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Abstract—The information from the components obtained by 

waveform decomposition is usually used to inverse topography, 

and classify tree species, etc. Many efforts on waveform 

decomposition algorithms have been presented, but are lack of 

comparison analysis and evaluation. Thereby, this paper 

compares and analyzes the performance of five waveform 

decomposition algorithms, Gaussian, Adaptive Gaussian, Weibull, 

Richardson-Lucy (RL), and Gold under different topographic 

conditions such as forests, glaciers, lakes, and residential areas. 

The experimental results reveal that (1) the Gaussian algorithm 

causes the biggest fitting error at 9.96 mV in forested area. It is 

easy to identify multiple dense peaks as single peaks. (2) There are 

many misjudged, superimposed, and overlapped waveform 

components separated by the Weibull algorithm. The Adaptive 

Gaussian is more capable of fitting complex waveforms, but has 

122 more outliers than the Weibull algorithm does. (3) The Gold 

and RL algorithms decompose the largest number of waveform 

components (272.2k and 265.9k) in forested area; both RL and 

Gold algorithms can effectively improve the separability of peaks. 

(4) The RL algorithm is only more effective for the area with 

sparse vegetation than the Gold algorithm does, i.e., the Gold 

algorithm is capable of processing data with dense vegetation 

areas at a lowest false component detection rate of 1.3%, 0.9%, 

1.1%, and 0.1% in four areas. (5) The Gaussian and Gold 

algorithms have much faster decomposition speed at 1,000/s and 

2,000/s than the other three algorithms do. These results are useful 

for selecting different algorithms under different environments. 

 
Index Terms—airborne LiDAR, waveform decomposition, 

Gaussian, deconvolution, Gold. 

 

I. INTRODUCTION 

URRENTLY, airborne LiDAR is widely used in distance 
measurement, vegetation monitoring, urban modeling, and 

marine mapping [1]-[5]. The pulse width and amplitude change 
when the laser beams encounter objectives of different heights. 
The echo signal is usually a superposition of multiple pulses as 
well as the sum of various noises. Therefore, a decomposition 
method is needed to denoise and decompose the echo signal [6]. 
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By analyzing the amplitude, width, and other characteristics of 
the decomposed waveform, the geometric structure, physical 
characteristics, and vertical distribution of the objectives 
illuminated by the laser pulse can be obtained [7]. For example, 
the distance or height of the objective can be calculated by using 
the position of the waveform peaks [8]; the amplitudes of the 
peaks can be used as a reference for filtering out the point from 
the ground [9], etc. 

There are two main types of algorithms used to decompose 
LiDAR waveforms: mathematical simulation and 
deconvolution. The former usually assumes that the LiDAR 
pulses and the backscattering cross-section of the scatterer 
approximates the Gaussian distribution [10]. Therefore, many 
mathematical simulation algorithms are based on the Gaussian 
distribution. For example, Wagner et al. first proposed and 
implemented a method based on the Gaussian functions for 
small-footprint airborne laser scanning (ALS) data in 2006 [11]. 
Chauve et al. used the generalized Gaussian functions 
(including logarithmic and Adaptive Gaussian functions) as 
kernel functions for waveform decomposition in 2007 [12]. 
However, since the echo signal was not modeled well enough, 
the error for the extracted information was relatively large. In 
2017, Bruggisser et al. used the Skew Normal Distribution 
(SND) as a kernel function to implement waveform 
decomposition for the data in forested areas [13]. In 2017, Zhou 
et al. applied the Weibull function to the decomposition of full-
waveform LiDAR data and found that the fitting model was 
flexible enough to simulate simple or complex waveforms [14]. 
However, the fit was poor and the convergence was slow when 
the waveform was complex. 

The mathematical simulation algorithm does not take into 
account the interference of the LiDAR detector and system to 
the waveform, which also leads to the loss of the objective 
information. To reduce the unnecessary system effects and 
restore the true distribution of objectives, a second algorithm, 
the deconvolution algorithm, is developed. In 2010, Zhu et al. 
first implemented the Gold algorithm for processing ALS full-
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waveform data. They heralded its great potential in processing 
LiDAR data [15]. In 2011, Roncat et al. addressed the inherent 
pathological problem of deconvolution algorithms and refitted 
the waveform using B-spline assisted deconvolution algorithm. 
The fit provided backscattered cross-sections for different 
objectives to be measured [16]. However, the computational 
complexity of B-spline processing was greatly increased, and 
the characteristics of waveforms were easy to be lost. In 2011, 
Wu et al. validated three algorithms of Non-negative least 
squares [17], Wiener filtering [18], and Richardson-Lucy (RL) 
[19]. The RL deconvolution algorithm was concluded to be the 
best. However, from Zhou's experiments in 2017, it was known 
that the RL algorithm suffers from slow convergence and poor 
fitting accuracy in densely vegetated areas [10]. Other 
published studies have successfully applied different 
deconvolution algorithms, such as the Sparse Constrained 
Regularization algorithm [20] and Bayesian Inference [21], to 
recover the true cross-sections of the objectives. 

In recent years, a large number of waveform decomposition 
algorithms have emerged, but there are a few comparative 
experiments available that are based on real application data, 
such as Parrish et al. based on laboratory measuring data [22]; 
Wagner et al. [23], Xiu et al. [24], and Wang et al. [25] based 
on simulated data. Therefore, we choose some algorithms for 
comparative analysis. We first consider the selection of 
algorithms that have been successfully applied by scholars to 
the processing of real application data. Therefore, a few 
classical, improved, and frequently-used algorithms in recent 
years, as well as representative algorithms in the two major 
categories are selected. Finally, the Gaussian, Adaptive 
Gaussian, Weibull, Richardson-Lucy and Gold, were selected. 
Comparative analysis is performed under different 
environmental characteristics to derive their advantages and 
limitations. 

II. FIVE WAVEFORM DECOMPOSITION ALGORITHMS 

A. Basic Principles of Waveform Decomposition 

The waveform decomposition is done by treating the echo 
signals as a combination of different object reflections within 
the laser spot. The objects with different spatial distribution are 
extracted from the reflected signals, to locate and identify the 
objects. Therefore, the waveform decomposition is considered 
as a superposition of several waveform components [8], and the 

original echo signal is fitted using an appropriate functional 
model. Fig. 1 shows the results of waveform decomposition, 
with the blue components indicating the specific time position, 
intensity, and width. Through the analysis of the components, 
information about the objective characteristics can be obtained. 
There are two main steps in the waveform decomposition: 1) 
estimation of the initial parameters; 2) optimization of the 
parameters and fitting the waveform. 

The initial parameter estimation is a very important aspect of 
the waveform decomposition. Its purpose is to determine the 
number of effective echoes and the initial values that needed to 
accurately fit objective functions [26]. The existing parameter 
estimation methods include the Peak method, Gravity method, 
and Inflection Point method [27]. In order to detect hidden 
peaks better, this paper uses quadratic detection to estimate the 
initial parameters and the number of peaks (waveform 
components), as suggested by Wagner et al [23]. It is done by 
first using the over-zero point of the first-order derivative to 
detect the peaks [28]. The estimation of the initial parameters 
determines the initial value of the fitted function. Parameter 
optimization can be achieved by minimizing the error between 
the echo signal and the fitted signal. The first fit is performed 
using nonlinear least squares after detecting the peaks. The 
quality of the fit is assessed by the following equation: 
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where ∑ (𝑦𝑦𝑘𝑘 − 𝑓𝑓(𝑥𝑥𝑘𝑘))2𝑁𝑁𝑘𝑘=1  is the sum of the residuals between 
the observed waveform and the fitting function, N is the number 
of samples, and p is the fitting parameter? 

For complex waveforms, more precise peak detection is 
required. For example, when two overlapping echoes are very 
close, only one maximum value is detected but there are three 
inflection points (rather than two inflection points of a standard 
laser pulse). Our solution is to perform a second pulse detection 
of the difference between the observed waveform and the 
previous fit. If a peak is detected, the fit is refitted using the new 
component. The resulting ξ  value is compared to the previous 

one and this procedure is repeated until the ξ  value stops 

decreasing. The iterations for parameter optimization end if the 
difference of RMSEs (root mean square errors) between the 
observed and the fitted data is three times less than the standard 
deviation of the mean noise [18], [29]. The mean noise is 
estimated for every return waveform at all sampling points of a 
waveform. If the estimated waveform amplitude is less than 
three times the standard deviation of the mean noise, the 
waveform component is considered false and will be rejected 
[8], [22], [30]. The signal can be fitted on this basis using the 
following different algorithms. 

B. Gaussian Algorithm 

The Gaussian algorithm was first proposed by Wagner et al 
[11]. They demonstrated the validity of decomposing the 
waveform using the Gaussian function as a kernel function 
through radar equation [11]. The basic idea is to use the 
Gaussian model with a shape similar to the laser pulse to fit the 
echo signal. The analytic expression for the Gaussian function  

Fig. 1.  Waveform component obtained from waveform decomposition. 
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can be written as: 
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where n is the number of waveform components, 𝐴𝐴𝑗𝑗, 𝜇𝜇𝑗𝑗, and 𝛿𝛿𝑗𝑗 
are the amplitude, peak position, and standard deviation of the 
j-th waveform component respectively. 

C. Adaptive Gaussian Algorithm 

Considering that the Gaussian algorithm may not be suitable 
for fitting complex waveforms, Chauve et al. were the first to 
propose the use of a generalized Gaussian function (Adaptive 
Gaussian) to fit the echo signal [12]. The basic idea is to 
introduce another variable (also known as rate parameter) to 
minimize the residuals of the model. The Adaptive Gaussian 
function can simulate a sharper or flatter Gaussian shape when 
the rate parameter takes on a different interval. This allows the 
component to reproduce the actual waveform more accurately. 
The expression for the Adaptive Gaussian algorithm can be 
written as: 
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The rate parameter λ in Equation (2) (Gaussian) is 2, but the rate 
parameter λ in Adaptive Gaussian is more flexible than that in 
Gaussian. 

D. Weibull Algorithm 

The Weibull function is a failure distribution function 
derived from statistical theory by Weibull [31]. It was first 
applied to image processing for the Synthetic Aperture Radar 
(SAR) by Tison et al. [31]. Its basic idea is to fit symmetric or 
asymmetric peaks using a function containing four parameters. 
Its function can be written as: 
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where 𝐴𝐴𝑗𝑗 is the magnitude, 𝜇𝜇𝑗𝑗 is the position parameter, k (>0) 
is the shape parameter, and 𝛿𝛿𝑖𝑖 is the scale parameter. The shape 
parameter k captures the asymmetry or skewness of the 
waveform, overcoming the disadvantage that the Gaussian 
function only applies to symmetric distributions. 

E. Richardson-Lucy Algorithm 

The Richardson-Lucy (RL) algorithm is a nonlinear iterative 
algorithm developed by Richardson and Lucy [32]. It was 
originally used to rebuild astronomical images. Its basic idea is 
to maximize the likelihood of the recovered image by using an 
Expectation Maximization algorithm [33]. When the waveform 
profile of a LiDAR echo signal is viewed as a 1 × N image [19], 
the convolution of the t-th iteration solution is as follows: 
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where * is the convolutional operation, 𝑃𝑃(𝑥𝑥) is the observed 
value at position x, 𝑃𝑃𝑡𝑡(𝑥𝑥) is the most probable value, and 𝑅𝑅(𝑥𝑥) 
is the point spread function. The residual of each iteration is 

calculated by the following equation: 
( ) ( ) ( )( )t t xP  x P x * Rγ = −       (6) 

The residual will converge as the iteration progresses. The 
iteration can be terminated by selecting a specific residual 
threshold or by setting a constant number. 

F. Gold Algorithm 

The Gold algorithm is a non-oscillatory, stable 
deconvolution algorithm, pioneered by Zhu et al. for processing 
small-footprint LiDAR data [15]. The solution of the Gold 
algorithm is always non-negative [34], an important property 
applicable to waveform decomposition. The Gold algorithm has 
been successfully applied to the decomposition of multiple 
peaks in γ-ray spectroscopy [34]. For the deconvolution of 
discrete data, it is solved by iterating on the following equation: 

( ) ( ) ( )
n 1
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where ℎ(𝑖𝑖) is the impulse response function, x and y are the 
input and output vectors respectively, n is the sampling number 
of vector h, i is the i-th sampling point, and 𝑥𝑥(𝑘𝑘)  is the 
differential backscattering cross-section of the k-th waveform. 
After matrix transformation, the Gold function can be expressed 
as the following equation [35]: 
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For the deconvolution algorithms Gold and RL mentioned 
above, the system impulse response, and output pulses must be 
known to deconvolute the echo signal [36].  

III. STUDY SITES AND LIDAR DATA 

A. Study Sites 

Combining different geographies, ecoregions, and varying 
numbers of routes, the following study sites were selected to 
test the robustness of different algorithms in processing full-
waveform LiDAR data. As shown in Fig. 2: (1) Yellowknife 
(Fig. 2a), the capital of the Northwest Territories of Canada, 
which is flat with sparse vegetation, mainly birch and spruce 
[37]. There are also many outcrops of rock. The 24,366 sets of 
waveform samples were intercepted for the experiment. (2) 
Ogooué province (Fig. 2b), which belongs to the Gabonese 
Republic, is located on the west coast of central Africa. The 
region is dotted with dense rainforest vegetation, including 
African mahogany and a variety of mahogany trees with high 
biodiversity [38]. A flight line over Ogooué province was 
selected and 62,456 sets of waveform data were cropped for 
experiment. (3) Louisiana State (Fig. 2c), this state is located in 
the southern part of the United States with low and flat terrain. 
There are many residential and commercial buildings in this 
area with a dense population. The trees are mainly pine and 
cypress. More information can be found in [39]. A flight line 
that flew over the city was selected, with which 30,518 sets of 
the waveform data were extracted for experiment in this paper. 
(4) Larsen Harbor (Fig. 2d), a seaport in Antarctica, at the 
southeastern tip of South Georgia. The area is covered by an ice 
sheet with an average thickness of about 1.9 km [40]. 42,861 
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sets of waveform samples were collected from a single flight 
line for waveform decomposition. These four areas including 
sparse and dense vegetation are suitable for comparing and 
testing the performance of different LiDAR waveform 
decomposition algorithms. 

LiDAR data were collected via the NASA Goddard Space 
Flight Center Airborne Observation Platform 
(https://lvis.gsfc.nasa.gov). The platform is equipped with the 
Hyperspectral Imaging Spectrometer, Land, Vegetation, and 
Ice Sensor (LVIS). The full waveform data sets for the above 
four regions were acquired using a LiDAR system with 1,064 
nm pulsed laser [41]. The average flight altitude of the NASA 
aircraft is 1,000 m above the ground. At this altitude, the ground 
spot size is about 25 cm. The laser emits at a frequency of up to 
400,000 Hz with about 1-4 waveforms per square meter. The 
waveforms store the echoes in digital form, each with 16-bit 
intensity information which can be assumed to be the amplitude 
of a waveform. The data set for Larsen Harbor was collected on 
September 26, 2015. 700,000 waveform data were collected in 
the flight line, and each waveform is split into 528-time bins 
with 1 ns interval. The data set for Yellowknife was collected 
on July 12, 2019. The flight line contains 350,000 waveform 
data, and each waveform is split into 1,216-time bins with 1 ns 
interval. The data set for Ogooué was collected on February 20, 
2016, and the data set for Louisiana was collected on May 23, 

2019. Both regions contain 400,000 waveforms for the selected 
flight lines, each waveform being split into 1,024-time bins with 
1 ns interval. More information can be found in [42]. 

B. Data Pre-processing 

The LiDAR echo signals are affected by factors such as the 
environment and LiDAR system [43], [44]. As a result, the echo 
signals are often mixed with environmental noise. The noise 
makes the objective information reflected by the LiDAR pulse 
inaccurate or even maps out information that does not exist. 
Generally, the noise manifests itself as a small amount of jitter 
in the waveform curve. However, it can cause a lot of 
interference to the subsequent waveform decomposition. 
Therefore, denoising is a prerequisite for waveform 
decomposition. Before the waveform decomposition, all 
waveform data are pre-processed by MATLAB 
(https://www.mathworks.com/) with steps such as threshold 
denoising and mean filtering. The detailed description for 
denoising LiDAR data can be referenced to our previous 
publication, i.e., Long et al. [45]. Then the waveform 
decomposition of the data was performed via the R language 
(https://www.r-project.org/) [46], [47]. The LVIS system 
records the mean noise value of each waveform sample in real-
time, which is very helpful for denoising. The following 
experiments are based on a good denoising effect.  

 

 

 
 
 
 
 

IV. RESULTS AND DISCUSSION 

A. Comparison Analysis of the Number of Components 

In order to effectively evaluate the performance of the five 
algorithms, Table I lists the results when using different 
numbers of waveform components. The method proposed by 
Parrish et al. [22] is adopted to eliminate the effect caused by 

the noise to the decomposition accuracy, i.e., the waveform 
component is considered false, if the estimated waveform 
amplitude is three times less than the standard deviation of the 
mean noise. As observed from Table I, the following 
conclusions can be drawn up: 

1) The Gold algorithm can produce the largest number of 
waveform components (272.2k) and the Gaussian algorithm the 
lowest (125.4k) among the five algorithms in the Ogooué area. 

 
Fig. 2.  Location of LiDAR echo datasets in four regions of Yellowknife, Ogooué, Louisiana, and Larsen Harbor. 
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Similar results are obtained in the Yellowknife area. This result 
indicates that the Gold algorithm has a strong decomposition 
ability, especially in the case of multiple echoes in forested 
areas. However, the RL algorithm decomposes the number of 
components (55.6k) more than the Gold algorithm (53.0k) in 
the ice-covered region of Larsen Harbor. These results indicate 
that the RL algorithm has a better decomposition performance 
than the Gold algorithm does in the region with simple echoes. 

2) The Gaussian, Adaptive Gaussian, Weibull, and RL 
algorithms have 13.7%, 4.7%, 6.5%, and 3.8% probability of 
detecting false components in the Ogooué region, respectively. 
However, the Gold algorithm significantly reduces the false 
components detection rate to 1.3%. The number of waveform 
components retrieved by the Weibull algorithm decomposition 

(189.7k) is similar to that retrieved by the Adaptive Gaussian 
(198.6k), but the Adaptive Gaussian algorithm is more 
successful in decomposing the waveform components than the 
Weibull algorithm does. 

3) The Adaptive Gaussian algorithm decomposes the 
waveform into 1 to 4 waveform components at 47.7k from the 
Louisiana data, which is more than the RL (38.1k) and Gold 
(38.5k) algorithms do; the Adaptive Gaussian algorithm 
decomposes the waveform into 5 to 8 components at 8.2k, 
which is much less than that by both RL (42.3k) and Gold 
algorithms (43.6k). These results indicate that both RL and 
Gold algorithms have a high ability in the detection of hidden 
peaks. 

 
 

B. Comparison Analysis of the Component Position 

To further explore the characteristics of the five algorithms, 
the samples including simple and complex waveforms are 
selected to represent the differences between the original 
signals and the fitted signals. Their results are shown in Fig. 3 
and Fig. 4. 

1) As observed from Fig. 3 for the Gaussian, Adaptive 
Gaussian, and Weibull algorithms decomposing four sets of 
waveform samples, it has been shown that: 

(a) After denoising, the Gaussian algorithms tends to 
generalize multiple superimposed peaks or several close peaks 
to individual peaks (see red box in Fig. 3(a3) and (a4)). In visual 
inspection, Multiple superimposed and mismatched waveform 
components with the original waveform also appear in Weibull 
(see red box in Fig. 3(c4)). However, in the case of continuous 

and narrow peaks, the Adaptive Gaussian accurately separates 
ten waveform components (see Fig. 3(b4)). This phenomenon 
indicates that the Adaptive Gaussian algorithm is highly 
capable of detecting the waveforms with multiple dense peaks. 

(b) Both Adaptive Gaussian and Weibull algorithms 
decompose 1 or 2 more waveform components than the 
Gaussian algorithm does. For the first data set of waveforms, 
the 3rd waveform component of the Weibull algorithm is 
misjudged (see red box in Fig. 3 (c1)). This phenomenon shows 
that the accuracy of the Adaptive Gaussian algorithm is higher 
than that of the Weibull algorithm. 

(c) The 2nd component of the Adaptive Gaussian algorithm 
is more like a complement to the 1st component (see red box in 
Fig. 3(b2)). The same phenomenon occurs as does with the 
Gaussian and Weibull algorithms. Retrieved by the Weibull 
algorithm, the 4th and 5th waveform components almost overlap 

TABLE I 
THE NUMBER OF DECOMPOSED COMPONENTS OBTAINED BY THE FIVE ALGORITHMS FOR FOUR REGIONS OF OGOOUÉ, LOUISIANA, YELLOWKNIFE, AND 

LARSEN HARBOR 

Number of components 1-2 3-4 5-6 7-8 9-10 11-12 13-14 False Total Effective 

O
go

ou
é 

Gaussian 42,895 54,098 23,745 4,207 439 33 0 17,182 125,417 108,235 

Adaptive Gaussian 44,715 80,307 51,551 17,272 3,830 695 201 9,333 198,571 189,238 

Weibull 43,666 76,151 49,244 16,515 3,513 578 28 12,330 189,695 177,365 

RL 28,902 70,026 78,856 54,846 25,019 6,942 1,320 10,105 265,911 255,806 

Gold 28,692 73,320 81,285 56,507 24,940 6,624 844 3,539 272,212 268,673 

L
ou

is
ia

na
 Gaussian 22,534 8,619 1,926 344 37 0 0 2,476 33,460 30,984 

Adaptive Gaussian 30,532 17,187 6,473 1,671 259 33 0 1,179 56,155 54,976 

Weibull 29,806 16,128 6,243 1,641 241 22 0 2,488 54,081 51,593 

RL 18,798 19,317 23,221 19,078 10,862 4,190 1,180 3,769 96,646 92,877 

Gold 19,470 19,003 23,735 19,930 10,181 2,536 318 857 95,173 94,316 

Y
el

lo
w

kn
if

e Gaussian 21,141 969 213 21 0 0 0 470 22,344 21,874 

Adaptive Gaussian 24,272 2,373 1,046 199 27 0 0 419 27,917 27,498 

Weibull 23,708 1,857 933 156 27 0 0 788 26,681 25,893 

RL 23,846 2,282 1,314 220 0 0 0 249 27,662 27,413 

Gold 24,015 2,268 1,425 225 9 0 0 272 27,942 27,670 

L
ar

se
n 

Gaussian 43,952 2,027 137 0 0 0 0 738 46,116 45,378 

Adaptive Gaussian 45,283 4,250 684 101 18 0 0 634 50,336 49,702 

Weibull 45,099 4,132 653 94 18 0 0 1,669 49,996 48,327 

RL 43,680 8,786 2,454 563 102 0 0 56 55,585 55,529 

Gold 44,536 6,667 1,525 212 9 0 0 27 52,949 52,922 
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(see red box in Fig. 3(c4)). These cases reveal a fact that the 
Adaptive Gaussian and Weibull algorithms are prone to 
overfitting. 

2) As observed from Fig. 4 for the RL, Gold deconvolution 
algorithms, and Gaussian algorithm, it can be seen from that: 

(a) After the RL and Gold algorithms deconvolute the 
original waveform, a large change in pulse width and amplitude 
happens when compared to the original waveform (see solid red 
lines in Fig. 4(b2) and (c2)). This is indeed the result due to 
eliminating the impacts of the LiDAR system and output pulses. 
Therefore, the RL and Gold algorithms are able to improve the 

separability of waveform with multiple dense peaks. 
(b) The Gold algorithm decomposes three waveform 

components, which is one less than the RL algorithm does (see 
red box in Fig. 4 (c1)). This phenomenon reveals that the Gold 
algorithm is inferior to the RL algorithm when dealing with 
simple waveforms. 

(c) It was also noted that the RL and Gold algorithms 
amplify the noise amplitude as the number of the iteration 
increases. This phenomenon results in the formation of false 
peaks, as shown in the red boxes in Fig. 4 (b2) and (c2).

 
Fig. 3.  Comparisons of the decomposition results with the Gaussian, Adaptive Gaussian, and Weibull algorithms for 4 waveform samples. The red solid line is 
the echo waveform. The black dashed line is the fitting waveform. The colored dashed lines are waveform components after decomposition. 

 
Fig. 4.  Comparisons of the decomposition results with the Gaussian, RL, and Gold algorithms for 2 waveform samples. The red solid line is the echo waveform. 
The black dashed line is the fitting waveform. The colored dashed lines are waveform components after decomposition. 
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C. Comparison Analysis of the Accuracy of the Component 

Parameters 

In addition, the parameters (peak A, peak location μ, pulse 

width σ, and shape parameter λ and k) describing a waveform 
component are selected to further analyze the characteristics of 
the five algorithms. The results are shown in Fig. 5 and Fig. 6. 

 

 
 

 
 

1) Peak (A), peak position (μ), and pulse width (σ) are the 
three most basic parameters used as evaluating the 
characteristics of waveform components. The standard 
deviations of parameters for the five algorithms are shown in 
Fig. 5. It can be concluded that: 

(a) The Gold and RL algorithms have the smallest standard 
deviation for the pulse width, which is lower than 0.25 mV. This 
result is due to the fact that the deconvolution eliminates the 
influence of the output pulse and the system impulse response, 
making the peaks of the RL and Gold algorithms easy to 
identify. 

(b) The Gaussian and Adaptive Gaussian algorithms have the 
smallest standard deviation for the peak (lower than 10 mV) and 
the smallest standard deviation for the peak location (lower than 
0.5 mV) out of the five algorithms. This fact demonstrates again 
that the two algorithms have the highest accuracy in the 
decomposed waveform components out of the five algorithms. 
However, the standard deviation of the 3 parameters of the 
Weibull algorithm is bigger than that from both Gaussian and 
Adaptive Gaussian algorithms. The result demonstrates that the 
advantages of the Weibull algorithm in processing asymmetric 
waveforms cannot be exploited when dealing with such 
waveforms that are similar to Gaussian distributed.  

 
Fig. 5.  Error comparison of three parameters A, μ, and σ among the five algorithms. The grey box is frequency. The red solid line is the density distribution. 
The black dashed line is the density mean value (data from Ogooué). 

 
Fig. 6.  Comparison of standard deviation for parameters λ and κ in the four experimental regions. λ and κ are the shape parameters for the Adaptive Gaussian 
and Weibull algorithms, respectively. The horizontal coordinate is the number of waveform components after a single waveform is decomposed. 
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(c) The RL and Gold algorithms cause a big standard 
deviation of the peaks (concentrate between 0 and 100 mV) 
when compared with the other algorithms (also seen in Section 
B). As the amplitude greatly changes after deconvolution, this 
phenomenon does not mean that the RL and Gold algorithms 
are not capable in discriminating the peaks of waveforms. 

2) Shape parameters λ in Adaptive Gaussian and k in Weibull 
are used to describe whether a waveform’s shape is either flat 
or sharp. Both of standard deviations are calculated and the 
results are shown in Fig. 6. It can be concluded from Fig. 6 that: 

(a) The standard deviation of the shape parameter λ is lower 
than 0.5, while the standard deviation of parameter k is higher 
than 0.5, i.e., the parameter λ has a higher precision than k does. 
Such a result implies that the Adaptive Gaussian algorithm has 
advantages over the Weibull algorithm. 

(b) As observed from the experimental results from the four 
study areas, it is found that the parameter λ contains 122 more 
outliers than the parameter k does. This fact indicates that the 
Adaptive Gaussian algorithm appears bigger deviations in 
fitting the waveform than the Weibull algorithm does. 

D. Comparison Analysis of Decomposition Accuracy 

The root mean square error (RMSE), correlation coefficient 
(C), and fit superiority (𝑅𝑅2) are chosen as evaluation metrics to 
quantitatively assess the accuracy of the decomposition results 
[48]:  

(1) RMSE refers to the square root of the difference 
between the fitted signal '

is   and the original signal is  , and 

divided by the sampling numbers of signals. The 
computational formula is shown in Equation (9). RMSE can 
be used to measure the precision of an algorithm. 

 ( )2'

1

N

i i
i

RMSE s s N
=

= −∑  (9) 

(2) C is the correlation coefficient between the fitted signal 
'
is   and the original signal is , which is used to measure the 

accuracy of an algorithm. It can be written as follows. 

( ) ( ) ( ) ( )2 2 2 2' ' ' ' ' '

1 1

N N

i i i i
i i

C s s s s s s s s
= =

= − − − −∑ ∑  (10) 

where �̅�𝑠 is the mean value of the original signal, �̅�𝑠′ is the mean 
of the fitted signal. 

(3) 2R  is known as the goodness of fit, as shown in Equation 

(11). The closer 2R  is to 1, the better the effect is. 

 ( ) ( )2 22 ' '

1 1
1

N N

i i i
i i

R s s s s
= =

= − − −∑ ∑  (11) 

where 𝑠𝑠𝑖𝑖′ is the fitted signal, �̅�𝑠 is the mean value of the fitted 
signal, is  is the original signal. 

The results are shown in Table Ⅱ. It can be seen that: 
1) The fitting error of the Gaussian algorithm is the biggest 

out of all algorithms, which reaches 9.96 mV, but the Gold 
algorithm has the smallest value at 4.802 mV. This fact reveals 
that the Gold algorithm has a strong robustness. In addition, it 
is also found from Table Ⅱ that the RL algorithm has an error 
of 7.424 mV, which is higher than the Gold algorithm has. This 

is probably because the RL algorithm is more sensitive to noise 
than the Gold algorithm does. 

2) Among the five algorithms, the correlation coefficient 
between the fitted waveform and original waveform of the 
Weibull algorithm is the lowest (0.710), while the Adaptive 
Gaussian algorithm has the highest correlation coefficient 
(0.851). This result indicates that the Adaptive Gaussian 
algorithm is effective in improving the accuracy of fitting 
complex waveforms. 

3) The goodness of the fit for the five algorithms are all above 
0.9 (close to 1), which means that all of the five algorithms have 
excellent fitting effects. 

E. Comparison Analysis of Decomposition Speed 

The LiDAR echo signals often contain hundreds of 
thousands or even millions of waveforms. Especially when data 
processing is requested in real-time mode, the processing speed 
is particularly important. Fig. 7 compares the processing speed 
of different algorithms. All experiments were conducted on the 
same computer: a Dell Vostro 3670-China HDD Protection 
with Windows 10 operating system. It is equipped with an Intel 
Core i5-8400 processor (2.80 GHz) and 8 GB RAM (Samsung 
DDR4 2400 MHz). It can be concluded that: 

1) The difference of the processing speed can be ignored for 
the five algorithms when processing less than 10,000 pieces of 
data. However, the difference starts to become noticeable when 
the number of waveforms reaches tens of thousands. The 
threshold varies depending on the computing platform or 
hardware capability. 

2) The RL algorithm consumes the most time in processing 
100,000 pieces of data in the four regions at 18,000 seconds, 
35,000 seconds, 40,000 seconds, and 35,000 seconds, 
respectively; the Weibull algorithm's processing speed 
decreases rapidly with increasing data, even surpassing the RL 
algorithm at 44,000 seconds in the Ogooué region. The results 
indicate that the Weibull and RL algorithms are not applicable 
to the LiDAR echo signals for the purpose of real-time 
computation. 

3) The Gaussian algorithm consumes the least time for 
100,000 pieces of data in the Louisiana and Ogooué regions, at 
4,000 seconds and 7,000 seconds, respectively. However, the 
Gold algorithm consumes the least time for processing data for 
the Larsen Harbor and Yellowknife regions (1,000 and 2,000 
seconds). Both algorithms have a fast signal decomposition 
speed.

 

TABLE Ⅱ 
COMPARISON OF DECOMPOSITION ACCURACY OF THE FIVE ALGORITHMS 

(DATA: OGOOUÉ) 

Algorithm 
RMSE 

(mV) 
C 𝑅𝑅2 

Gaussian 9.960 0.814 0.954 
Adaptive Gaussian 6.215 0.851 0.975 

Weibull 9.637 0.710 0.941 
RL 7.424 0.807 0.926 

Gold 4.802 0.815 0.931 
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F. Discussion 

Through the experiments, it has been demonstrated that the 
Gaussian, Adaptive Gaussian, Weibull, and RL algorithms can 
effectively recomposite the waveform in the flat terrain. 
However, the Gold algorithm can display a strong capability for 
waveform decomposition in the forested areas, where multiple 
superimposed waves and weak echoes happen. The ability of 
the Gold algorithm to separate superimposed peaks is even 
better than predicted by Zhu et al [15]. In the study of Wagner 
et al., about 0.03% of the amplitude was negative for the 
Gaussian algorithm [42]. However, our experiments show that 
the Gold algorithm does not suffer from this problem. Moreover, 
the Gold algorithm can handle many noises. However, the Gold 
algorithm is not as good as the RL algorithm does in the area 
with less vegetations, such as Lassen area. 

The RL algorithm is inferior to the Gold algorithm in Ogooué 
and Yellowknife areas where many hills and trees exist. In 
addition, “ringing effect” is also found in the RL and Gold 
algorithm, which is found by Wu et al. [19] in the Wiener Filter 
algorithm. The disadvantage of the RL algorithm is that the 
iterations are too many, whose conclusion is consistent with 
Wang et al. [25]. The performance of the RL algorithm is the 
best in the area of ice-covered Larsen Harbor. 

The Weibull algorithm has a similar decomposing ability as 
the RL algorithm does in the ice-covered area, but the 
computation is time-consuming, despite no iteration. The 
Weibull algorithm also has a low accuracy in decomposition, 
which is in line with the findings of Zhou et al. [10]. The 
performances of the five algorithms are almost the same in the 
area of Yellowknife, where sparse trees and rocks are contained.  

The experiment of Wagner et al. demonstrated that the 
Gaussian algorithm can fit 98% of the waveforms [42], but our 
experiments have further conclusions. The Gaussian algorithm 
is better at fitting waveforms with simple peaks, while it has the 
worst performance at fitting superimposed and weak 
waveforms. The parametric error analysis in Figure 5 shows 
that the Gaussian algorithm just lacks the ability to separate 
overlapping waveforms. 

The deconvolution method outperforms the mathematical 
simulation method on the whole. The researched result from 
Parrish et al. [22] also demonstrated that the Expectation-
Maximization deconvolution algorithm is better than the 
Gaussian algorithm.  

With the findings above, it can be concluded that the 
selection of algorithms needs to be judged according to the real 
conditions. If the efficiency of data processing is very important, 
the Gaussian and Gold algorithms are the first choice; if many 
point clouds are expected to be generated from the original 
LiDAR point cloud data, mathematical simulation methods, 
such as Gaussian, are inferior to the RL and Gold deconvolution 
algorithms; if a study area with densely vegetations is 
encountered, the Gold algorithm is the first choice; if a study 
area with flat ice sheet, the RL algorithm has a better 
performance. 

V. CONCLUSIONS 

This paper compares the characteristics of five algorithms 
including Gaussian, Adaptive Gaussian, Weibull, RL, and Gold 
algorithms in processing LiDAR data covering four different 
regions. The four experimental regions include forests, glaciers, 
lakes, and residential objects respectively. The comparison 
analysis results in the following conclusions: 

1) The fitting error of the Gaussian algorithm is as high as 
9.96 mV; the false echo detection rate is 13.7% for Ogooué data; 
the number of decomposed components is the least in four data 
sets. Moreover, the Gaussian algorithm is easy to identify the 
superimposed or similar peaks as single peaks in general. The 
phenomena indicate that the performance of the Gaussian 
decomposition is strongly affected by the environment, and is 
far inferior to the other four algorithms when processing 
complex waveforms. However, the standard deviations of 
Gaussian parameters are lower than 0.5 mV, except the 
amplitude. These results show that the Gaussian algorithm lacks 
the ability to decompose complex waveforms, but has excellent 
accuracy for the decomposed components. 

2) The number of waveform components decomposed by the 
Adaptive Gaussian and Weibull algorithms in Louisiana are 
56.2k and 54.1k, respectively. Compared with the Gaussian 
algorithm (33.5k), the two algorithms have a strong ability to 
detect weak and superimposed waveforms. Besides, the 
position detection reveals that the Weibull algorithm separates 
many misinterpreted, superimposed, and overlapping 
waveforms. This phenomenon will unavoidably introduce large 
errors in the inversion of the objective distribution. The 
Adaptive Gaussian algorithm is able to decompose the 
waveform components with higher accuracy than the Weibull 

 
Fig. 7.  The time consumed by five algorithms for waveform decomposition in different regions (Processing time varies with the number of waveforms, hardware, 
and other conditions). 
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algorithm does. In the parameter analysis, the Adaptive 
Gaussian algorithm causes 122 more outliers than the Weibull 
algorithm does. These results above reveal that the Adaptive 
Gaussian and Weibull algorithms are prone to overfitting. 

3) In the Louisiana data set, the number of waveform 
components decomposed by the RL and Gold algorithms (96.6k) 
is almost three times more than that of the Gaussian algorithm 
(33.5k), and two times more than that of the Adaptive Gaussian 
(56.2k) and Weibull (54.1k). The other experimental results 
also demonstrate that the two deconvolution algorithms, RL and 
Gold have advantages over the Gaussian, Adaptive Gaussian, 
and Weibull algorithms. Besides, both RL and Gold algorithms 
can effectively improve the separability of peaks. The false 
detection rates of the Gold algorithm are only 1.3%, 0.9%, 1.1%, 
and 0.1% in the four test regions, which can largely reduce the 
probability of detecting false waveform components. 

4) The number of waveform components from the Gold 
algorithm is 12.9k, more than that from the RL algorithm in the 

forested Ogooué area. The Gold algorithm decomposes 2.6k 
less than the RL algorithm in the Larsen Harbor. The results 
indicate that the RL algorithm has better decomposition 
performance in the areas with less vegetations, while the Gold 
algorithm does for complex waveforms such as multiple, weak, 
and superimposed waveforms. The shortage of the RL 
algorithm is mainly in its convergence speed. 

In conclusion, the Gaussian and Gold algorithms better meet 
the need for speed and stability in real-time computing, while 
the Adaptive Gaussian and Weibull algorithms are more likely 
to satisfy the need for the ability to decompose echo signals in 
densely vegetations or the ability to discriminate complex 
waveforms. With the comparison analysis for the 
characteristics of the five LiDAR waveform decomposition 
algorithms, these results and conclusions are helpful in 
promoting the applications of the different algorithms in 
various environments. 
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