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Analyzing electrocardiographic signals (ECG) includes not only inspection of P, 

QRS and T waves, but also the causal relations they have and the temporal sequences they 

build within long observation periods. In fact, the spatio-temporal patterns must be described 

through shape features as well as complete time occurrence distributions in order to match the 

observed data with the underlying processes. It has been demonstrated recently that in depth 

knowledge can be qualitatively modeled by means of anatomofunctional decompositions [1] 

and can be used to simulate complex phenomena (i.e., reentry, block, etc.) and to provide a 

real understanding of their behavior at different abstraction levels. However, the on-line 

examination of ECG recordings can only be carried out if the relations between data events 

and the model are available. In other words, signal processing techniques must feed the model 

with accurately estimated features to discard the non relevant interpretations. This task is 

difficult to achieve because of the composite nature of the ECG (i.e., a combination of signal 

and noise) and its non stationary behavior. These characteristics motivated the approach we 

de-scribe, which makes use of wavelet transforms (WT) or time scale representations. These 

new tools have already been applied in ECG analysis for enhancing late potentials [2-3], 

reducing noise [4], and QRS detection [5]. In this article, we limit our study to recognizing 

normal and abnormal beats, and assume that a prior segmentation has been performed. It 

differs from previous work by addressing four main questions: 1) what is the most appropriate 

WT to use? 2) what are the most relevant features for efficient encoding of cardiac patterns? 3) 

what decomposition levels must be retained? 4) does WT improve the recognition process?  

The first issue is critical in all application areas. There is no theoretical answer at the 

moment, and the only technique at our disposal is to compare the results provided by several 

wavelet families. Questions 2 and 3 have been examined by considering two stages:  

(a) a characterization phase based on a principal component analysis (PCA) [6], which allows 

us to jointly represent and interpret the objects (i.e., the cardiac complexes) and the 

descriptive variables;  and (b) a discrimination step by means of a linear discriminant analysis 

(LDA) [7]. This last stage leads us to identify the variables capable of separating the patterns, 

the objective being to derive the most discriminant decomposition levels. A supervised 

procedure is first applied on a learning set. The resulting performance is further tested on an 

additional set of patterns. The fourth issue has been considered by comparing the best 

solution provided by the WT with classical signal descriptions.  

 

This article presents the wavelet transforms that we have used and some of their basic 

properties. The ECG beat recognition is also addressed. The analysis is carried out by 

combining several parameterizations (distributions of energy and extrema along the 

decomposition levels) according to the wavelets under study. This section includes three parts: 

(a) comparison among descriptors issued from orthonormal wavelets; (b) comparison with two 

other wavelet families and (3) comparison with classical parameter sets.  

 
Wavelet Transforms  

 

The wavelet transform of a signal, S(t), corresponds to its decomposition with respect to 

a family, F, of functions obtained by dilations (or contractions) and translations of an 

analyzing wavelet denoted Y [8]. The coefficients Da,b deduced from this decomposition are 

expressed by:  

 

( ) ( )
,

*

,a b a b
D S t t dt

+∞

−∞
= Ψ∫  (1) 

 

where the superscript * denotes the complex conjugate. The set of Da,m with a non zero and b 

real, defines the continuous wavelet transform.  
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There are several wavelet families, each corresponding to a different representation of 

the analyzed signal. 

The decomposition based on orthonormal wavelets leads to a non redundant 

description. With ( ) ( )1 * t
ta

aa

−
Ψ = Ψ ,  can be written: 

,a b
D ( ) ( )

,a b a
D S t b t dt

+∞

−∞
= Ψ −∫  (2) 

where S(t) is the input.  is thus the output, at time b, of the filter whose impulse response 

is , and where a allows sets the bandwidth. This transformation acts on the signal as a 

filter bank whose frequency characteristics are linked to Ψ(t) and to the parameter a. In other 

words, using a prior knowledge of the signal under study, we can focus on a subset of scale 

parameters in the analysis. This interpretation becomes obvious when the WT is associated to 

a multiresolution analysis, where the decomposition, with respect to an orthonormal base of 

L2(R), is replaced by an iterative scheme based on high pass and low pass filtering followed by a 

downsampling [9]. S(t) is then decomposed into a discrete set of orthogonal details (the outputs 

of the high pass filters) from which the exact reconstruction of the signal can be carried out. 

Nevertheless, up to now, neither knowledge of the processes generating the signals nor the 

specification of objectives at hand allow to us to a priori assess the best wavelet to be used. 

Experiments must be conducted on simulated or real data and compared by means of objective 

criteria. Three comparative studies have been carried out to gain more insight into this 

problem. They use:  

,a b
D

( )
a
tΨ

(1) the compactly supported wavelet bases of L2(R) introduced by Daubechies [l0] and 

associated with minimal phase filters  

(2) a non orthogonal base of L2(R) derived from a cubic spline wavelet [11] with exponential 

decay; the corresponding low pass filter is symmetric and the high pass filter is antisymmetric  

(3) a “Morlet type” wavelet Ψ(t), a complex valued function expressed by:  

 

( ) ( )( ) ( )
0 0

1 cos 2 exp 2t C f t ik f tπ πΨ = +  

 

where, 
0

1 2t ≤ f , k is an integer different from -1, 0, 1; 
0
f  is the normalized frequency, and C is 

the positive constant such that the energy of Ψ is equal to 1.  

 

The two first wavelets make use of the dyadic sequence (2-j’, j > 0) as scale parameters, and 

the equivalent filter bank is then completely determined. For the third wavelet, the scales 

have been chosen heuristically to fully describe the relevant signal components: k = 2, 
0
f  = 

0.01, and
1

, 0 50, 0.002

1 0

a ii
i f

= ≤ ≤ Δ =
+ Δ

.  

 

The basic properties of the wavelets applied here have been explored in [12], with 

emphasis on the local regularities of the analyzed signals. It has been shown, for the spline 

wavelet (2), that the decomposition maxima encapsulate the most important part of the signal 

information. The properties of the complex wavelet (Eq. 3) have been studied in [13]. It has 

been demonstrated that the inflexion points and the maxima of S(t) are, respectively, the 

maxima and minima (with respect of the time localization variable b) of the modulus square of 

its decomposition. In addition, a local extremum of S(t) corresponds, in the transformed 

domain, to a zero crossing (with modulo π) of the phase.  

 
Recognizing Isolated Beats  

 

Our study was conducted on a set of 53 patterns sampled at 300Hz and previously 

segmented by temporal windowing (these signals are part of the European ECG data base and 
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were provided by the Istituto di Fisiologia Clinica, Pisa). The signals were normalized in 

energy to take into account the disparity in magnitude due to the different amplifications used 

during acquisition as well as the variations induced by the lead sites (the signals come mainly 

from DI and V6 leads). The isolated signals include 20 normal beats, 13 premature ventricular 

contractions (PVC) and 20 patterns with an S-T segment deviation (these last ones were 

labeled as ischemic). Each beat is described by about 300 samples.  

 

The ECG decomposition depicts different energy partitions for resolution levels of the 

beats under study. The abnormal waveforms (PVC and ischemic beats) are localized on the 

coarser levels when the normal patterns appear on the finest scales [13]. This result is 

illustrated in Fig. 1, where the orthonormal wavelet has been applied to a sequence of normal 

cardiac cycles containing one premature ventricular contraction. Figure 2 provides a more 

detailed view of the decomposition for an isolated normal beat. Figure 3 shows an- other 

common representation in time scale (for simplicity, the index i is used instead of ai). The 

major constituents, e.g., QRS waves, are enhanced due to their fast transitions when the other 

components are less visible These examples point out that, from decomposition at another 

level, no additional information is obtained. Consequently, based on our experience, the 

number of decomposition levels was set at 9, 6, and 10 for the wavelets (1), (2), and (3), 

respectively.  

 
Comparing parameters derived from orthogonal wavelets 

 

The feature sets include the energies estimated at each resolution level and the local 

extrema (value and location) of the decomposition.  

 
Description by energy  

 
With reference to [10], the wavelet corresponds to N = 6 (which means that the length 

of the filter is 2N = 12).The feature vector components are the energy of each detail level 

(denoted ENi). The PCA applied to the full set of signals suggests retaining the two first 

principal axes (a significant jump is observed between the second and the third eigenvalues). 

The inertia extracted by these two factors is approximately 68 percent, and the quality of the 

representation of the objects (i.e., the beats) and the variables ENi is 0.94, and 0.7, 

respectively. However, discriminant analysis shows that at least 3 variables are required to 

obtain a good separation (96 percent) among the 3 groups (one false classified pattern exhibits 

a low elevation of the S-T segment Table I). The most discriminant variables are the energies 

related to levels 8, 7, and 3. This analysis confirms the visual inspection of the decomposition 

previously mentioned. The abnormal patterns have their main projections on levels 7 and 8; 

the most important contributions appear on level 3 for the normal beats.  

 
Description by extrema  

 

The following operations were performed: (a) signal decomposition on 9 levels; (b) 

selection of the global extremum at each level ; and (c) signal reconstruction from the extrema. 

Figure 4 illustrates these operations on 3 patterns (representing each group) for 3 functions Ψ 

corresponding to N = 3, 6 and 10. The reconstruction based on the extrema (i.e., only one point 

within each decomposition level is kept) accentuates the peaks for N =3 and depicts an 

oscillating behavior for N = 6 and 10. These phenomena, unrelated to the ob- served signals, 

are only due to the wavelet regularity characteristics. To show this dependence more clearly, 

the similarity between the original and reconstructed patterns was examined. Table II points 

out that their correlation coefficient ranges from 0.74 to 0.96, the best results obtained with N 

= 3 and N = 6. Correlations between the three reference waveforms and all the reconstructed 

ones has also been calculated (the maximal values are re- ported in Table III). For the pairs 

(normal, PVC) and (normal, ischemic), the lowest correlation coefficients are provided by N = 
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10 and N = 6. Conversely, for the pair (PVC, ischemic), N = 3 gives the lowest correlation 

coefficient. However, these results emphasize that pattern recognition can be achieved from 

the extrema representation. The wavelet corresponding to N = 6 has been retained based on 

computation time considerations. Only the global extremum of each detail level is necessary, 

because the relative time locations of the wave components do not bring additional 

discrimination insights for the data set under consideration. This global absolute value 

represents in some way the correlation between the raw signals (original beats) and the base 

vectors of the detail subspaces and provides more information than its position.  

 

The same statistical analysis has been carried out on the whole set of beats. The PCA 

leads to results equivalent to those reported above with a factorial space of dimension 3. The 

LDA provides a discrimination rate of 98 percent when in- cluding the maximum values of 

levels 8, 3, and 7, but the three groups of patterns are completely separated when information 

of level 2 is added.  

 
Discussion 

 

These results show that high performance is obtained by the two descriptions using a 

very reduced number of features. These descriptors are coherent in terms of resolution levels 

used to better discriminate the three groups of waveforms. The description by the maximum 

absolute value at each level performs slightly better than the energy descriptors. The latter 

take into account only the power distribution of the analyzed frequency bands, and not the 

shapes of the patterns. Two signals with the same energy distributions in the spectral bands 

resulting from the decomposition will be represented by the same feature vector. The 

maximum value description provides more insight into the shapes. The deviations from 

normal beats are here characterized by an energy localized in low frequency, but the pattern 

morphologies are also different. However, the maximal absolute values are insensitive to 

phase changes and remain a rough description of the signal.  

Two additional LDA have been con- ducted to see if other improvements can be obtained. The 

first was applied by considering the sign of the global extremum value at each detail level. 

This analysis showed that strong variations are introduced within each group of patterns,  

and the corresponding clusters were no more coherent when represented in the factorial 

space. The sign acts as a perturbation on the whole set of objects. The second analysis was 

based on introduction of the three most important local extrema values (unsigned) at each 

level. The discrimination performance decreased whatever the levels taken into account. 

However, this performance decrement does not mean that this information (as well as the 

time locations) cannot play a role in other applications (or in other diseases), but that only 

here the maximal absolute values (computed at levels 3 to 8 according to the results) are 

sufficient for discrimination purposes.  

 
Comparing with other wavelet families  

 

The same approach (i.e., representation by a global maximum) has been applied to the 

decompositions provided by the spline wavelet (6levels) and the complex wavelet (10 levels). 

In both cases, the frequency band of the signal was pre- served. The classification rate is 

better for the first, a result expected because the complex wavelet leads to highly correlated 

(or redundant) maxima representation. When compared to the previous orthonormal base, the 

discrimination performance remains very poor. As mentioned above, these wavelets give 

additional cues as to the time localization of the largest slopes in the signals. This information 

was integrated into the feature set, with the time reference being the position of the 

maximum on the first level. The relative time position of the maximum (the difference 

between the maximum position and the time reference) at each level was then computed. 

Every pattern was described by an 11-dimensional vector for the spline wavelet (6 maxima 

and 5 relative time positions) and a 19-dimensional feature set for the complex wavelet (10 
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maxima and 9 relative time positions). On this basis, the spline wavelet leads to results 

equivalent to the Daubechies, while the performance of the complex wavelet still remains 

lower. 
Comparing with classical descriptors  

 

This comparison was made by allocation of complementary patterns into the discriminant 

subspace resulting from a learning phase using the same data set. The time scale descriptions 

were based on the following features: 9 maxima (issued from the compactly supported 

wavelet); 6 maxima and 5 relative time positions (spline wavelet); 10 maxima and 9 relative 

time positions (complex wavelet).  
The variables extracted from the temporal analysis of the patterns were: the maximum 

magnitude of the P, QRS and T waves, and the PQ and ST interval durations. The 

representation, based on the power spectral density, was obtained from: (1) the percentage of 

energy present in the theoretical P, QRS, and T frequency bands [141 with respect to the total 

pattern energy, and (2) the mean and median frequencies. The quality of the discrimination 

provided by different feature sets was evaluated by constituting two sets: the training data 

(2.5 beats) and the test set (28 cardiac complexes). The only requirement for the definition of 

the first set was the quasi uniform representation of each group (normal, PVC, ischemic 

patterns). The random trials were repeated 20 times and the mean rate of well-classified pat- 

terns computed. This procedure was necessary because of the reduced size of the population 

under study, which excluded any estimation of the classification error. The rate of mean, 

maximum, and minimum correct classification resulting from these trials are reported Table 

IV. These results emphasize that the best performances are achieved when using the two first 

wavelets (i.e., (1) and (2)) and that the temporal and spectral descriptions lead to results quite 

similar to those obtained by means of the complex wavelet.  

 
Conclusions 

 

Our study made use of wavelet trans- forms to describe and recognize isolated cardiac 

beats. The choice of the wavelet family as well as the selection of the analyzing function into 

these families have been discussed. The criterion used in the first case was the correct 

classification rate, and in the second case, the correlation coefficient between the original 

pattern and the reconstructed one. Two types of description have been considered -the energy-

based representation and the extrema distribution estimated at each de- composition level- 

and their quality has been assessed by using principal component analysis. Their capability of 

discrimination between normal, PVC, and ischemic beats has been studied by means of linear 

discriminant analysis. This work leads also, for the problem at hand, to the identification of 

the most relevant resolution levels. The results (to be confirmed on larger data sets) can be 

summarized as follows:  

(1) the detail levels that contribute to the quality of representation (PCA) and 

discrimination (LDA) are the same.  

(2) the compact support wavelet and the spline wavelet lead to efficient recognition 

rules based on the extrema detected at each decomposition level. They show a better behavior 

than classical features computed in the temporal or spectral do- mains.  

(3) the complex wavelet has a lower performance. However, it does not introduce the 

dyadic constraint and, as such, can be more relevant in other situations such as the detection 

of epileptic transients [15].  
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1. Orthonormal decomposition of an ECG segment composed of normal beats and a PVC. Top (the raw signal). The 

detail levels are depicted below (from D-1 to D-9, where D-j is the detail at the resolution 2j). It can be seen that the 

PVC appears clearly on D-6 and D-7.  
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2. Orthonormal decomposition of an isolated beat. From the top (the original signal) to bottom (the details D-1 to D-

9). The two first levels contain the high frequency in- formation. The levels 3 and 4 hold the information related to 

the P and QRS waves. The T waves appear only on the lowest levels. 
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3. Time scale representation of cardiac beats by means of the complex wavelet (square modulus as a function of 

time and scale ; the original signal is on the time axis). (a) premature ventricular contraction; (b) two ischemic 

patterns depicting an elevation of the ST segment. 
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4. Reconstruction waveforms from the extrema (value and time occurrence) of the decomposition. The first column 

shows the three patterns (from top to bottom: normal, PVC, and ischemic beats).The remaining columns (left to 

right) define the reconstructed signals using different filter length (N = 3, 6, and 10, respectively (see text)). 
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 Resulting Allocation 

Initial Group  Normal (Nor)  
Premature ventricular 

contraction (Pvc) 
Ischemic 

beats (Isc) 

Normal  20  0  0  

Premature ventricular 
contraction 

1  12  0  

Ischemic beats  1  1  19  

Table 1: Classifying Waveforms (columns) with Respect to Original Groups (rows).  

 

 

 
 N = 3  N = 6 N = 10 

Nor  0.860  0.871 0.750  

Pvc 0.937  0.778  0.746 

Isc 0.952  0.958 0.916 

Table 2: Normalized Correlation Index between Original and Reconstructed Waveforms.  

 

 

 
 Raw Signal  Reconst. N = 3 Reconst. N = 6 Reconst. N = 10 

Nor - Pvc  0.608  0.685 0.328 0.289  

Nor - Isc 0.250  0.303  0.197 0.185 

Pvc - Isc 0.994  0.622 0.681 0.671 

Table 3: Maximal Correlation Index between Normal and Abnormal 1 Waveforms in Figure 4.  

 

 

 

 Maximum Mean Minimum Max - Min 

Wavelet (1) ; N = 6 ~ 

100 95 89 11 

Spline Wavelet  100 96 90 10 

Morlet Type Wavelet  93 82 68 25 

Temporal Features  96 83 64 32 

Spectral Parameters  92 85 60 32 

Table 4: Maximal Mean and Minimal Allocation Rates (Percent) from Various Wavelets and Descriptions.  
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