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8 Abstract 

9 There are challenges associated with recruiting children to take part in randomised clinical trials and 

10 as a result, compared to adults, in many disease areas we are less certain about which treatments are 

11 most safe and effective. This can lead to weaker recommendations about which treatments to 

12 prescribe in practice. However, it may be possible to ‘borrow strength’ from adult evidence to 

13 improve our understanding of which treatments work best in children, and many different statistical 

14 methods are available to conduct these analyses. In this paper we discuss Bayesian methods for 

15 extrapolating adult clinical trial evidence to children. Using an exemplar dataset, we compare the 

16 effect of modelling assumptions on the estimated treatment effect and associated heterogeneity. We 

17 finally discuss the appropriateness of different modelling assumptions in the context of estimating 

18 treatment effect in children. 

19

20 Introduction 

21 There are various challenges associated with conducting randomised control trials (RCTs) to compare 

22 the efficacy and safety of medical interventions in children. A lower disease incidence in children 

23 means fewer patients are eligible to take part in clinical trials and research groups and pharmaceutical 

24 companies are wary of the increased effort which is required to conduct research with this population. 
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25 Further to this, young people and/or their parents/carers may not wish to take on the additional burden 

26 and time commitment associated with being in a clinical trial (1) (2).

27 Despite many diseases affecting both adults and children, these challenges mean that when compared 

28 to adults, there are usually fewer RCTs in children and therefore, a greater uncertainty about which 

29 medicines work ‘best’ to treat a particular disease or condition. This can lead to medicines being 

30 licenced (authorised for marketing on the basis of quality, safety and efficacy) in adults some years 

31 before they become available for children (2). Prescribers may also have little alternative but to use 

32 medicines off-label without having direct information to inform their decision. This in turn, can create 

33 inconsistency in which medicines are prescribed to children to treat a particular condition and may 

34 mean that not all children are receiving the most effective treatment available.

35 To inform decision making within healthcare (including which medicines to prescribe for a 

36 condition), RCT evidence is often combined using evidence synthesis techniques, such as meta-

37 analysis (MA), that take a weighted average of efficacy or safety results from multiple clinical trials 

38 (or studies) to produce a summary estimate of the comparative or relative efficacy (the effect of one 

39 treatment compared to another) of two interventions (3). An extension of this technique is a network-

40 meta-analysis (NMA), sometimes referred to as a mixed-treatment comparison, that allows for 

41 synthesis of three or more treatments and the simultaneous comparison of each treatment with every 

42 other. NMA can also provide ‘indirect comparisons’ through which estimates of the relative efficacy 

43 or safety of treatments that have not been compared in head-to-head clinical trials are produced, 

44 provided they are present in a ‘connected network’ of treatments i.e., a network where there is a path 

45 between any two interventions with paths formed of randomised comparisons (4).

46 In paediatric research, however, these analyses may still not provide sufficient evidence for healthcare 

47 decision making as the required RCT evidence may be from a small number of patients and form only 

48 a sparse or disconnected network of comparisons, meaning the pooled treatment effect remains 

49 uncertain. To overcome these issues, it may be possible to ‘extrapolate’ or ‘borrow strength’ from 

50 clinical trial evidence in a separate but related population. For the paediatric population, this could be 

51 an adult population.  Information from the adult population would be extended to make inference 
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52 about the efficacy of treatments in children and may reduce the uncertainty of treatment effect 

53 estimates in children. To justify this type of extrapolation, the disease manifestation and progression 

54 of the disease of interest, along with the exposure response relationship (that is the observed effects of 

55 a treatment at different doses) should already be established in children and the similarities and/or 

56 differences with the adult population understood (5).

57 If these conditions are satisfied, ‘borrowing of strength’ from the adult efficacy data can be facilitated 

58 by an extension of Bayesian MA or NMA, referred to as a Bayesian information sharing model 

59 (ISM). Working within a Bayesian framework allows you to combine prior information (e.g., data 

60 from adult clinical trials or clinician's perspective) about a parameter (e.g., the relative treatment 

61 effect), with that from a new study, to produce a ‘posterior probability distribution’ i.e. the revised or 

62 updated probability of an event occurring after taking into consideration new information (6). If no 

63 specific prior information is available, then a vague prior distribution can be specified in the ISM. 

64 In order to ‘borrow strength’ from the adult population, ISMs need to make certain assumptions about 

65 the relationship between adult and paediatric populations, in terms of the clinical efficacy of the 

66 treatment (7). This can range from clinical trial information of the adult population being completely 

67 generalisable to the paediatric population, where full information sharing would be appropriate, to the 

68 clinical trial information of the two populations being completely independent of one another and no 

69 information sharing can take place. The extent to which strength is borrowed from one population to 

70 another is then determined by the modelling assumptions, the precision of the data available for the 

71 different populations, and the extent of agreement across data sources (7).

72 In this paper, we use an exemplar dataset of 16 RCTs comparing two anti-sickness regimens for the 

73 prevention chemotherapy induced nausea and vomiting, to investigate how the modelling assumptions 

74 of four different ISMs impact the treatment effect estimates and associated heterogeneity in children. 

75 The ISMs compared in this paper, extend the traditional MA and we discuss the appropriateness of 

76 their assumptions in the context of estimating treatment effect in children.

77
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78 Exemplar data set 

79 Information sharing methods were motivated by an exemplar dataset containing outcomes from 16 

80 RCTs (four from paediatric populations and 12 from adult populations) comparing aprepitant (a newer 

81 antiemetic) or fosaprepitant (the intravenous version of aprepitant) with a control regimen of a 5HT3 

82 antagonist + dexamethasone, for the treatment of chemotherapy induced nausea and vomiting. 

83 To create this dataset, we identified RCTs from a recent clinical antiemetic guideline from the 

84 Paediatric Oncology Group of Ontario (POGO) (8) and the Multinational Association for Supportive 

85 Care in Cancer  (MASCC) (9). Data were commonly reported as the proportion of patients 

86 experiencing a ‘complete response’ i.e., no vomiting, from the point of chemotherapy administration, 

87 up to five days afterwards. These data were extracted and converted into the number of participants 

88 experiencing a vomiting event in the treatment and in the control arm. A table of study characteristics 

89 and extracted outcome data is provided in the supporting information S1.

90 As the incidence of cancer in children is much rarer than in adults, but the therapeutic chemotherapies 

91 used are often the same, and the effects of antiemetic medications are clinically believed to be similar, 

92 it was considered appropriate to explore information sharing methods for this example.

93 Methods 

94 The MA model

95 In the standard MA model for each study i and each arm k, the binary data in the form of events rik 

96 and total number of patients nik, are described as coming from a binomial likelihood:

97

98 𝑟𝑖𝑘  ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖𝑘 , 𝑛𝑖𝑘)    

99  

100 where pik is the probability of an event in arm k of study i, modelled on the log-scale and defining the 

101 linear predicator θik i.e., the log risk of an event in arm k of trial i:

102

103 𝑙𝑜𝑔 (𝑝𝑖,𝑘) = 𝜃𝑖,𝑘 = µ𝑖 + min(𝛿𝑖,𝑘 ― 𝑙𝑜𝑔(𝑝𝑖,1   ))   (1)
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104

105 where µi is the study specific baseline treatment effects (i.e., the baseline risk of an outcome, which 

106 must be positive) in arm 1 of trial i, defined as µi   = 𝑙𝑜𝑔(𝑝𝑖,1   ) where 𝑝𝑖,1   is given a vague prior 

107 distribution (Uniform(0,1)), 𝛿𝑖,𝑘 is the study specific relative treatment effect (i.e. the log risk ratio) of 

108 the treatment in arm k compared to the treatment in arm 1 in that trial where the relative effect of a 

109 treatment compared to itself, is set to zero:  𝛿𝑖,1 = 0. 

110 Models can be specified as having a common/fixed effect, where it is assumed that all studies estimate 

111 the same relative effect i.e. the relative effect is not expected to differ between study populations 

112 included in the analysis; or models may have random effects, where relative effects of studies are 

113 assumed exchangeable or similar, i.e. the relative effect is expected to differ between study 

114 populations included in the analysis, but is expected to fall within a certain range or distribution (3).

115 For random effects model the study specific relative treatment effects are assumed to be drawn from a 

116 normal distribution with a common mean and between trial variability (i.e., the heterogeneity 

117 parameter) 𝜏2. As we are only comparing two treatments in our application the common mean  𝑑1,2 , 

118 represents the pooled relative effect of the treatment regimen 2 (aprepitant/fosaprepitant + a 5HT3 

119 antagonist + dexamethasone) compared to the comparator treatment regimen 1 (a 5HT3 antagonist + 

120 dexamethasone) :

121 𝛿𝑖,𝑘 = 𝑁𝑜𝑟𝑚𝑎𝑙( 𝑑1,2   , 𝜏2 )    (2)

122

123  The parameter 𝑑1,2  is to be estimated and given a non-informative prior:  𝑑1,2 ~ Normal(0,1002).

124 For the fixed effects model equation 2 is replaced by: 

125 𝛿𝑖,𝑘 = 𝑑1,2     (3)

126

127
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128      Bayesian information sharing models

129 We now describe the four ISMs compared in this paper. These ISMs differ in parameters in which 

130 they share information: either relative treatment effects, or between study heterogeneity (for random 

131 effects models). As a result, different assumptions are made about the relationship between the two 

132 populations and different amounts of information are shared between them. 

133 N.B ISMs that relate the parameters of the evidence sets using an exchangeability-based relationship 

134 (where a common distribution is imposed on the parameters e.g., in the multilevel models and the 

135 random walk model) are most useful when there are multiple sources of evidence (7). As we are only 

136 considering two populations, these models are not discussed in this paper. 

137 The splitting model 

138 The first model we implement is the splitting model, which simply extends the standard MA model to 

139 accommodate the inclusion of two evidence sets but estimates model parameters separately for each 

140 population j (7). 

141 For the random effect model, equation 2 is edited to include population specific parameters:

142 𝛿𝑖,𝑘 = 𝑁𝑜𝑟𝑚𝑎𝑙( 𝑑𝑗, 1,2  , 𝜏2 )    

143 where j defines the population.  j = 1 when study index i = 1,…, nsA (indicating the adult studies), 

144 and j= 2 when i =  nsA + 1,…. , nsA + nsC (indicating the children studies), where nsA is the number 

145 of adult studies and nsC is the number of children studies.

146 For the fixed effects model, equation 3 is edited to include population specific parameters:

147 𝛿𝑖,𝑘 = 𝑑𝑗 ,1,2      (4)

148 The treatment effects for population j are given vague priors: dj,1,2~ Normal(0,1002).

149 As such, one MA is performed on the adult data, and another on data from the children, although both 

150 analyses are conducted simultaneously. In the random effects model, information on between-study 

151 heterogeneity is shared between populations and is assumed the same for adults and children i.e., the 
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152 variation in treatment effect between clinical trials is assumed the same in the adult and paediatric 

153 populations (although other assumptions could also be imposed e.g., that heterogeneity in children is 

154 proportional to adults). This produces a marginal benefit, in terms of supporting the estimation of 

155 treatment effect in children, as when there are few children studies there is little information about the 

156 variation in treatment effect between studies.

157 The fixed effect version of this model does not share any information between the populations, rather 

158 it estimates the treatment effects separately in adults and children, assuming they are completely 

159 independent of each other (see equation 4). 

160

161 Functional relationship models

162 This ISM assumes parameters are related using a deterministic function i.e. assuming that the relative 

163 effect in one population can be written as a function of the relative effect in the other (7): 

164 𝑑𝐶ℎ𝑖𝑙𝑑 = 𝑓(𝑑𝐴𝑑𝑢𝑙𝑡) (5)

165 Where dChild is the parameter that relates to the children's evidence and 𝑑𝐴𝑑𝑢𝑙𝑡 the parameter that 

166 relates to the adult evidence. The function f () can take different forms. Here we explore two 

167 relationships.

168 The ‘lumping’ model, ‘lumps’ the data together from the evidence sets and therefore assumes the 

169 adult data is completely generalisable to the children i.e., the function in equation 5 is the identity 

170 function and there is no difference in the relative effect between the two populations. This is 

171 equivalent to not distinguishing between adult and paediatric data and carrying out a simple meta-

172 analysis using all the data.

173 The proportional effects model, assumes that the relative risk estimated in children is proportional to 

174 the relative risk estimated in the adult population, so that there is an additive relationship on the log 

175 relative risk scale:

176 𝑑2, 1,2   = 𝑑1, 1,2   + λ       
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177 A vague prior distribution is specified for the relative treatment effect in adults on the log relative risk 

178 scale  𝑑1, 1,2  ~ (Normal(0,1002)) and the change (in the log-RR scale in children) is measured by a 

179 parameter lambda (λ), which is also given a vague prior distribution λ~ (Normal(0,1002)) (although an 

180 informative prior could be used for λ if appropriate). In this model, information sharing takes place 

181 from adult to children but also vice-versa. An alternative way of implementing this model is through 

182 modifying the BUGS code to include of a ‘cut’ function (4)(see supporting information S2).

183

184 Meta-regression 

185 An alternative model is where the two populations are indicated by a binary study-level covariate and 

186 a regression parameter i.e., the difference in treatment effect between the two populations, is 

187 estimated. Here the linear predicator (equation 1) is modified as follows (10):  

188 θi,k = µi + 𝛿𝑖,𝑘  + β1k  * Xi      

189 Where β1k  is the covariate effect of the indirect or (or adult) population Xi on the treatment effect. 

190 This model allows for a test of interaction between the relative treatment effect and the binary study 

191 level covariate that identifies the adult population. This will assess whether the relative treatment 

192 effect is dependent on data arising from the adult or children’s population. In this model, information 

193 sharing only occurs in random effects models where the heterogeneity is assumed equal across 

194 populations. In a fixed effect model this is equivalent to a subgroup analysis. 

195

196 Implementation 

197 All analyses were carried out in OpenBUGS version 3.2.2 (11) and code to implement all models can 

198 be found in the supporting information S2. Whilst we include only one treatment comparison in our 

199 analyses (equivalent to a pairwise meta-analysis) and only two arm trials, the code provided in the 

200 supporting information S2 will accommodate multiple treatment comparisons and studies with three 

201 or more arms whilst adequately accounting for multiple random effects that are correlated (see (4)). 
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202 Separate MA models were conducted for adults and for children, followed by the four ISMs. For all 

203 models, vague prior distributions were used for all trial baselines and for relative treatment effects 

204 (Normal(0,1002)). For random effects models, a minimally informative prior distribution 

205 (Uniform(0,2)) was used for the between-study heterogeneity parameter. Results are based on 50,000 

206 interactions on three chains after a burn-in of 10,000. Convergence was assessed visually by checking 

207 the mixing of chains. Model fit statistics including the deviance information criteria, and total residual 

208 deviance from each ISM model, along with treatment effect estimates and associated heterogeneity 

209 (and 95% credible intervals) were compared to those from the separately applied NMAs for adults and 

210 for children. 

211

212 Results

213 Table 1 presents treatment effect estimates and model fit statistics from both fixed and random effects 

214 models analysing data from adults and children’s populations separately, and together, using the four 

215 proposed models. The ‘lumping’ model, which assume relative effects in both populations are the 

216 same, produced treatment effect estimates closer to those of the MA using adult only data and had a 

217 larger between study heterogeneity compared to the other models, suggesting heterogeneity might be 

218 explained by assuming a less restrictive relationship for the relative effects across the populations. 

219 The splitting model (with shared heterogeneity when random effects are considered), proportional 

220 effects and meta-regression model, produced estimates for adults and children comparable to the MAs 

221 conducted separately for the populations and the precision of the treatment effect estimate for children 

222 produced by the random effects model was improved in all models. Although there was little change 

223 in precision in fixed effect models, model fit was slightly improved (residual deviances were closer to 

224 the number of data points) compared to the lumping model. Across all information sharing models, 

225 fixed effects and random effects models produced comparable DICs. The total residual deviance was 

226 marginally lower for the random effects models (table 1), although differences were small meaning 

227 that in general the simplest of the two models (i.e., the fixed effect model with no additional 

228 parameters – ‘lumping model’) would be selected. 
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229 Lamba and beta estimates, indicating the difference between the treatment effect estimates in children 

230 and adults are comparable, with both models estimating a 14% and 13% increase in the relative risk 

231 for children compared to adults, for the fixed and random effects models respectively, although the 

232 95% CrI for the latter includes the possibility of no difference in effects across the populations for 

233 both models (table 1).
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234 Table 1. Results from MA and ISM models comparing aprepitant or fosaprepitant to control regimen for the treatment of chemotherapy induced nausea and vomiting. 

Fixed effect model Random effect modelModel Number 

of data 

points

RR (95%CrI) DIC totresdev* RR (95%CrI) Between-study 

heterogeneity (SD)

DIC totresdev*

Adults’ data only 24 0.672 (0.626 to 0.720) 165.7 23.72 0.672 (0.614 to 0.731) 0.064 (0.005 to 0.189) 167.2 22.88

Children’s data only 8 0.768 (0.689 to 0.849) 48.6 11.32 0.754 (0.468 to 1.1) 0.287 (0.01 to 1.140) 48.1 8.54

INFORMATION-SHARING MODELS

Lumping model 32 0.698 (0.656 to 0.740) 215.7 37.55 0.695 (0.638 to 0.751) 0.079(0.008 to 0.198) 215.7 32.76

Splitting model**

Adults 0.672 (0.626 to 0.720) 0.673 (0.616 to 0.733)

Children 

32

0.767 (0.687 to 0.849)

214.3 35.04

0.762 (0.656 to 0.862)

0.052(0.003 to 0.181) 215.3 33.02

Proportional effects model

Adults 0.671 (0.626 to 0.720) 0.673 (0.614 to 0.733)

Children 0.766 (0.687 to 0.848)

214.3 35.05

0.758 (0.652 to 0.861)

0.066 (0.005 to 0.184) 215.4 32.9

     Lambda (relative risk scale)

32

1.143 (1.004 to 1.291 1.129 (0.948 to 1.315)

Meta-regression**

Adults 0.672 (0626 to 0.720) 0.671 (0.618 to 0.731)

Children 0.766 (0.685 to 0.847)

214.2 35.02

0.761 (0.655 to 0.862)

0.066 (0.003 to 0.183) 215.3 32.82

Beta (relative risk scale)

32

1.139 (1.000- 1.290) 1.125 (0.950-1.028)

235 * compare to the number of data points, **Fixed effect model does not share information.

236
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237 Discussion

238 In situations where the disease manifestation and progression, along with the exposure response 

239 relationship of a treatment is understood in children, ISMs could help to overcome the scarcity of 

240 clinical effectiveness evidence in this population, by including adult data into analyses(5). As ISMs 

241 may improve the precision or certainty of the relative treatment effect estimates in children, the 

242 analyses could maximise the usefulness of an existing evidence base in children to inform decisions 

243 about which treatment to prescribe for paediatric diseases and or illnesses. In this work we have 

244 compared the relative treatment effects and associated heterogeneity produced by different ISMs that 

245 incorporated adult data, to estimates from a MA using only data from children. 

246 We found that when treatment effect estimates for children produced by the model that does not 

247 distinguish between populations (‘lumping model’) were compared to those produced by the MAs 

248 conducted separately for children, the estimates were closer to those from the adults MA. This is 

249 because there are more studies in the adult population and therefore the results are dominated by the 

250 adult information. In the random effect model the between study-heterogeneity was greater than that 

251 of the other information sharing models (Table 1). This is due to the assumption that the relative 

252 treatment effect and heterogeneity are equal for both populations and therefore the model needs to 

253 account for the additional heterogeneity resulting from pooling adult and paediatric data. Thus, we 

254 consider the ‘lumping model’ is likely not an appropriate choice, particularly when there is potential 

255 for differences in relative treatment effect between adults and children, as pooled estimates produced 

256 for children may not reflect the true effectiveness of the treatment in this population. 

257 The ‘splitting’ model produced very similar treatment effect estimates to the MAs conducted using 

258 only children’s data. For the fixed effect model, this is expected as the model does not share 

259 information between the populations. While perhaps safest, in terms of not mistakenly assuming 

260 similarity in clinical efficacy, this maintains the status-quo of evidence sparsity for children. The 

261 random effect model shares information on the between study heterogeneity and therefore estimated 

262 this parameter in children more precisely than when the MA is conducted separately for children 

263 (Table 1), as it is able to borrow information from the adult data to better estimate the parameter. We 
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264 note that the plausibility of this assumption (in our example, that the spread of effects in antiemetic 

265 trials in children would be the same as seen in adults), would need to be considered by paediatrics 

266 oncology experts. If considered appropriate, this model may be useful for reducing the uncertainty 

267 around treatment effect estimates when there are very few RCTs in children and a random effects 

268 model is considered appropriate.

269 The proportional effects model, which estimates the difference (λ ) between the treatment effects 

270 across the two populations, produced comparable relative effects estimates to the MAs containing 

271 only children’s data (Table 1). This model is particularly advantageous, as it is able to include the 

272 adult data to support the sample size in the paediatric population, without assuming that the relative 

273 effectiveness is identical. This may be the ‘safer’ option when extrapolating from adult clinical trial 

274 data, as the efficacy of medications may vary from that of children due to differences in the way that 

275 medicines are absorbed, distributed, metabolised, and excreted in the body (2) (12).

276 However, in the proportional effects model, information sharing takes place from adult to children but 

277 also vice-versa, which may not be desirable. When the model was modified to prevent the data from 

278 the children affecting the estimate of the adult population, results were comparable to the MAs 

279 containing only data from children (see Supporting information S3). This modification may be helpful 

280 when adult data are particularly abundant and it is, therefore, not necessary, or desirable for the 

281 children’s data to influence adult relative effect estimates or decisions already made for adults. 

282 Finally, the meta-regression model that estimates the effect of a binary covariate (adult/child) on the 

283 treatment outcome, again produced comparable results to the MAs containing only children’s data and 

284 produced very similar estimates to the proportional effects model. This is expected as both models are 

285 estimating conceptually similar parameters in different ways, the proportional effects model estimates 

286 λ as an unknown parameter from the treatment effect estimates, whilst the meta-regression model 

287 includes the adult/children as a binary study-level covariate in the linear predictor, then estimates the 

288 difference in treatment effect between adults and children. The meta-regression model may be 

289 particularly useful to explore further differences in treatment effect between adults and children. The 

290 model can be extended to include baseline risk or other covariate in the model, to understand whether 
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291 differences are attributable to differences in underlying risk or other population differences. The code 

292 to implement this model can be found in the supporting information S2. 

293 Of the methods discussed, we would advocate the use of the proportional effects or meta-regression 

294 models to incorporate adult data into analyses that estimate the relative effectiveness of treatments in 

295 children, as these methods can account for the scenario where children's responses to medical 

296 intervention differs from adults, and this difference can be quantified by parameters estimated from 

297 the data. Although not explored in this paper, there are alternative ISMs available that can impose 

298 constraints on the relationship between the adult and child population e.g., assuming the relative 

299 effectiveness of one population is assumed to be larger or smaller than another or is expected to 

300 follow a particular mathematical function, however for these to be considered appropriate in the 

301 context of ‘borrowing strength’ from adult data, a substantial amount of previous knowledge and 

302 clinical advice would be required to make such assumptions with confidence. 

303 We have shown ISM methods can improve the certainty of clinical effectiveness estimates in the 

304 paediatric population. However, we note that that the performance of the methods can differ under 

305 different conditions e.g., when used with datasets with different features and different network 

306 structures (10). Ultimately, improving the certainty of estimates in children may help to reduce the 

307 need for additional RCTs in children, and aid clinicians and patients in making treatment decisions, 

308 from the existing evidence base. The models may also be used to facilitate prediction of the effect of 

309 new treatments in children (through estimation of a prediction interval) for example, if models such as 

310 the ‘proportional effects model’ or ‘meta-regression model’ showed treatment effect estimates of 

311 current treatments options were consistent between adults and children, (either consistently similar or 

312 had similar differences across comparisons). These predictions could then lead to smaller trials being 

313 required to confirm the relative effects of new drugs in children, which could improve the evidence-

314 base in this population and lead to faster approval and uptake of effective treatments. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.02.02.23285367doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23285367
http://creativecommons.org/licenses/by/4.0/


15

315 Limitations 

316 Here we have focused on simple approaches to information sharing in pairwise meta-analysis, 

317 however, other methods have been proposed, namely using the external data as prior information (13) 

318 or model averaging approaches (14) to combine the different evidence sources, which we have not 

319 evaluated in this paper. 

320 Our work uses an example dataset containing only trials making the same treatment comparison. 

321 Collecting data to form a full network of treatments where direct and indirect evidence is available 

322 (within populations), could result in stronger evidence and the potential for more information sharing. 

323 It would also allow for testing further assumptions e.g., whether relative treatment effects are similar 

324 for adults/children across multiple treatments or within a class of treatments but not another.
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