in Thailand from 1983 to 1997.
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Figure 2: Monthly DHF incidence in Thailand from January 1984 to March 1985.
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Figure 3: Fits of the vector–host and SIR models. Shown are the cumulative DHF cases from the
data (black circles), and from the models with the maximum–likelihood parameter estimates (thick
black curves) and 20 samples from the posterior parameter distribution (thin color curves).
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Posterior
Parameter Prior Model ML Median 90% CI

βaH
(
d−1

)
U(0, 1) VH 0.0686 0.0521 (0.0146, 0.2241)

Mosquito-to-human transmission rate

βaV
(
d−1

)
U(0.1, 2) VH 0.4307 0.4867 (0.1299, 1.6821)

Human-to-mosquito transmission rate

β
(
d−1

)
U(0, 10)

VH 0.4881 0.4882 (0.2782, 0.9364)
Composite transmission rate SIR 0.5718 0.3243 (0.1931, 0.5805)

γH
(
d−1

)
U(0.1, 0.6)

VH 0.3104 0.2480 (0.1521, 0.4440)
Human recovery rate SIR 0.5211 0.2650 (0.1347, 0.5315)
p

U(0, 0.1)
VH 0.0028 0.0022 (0.0010, 0.0086)

Probability of DHF SIR 0.0137 0.0057 (0.0018, 0.0354)

µH

(
y−1

)
1/69

VH — — —
Human mortality rate SIR — — —

µV

(
d−1

)
U(0.01, 0.1) VH 0.0605 0.0531 (0.0378, 0.0781)

Mosquito mortality rate
hR(0)

U(0, 1)
VH 0.0067 0.0020 (0.0000, 0.1320)

Initial humans recovered SIR 0.0332 0.0019 (0.0000, 0.1363)
vI(0)

U(0, 1) VH 0.0009 0.0005 (0.0000, 0.0056)
Initial mosquitoes infected
R0 —

VH 1.5724 1.9733 (1.3556, 3.2059)
Basic reproductive number SIR 1.0972 1.1989 (1.0523, 1.5243)

Table 1: Posterior summary of parameter estimates. For simplicity, µh was not estimated. R0 is
not a parameter, but rather a function of the other parameters. U(a, b) is the uniform distribution
between a and b. For parameters common to both models, the same prior was used for both models.
“ML” is maximum-likelihood estimate; “CI” is credible interval; “VH” is the vector–host model.
Parameter units are given in parentheses.
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Log- Akaike
Model df likelihood AIC ∆AIC weight

Vector–host 7 −0.0779 14.1559 7.7212 0.0130
Vector–host, vI(0) fixed 6 −0.6847 13.3695 6.9348 0.0193
Vector–host, hR(0) fixed 6 −0.1173 12.2346 5.7999 0.0341
Vector–host, hR(0) & vI(0) fixed 5 −0.5835 11.1669 4.7322 0.0581
SIR 4 −0.1020 8.2039 1.7692 0.2558
SIR, hR(0) fixed 3 −0.2173 6.4347 0 0.6196

Table 2: Comparison of the vector–host and SIR models with and without fixed initial conditions.
“df” is degrees of freedom, i.e. number of parameters.
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S1 Stability analysis of the vector–host model

For the vector–host model (1), scaling the state variables by their respective popu-
lation sizes, to the proportions hS = HS/H, hI = HI/H, hR = HR/H, vS = VS/V
and vI = VI/V , gives the system of differential equations

dhS
dt

= µH − βaHvIhS − µHhS,

dhI
dt

= βaHvIhS − γHhI − µHhI ,

dhR
dt

= γHhI − µHhR,

dvS
dt

= µV − βaV hIvS − µV vS,

dvI
dt

= βaV hIvS − µV vI .

(S1)

Using the next-generation method [1], the basic reproductive number is

R0 =
βaHβaV

µV (µH + γH)
. (S2)
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USA
†Department of Mathematics, Northeastern Illinois University, Chicago, Illinois 60625, USA
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Because hS + hI + hR = 1 and vS + vI = 1, the reduced system

dhS
dt

= µH − βaHvIhS − µHhS,

dhI
dt

= βaHvIhS − γHhI − µHhI ,

dvI
dt

= βaV hIvS − µV vI ,

(S3)

is equivalent to the full system (S1). This system is defined on the domain

Ω = {(hS, hI , vI) : 0 ≤ vI ≤ 1, 0 ≤ hS, 0 ≤ hI , hS + hI ≤ 1}. (S4)

A simple check shows that the vector field defined by model (S3) on the boundary
of Ω does not point to the exterior of Ω, so Ω is positively invariant under the
flow induced by system (S3). This guarantees that the model numbers of humans
and mosquitoes in the various epidemiological compartments never become negative,
which is an obvious biological constraint.

The equilibrium points of system (S3) are

E0 = (1, 0, 0) and Ee = (h∗S, h
∗
I , v

∗
I ), (S5)

where

h∗S =
δ +M

δ +MR0

, h∗I =
R0 − 1

δ +MR0

, v∗I =
δ(R0 − 1)

(δ +M)R0

, (S6)

with

δ =
βaV
µV

and M =
µH + γH
µH

. (S7)

E0 is the disease-free equilibrium and Ee is the endemic equilibrium. For R0 < 1, E0

is the only equilibrium in Ω but the endemic equilibrium Ee also lies in Ω for R0 ≥ 1.
The local stability of the equilibrium points is governed by the Jacobian matrix

DF =

−βaHvI − µH 0 −βaHhS
βaHvI −(µH + γH) βaHhS

0 βaV − βaV vI −βaV hI − µV

 . (S8)
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S1.1 Disease-free equilibrium

The Jacobian matrix (S8) at E0 is

DF (E0) =

−µH 0 −βaH
0 −(µH + γH) βaH
0 βaV −µV

 , (S9)

which has eigenvalues

− µH and
−(µH + γH + µV )±

√
(µH + γH + µV )2 − 4µV (µH + γH)(1−R0)

2
.

(S10)
All of the eigenvalues have negative real part for R0 < 1 and so E0 is locally asymp-
totically stable for R0 < 1.

To show global stability of E0, we consider the Lyapunov function on interior of
Ω

Λ =
βaH
µV

vI + hI (S11)

which has orbital derivative

dΛ

dt
=
βaH
µV

dvI
dt

+
dhI
dt

= −βaH(1− hS)vI − (µH + γH)[1−R0(1− vI)]hI .
(S12)

For R0 ≤ 1, the orbital derivative dΛ
dt
≤ 0 in Ω and the subset of Ω where dΛ

dt
= 0 is

given by
(1− hS)vI = 0 (S13)

and

hI = 0 if R0 < 1,

hIvI = 0 if R0 = 1.
(S14)

Thus {E0} is the only invariant set contained in dΛ
dt

= 0. Also, the interior of Ω is
bounded. Therefore, E0 is locally stable and all trajectories starting in Ω approach
E0 as t → +∞ [2, p. 317, Corollary 1.1]. This establishes the global asymptotic
stability of E0 for R0 ≤ 1.

For R0 > 1, the eigenvalue

−(µH + γH + µV ) +
√

(µH + γH + µV )2 − 4µV (µH + γH)(1−R0)

2
> 0, (S15)

so E0 is unstable.
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S1.2 Endemic equilibrium

As R0 increases through 1, the disease-free equilibrium E0 becomes unstable and the
endemic equilibrium Ee moves from outside to inside Ω. The Jacobian matrix at Ee
is

DF (Ee) =

−µH
δ+MR0

δ+M
0 −µHMR0

δ
δ+M
δ+MR0

µHM(R0−1)
δ+M

−µHM µHMR0

δ
δ+M
δ+MR0

0 µV δ
R0

δ+MR0

δ+M
−µVR0

δ+M
δ+MR0

 . (S16)

The characteristic polynomial of matrix (S16) is

p(λ) = λ3 + Aλ2 +Bλ+ C, (S17)

where

A = µH
δ +MR0

δ +M
+ µHM + µVR0

δ +M

δ +MR0

B = µ2
HM

δ +MR0

δ +M
+ µV µHR0 +

µHµVM(R0 − 1)δ

δ +MR0

C = µ2
HµVM(R0 − 1).

(S18)

For R0 > 1, the coefficients A, B, and C are positive and

AB > µ2
HµVMR0 > C, (S19)

so the characteristic polynomial (S17) satisfies the Routh–Hurwithz conditions [3].
Therefore, Ee is locally asymptotically stable.

S2 Comparing equilibria of the vector–host and

SIR model

The endemic equilibrium (S6) for the vector–host model has

h∗S =
δ +M

δ +MR0

=
1 + µH

βaH
R0

R0 + µH
βaH

R0

,

h∗I =
R0 − 1

δ +MR0

= (R0 − 1)
µH

(µH + γH)
(
R0 + µH

βaH
R0

) . (S20)

If
µH
βaH

R0 � 1, (S21)
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as is true of our ML estimates, then since R0 > 1,

h∗S ≈
1

R0

,

h∗I ≈ (R0 − 1)
µH

(µH + γH)R0

= (R0 − 1)
µH
β
,

(S22)

where

β =
βaV βaH
µV

, (S23)

which is exactly the endemic equilibrium of the SIR model (3).

S3 Detailed explanation of the Bayesian MCMC

method

Given a mathematical model, the aim is to find the distribution of the unknown
parameter values θ for the model that are consistent with the data D. In our case,
the data are a time series of monthly cumulative incidence, and yi(θ) = HC(ti)/H
is the time series produced by the model at the same monthly time points ti as the
data. We used the least-squares error function

E2 =
∑
i

(
Di − yi(θ)

)2

(S24)

to calculate the distance between the model output and the data. We assumed that
the error function obeys a normal distribution with zero mean and variance 1/2:

Pr
(
E2
)
∝ exp

(
−E2

)
. (S25)

This is the likelihood function of the parameters given the data,

L(θ) = Pr(D | θ) ∝ exp
(
−E2

)
. (S26)

Once the prior distribution Pr(θ) for the unknown parameters is defined, the
probability of parameters given the data points, i.e. the posterior distribution, is
given by Bayes’s Theorem,

Pr(θ | D) =
Pr(D | θ) Pr(θ)

Pr(D)
, (S27)
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where Pr(D | θ) is the likelihood function (S26) and Pr(D) is called the evidence,
which is the integral of the likelihood over the prior distribution of the parameters:

Pr(D) =

∫
Pr(D | θ) Pr(θ) dθ. (S28)

It is difficult to compute Pr(D), but we can instead use

Pr(θ|D) ∝ Pr(D|θ) Pr(θ) (S29)

to find the posterior parameter distribution.
Using Bayes’s Theorem (S29), we form a Markov chain which asymptotically

converges to the posterior parameter distribution by using the Metropolis Algorithm.
The Metropolis Algorithm is an iterative procedure that uses an acceptance–rejection
rule to converge to the required distribution [4]. The algorithm is:

1. Start with some initial guess for the parameter values. We randomly chose a
starting point θ0 from the prior distribution Pr(θ).

2. For each iteration n = 1, 2, 3, ......

(a) A new proposed set of parameter values is generated by sampling θ∗

from the proposal distribution J (θ∗ | θn−1). The proposal distribution
J (θ∗ | θn−1) must be symmetric, i.e. J (θ∗ | θn−1) = J (θn−1 | θ∗), for this
algorithm.

(b) Using the likelihood function, the ratio

r = min

{
Pr(θ∗ | D) Pr(θ∗)

Pr(θn−1 | D) Pr(θn−1)
, 1

}
(S30)

is calculated.

(c) We generate a random uniform number between 0 and 1 and call it α.
Then the parameter values for this iteration are

θn =

{
θ∗ if α < r,

θn−1 otherwise.
(S31)

This algorithm must be run for enough iterations for the parameter values to
converge to the posterior distribution. There are several convergence diagnostics
which can be employed to detect whether the chain has converged [5]. We used the
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Gelman–Rubin test [6] for the convergence diagnostic of our simulations, which is
based on multiple independent simulated chains. The variances within each chain
are compared to the variances between the chains: large deviation between these two
variances indicates non-convergence.

The posterior is insensitive to the choice of proposal density, J(θ∗ | θn−1), but the
number of iterations until the chain converges may be heavily affected. It is difficult
to choose an efficient proposal distribution, but normal distributions have been found
to be useful in many problems [4]. We used a multivariate normal distribution with
mean θn−1 and covariance λ2Σ as our proposal distribution,

J
(
θ∗ | θn−1

)
∼ N

(
θn−1, λ2Σ

)
. (S32)

For the multivariate normal proposal distribution, for optimal convergence, proposals
should be accepted at a rate of 0.44 in one dimension and 0.23 in higher dimensions
[4]. To achieve this, we used a variant of the Metropolis Algorithm that updates
the covariance matrix Σ and the scaling factor λ of the proposal distribution after
every 500 iterations. We initially chose the covariance to be the d×d identity matrix
(Σ0 = I) and the initial scaling factor to be λ0 = 2.4/

√
d, where d is the number

of parameters being estimated. After every 500 iterations, the covariance matrix is
updated by

Σk = pΣk−1 + (1− p)Σ∗ (S33)

where Σ∗ is the covariance of the last 500 parameter values and p = 0.25 is the
weight given to the old covariance matrix. Similarly, the scaling factor is updated
using the Robbins–Monro algorithm [7],

λk = λk−1 exp

(
α∗ − α̂
k

)
, (S34)

where α∗ is the acceptance rate for the last 500 iterations and the target acceptance
rate is

α̂ =

{
0.44 for d = 1,

0.23 for d > 1.
(S35)

We ran the adaptive algorithm in two phases: first, the adaptive phase, which is
run until the Gelman–Rubin convergence test passed, and then the fixed phase, where
the algorithm is run to sample from the posterior distribution without updating the
covariance matrix and the scaling factor. Samples from the only last phase were used
in the final inferences.
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