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Abstract In this paper, we study the problem of scheduling tasks on a distributed

system, with the aim to simultaneously minimize energy consumption and makespan

subject to the deadline constraints and the tasks’ memory requirements. A total of

eight heuristics are introduced to solve the task scheduling problem. The set of heuris-

tics include six greedy algorithms and two naturally inspired genetic algorithms. The

heuristics are extensively simulated and compared using an simulation test-bed that

utilizes a wide range of task heterogeneity and a variety of problem sizes. When eval-

uating the heuristics, we analyze the energy consumption, makespan, and execution

time of each heuristic. The main benefit of this study is to allow readers to select an

appropriate heuristic for a given scenario.
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1 Introduction

A large-scale distributed system is often used as a centralized repository for storage

and management of (user) data and information [1]. Energy consumption is widely

recognized to be a critical problem in large-scale distributed systems, such as a com-

putational grid. As the demand for internet services increases, so does the amount of

electricity used to power large-scale distributed systems [2].

Dynamic power management (DPM) [3] and dynamic voltage scaling (DVS) [4]

are two techniques that can be used to reduce energy consumption in large-scale dis-

tributed systems. The DPM technique is a design methodology used to decrease the

energy consumption of a processing element (PE) in each machine by dynamically

powering down PEs. Normally when a PE does not have a full workload, the PE will

become idle. With DPM, the PE will be turned off instead. Turning a PE on or off has

a high transition cost. With the DVS approach, each PE’s supply voltage (Vdd) can

be scaled to a discrete number of Vdd levels. By decreasing Vdd and operational fre-

quency (f ) of a PE, the amount of energy consumed may be reduced. A PE completes

fewer computational cycles when running at a lower frequency; therefore, lowering

the frequency increases the makespan. The makespan is defined as the time taken to

execute all tasks received by the large-scale distributed system. The following equa-

tions give the relationship between f , power consumption, and energy consumption

over the period [0, T ]:

f =
k · (Vdd − Vt )

2

Vdd

, (1)

P = CL · N0→1 · f · V 2
dd, (2)

E =
∫ T

0

P(t) dt, (3)

where CL is the switching capacitance, N0→1 is the switching activity, k is a constant

that is dependent on the circuit, T is the total time, and Vt is the circuit threshold

voltage.

The energy consumption can be reduced by lowering f as given in (1). However,

when f is lowered, the execution time of the task increases, which may cause the task

to violate the deadline constraint. When scheduling tasks to a single PE, an effective

technique for reducing the energy consumption would be lowering f until the task

can no longer meet the deadline constraint. Because the PE-task pair that results in

the minimum energy consumption is not known, the use of multiple PEs cause the

problem to become much more complicated.

Most DPM techniques utilize instantaneous power management features sup-

ported by hardware. For example, in [5], the operating system’s power manager

is extended by an adaptive power manager. This adaptive power manager uses the

processor’s DVS capabilities to reduce or increase the CPU frequency, thereby min-

imizing the total energy consumption [6]. The DVS technique combined with a turn

on/off technique is used to achieve high-power savings while maintaining all dead-

lines in [7]. In [8], a scheme to concentrate the workload on a limited number of
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processors is introduced. This technique allows the rest of the processors to remain
switched off for a longer time.

There are a wide variety of power management techniques, such as heuristic-based
approaches [1, 2, 9–11], genetic algorithms [12–15], and constructive algorithms
[16]. Most of these techniques have been studied using relatively small sets of tasks.
The techniques introduced in this paper were given large sets of tasks allowing one to
compare and analyze some traditional power management techniques when applied
to large-scale distributed systems.

For a thorough overview of previously published results, readers are encouraged
to read surveys, such as [17, 18], and [19].

In this paper, we study the energy-aware task allocation (EATA) problem for as-
signing a set of tasks to a set of PEs equipped with DVS modules. To circumvent the
above mentioned problems, we propose the following four-step energy minimization
methodology (4EMM):

1. Resource Allocation: Determine the number and type of PEs that form a suite to
execute a given number of tasks.

2. Resource Matching: Select a PE-task pair that can fulfil user specified run-time
constraints.

3. Resource Scheduling: Determine the order and the corresponding DVS level for
each PE-task pair.

4. Solution Evaluation: Calculate the dollar cost of the resource allocation (Step 1)
and energy consumption of the resource scheduling (Step 3).

This paper compares and analyzes eight heuristics-based task scheduling algo-
rithms. This set of heuristics uses a wide variety of techniques, such as iterative,
greedy, constructive, and genetic algorithms. Such heuristics can be a plausible so-
lution to the EATA problem studied in this paper. In all of the proposed heuristics,
the assumptions and system parameters (number of tasks, task deadlines, PE dollar
cost, etc.) are kept the same to maintain a fair comparison. The studied heuristics
were modeled after two major classes of algorithms. Six heuristics are greedy based
heuristics, namely G-Min, G-Max, G-Deadline, MaxMin, ObFun, and UtFun. The
final two heuristics, GenAlg and GenAlg-DVS, are naturally inspired genetic algo-
rithms.

We will compare and analyze the above techniques by examining the results of
numerous simulations. To incorporate variance in our simulations, we vary the task
and PE heterogeneity. We also vary the number of tasks between 100 and 100,000.
Varying the number of tasks in our workload allows us to determine which heuristics
produce better results for different sized problems. A detailed explanation of our
simulation test-bed will be given in the subsequent text.

The remainder of this paper is organized as follows. The problem formulation is
introduced in Sect. 2. We discuss the resource allocation and task scheduling heuris-
tics in Sect. 3. The simulation results are reviewed in Sect. 4. Finally, we present a
conclusion in Sect. 5.

2 Problem formulation

The most frequently used acronyms in this paper are listed in Table 1.
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Table 1 Notations and their meanings

Symbols Meaning Symbols Meaning

DVS Dynamic voltage scaling G-Min Greedy Heuristic that schedules shortest

DPM Dynamic power management tasks first

EATA Energy-aware task allocation G-Max Greedy Heuristic that schedules longest

CVB Coefficient of variation based tasks first

4EMM 4-step energy minimization G-Deadline Greedy Heuristic that schedules tasks with

methodology the most urgent deadline first

PE Processing element MaxMin Greedy Heuristic that initially schedules

Vdd PE supply voltage tasks to the least efficient PEs

M Makespan ObFun Greedy Heuristic that uses two objective

T Set of all ti functions to determine task assignments

ti ith task ∈ T UtFun Greedy Heuristic schedules tasks based on

di Deadline of ti a utility function

mti Memory requirement of ti GenAlg Genetic Algorithm

mPEj
Memory available to PEj GenAlg-DVS Genetic Algorithm that utilizes DVS

DVSk kth DVS level ci Computational cycles required by ti

EEC Estimated energy consumption I-ETC Indexes for ETC Matrix

ETC Estimated time of completion tij Run-time of ti on PEj

P E Set of PEs in PE allocation tijk Run-time of ti on PEj at DVSk

P E p Set of PEs in PE pool mj Run-time of PEj

PEj j th PE ∈ P E kidle Power scalar for idle PE

Dj Dollar cost of PEj Eidle Energy consumed while PE is idle

D Total dollar cost constraint µtask Average task execution time

pj Power consumption of PEj Vtask Variance in task execution time

Ej Energy consumed by PEj VPE Variance in PE heterogeneity

pij Energy consumed by PEj to GAP Generalized Assignment Problem

execute ti N0→1 Switching activity

2.1 The system model

Consider a large-scale distributed system that is a set of tasks (referred to as a meta-

task) and a collection of PEs.

PEs. Let the set of PEs be denoted as, P E = {PE1,PE2, . . . ,PEm}. Each PE is

assumed to be equipped with a DVS module. We assume that the transition time

between any two DVS levels is constant and negligible for the problem considered in

this paper. Such an assumption was also previously made in [7, 18, 20, 21], and [13].

A PE is characterized by:

• The instantaneous power consumption of the PE, pj . Depending on the PE’s DVS

level, pj may vary between pmin
j to pmax

j , where 0 < pmin
j < pmax

j .

• The available memory of PE, mPEj
.
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• The dollar cost of the PE, Dj . The set of PEs must not cost more than the total

system dollar cost constraint, D.

Tasks. A metatask, T = {t1, t2, . . . , tn}, is a set of tasks where ti is a task. Each

task is characterized by:

• The number of computational cycles, ci , that need to be completed.

• The memory requirement of a task, mti .

• The deadline, di , which is the time that a task must finish.

Preliminaries. Suppose we are given a set of PEs and a metatask, T . Each ti ∈ T

must be mapped to a PE such that the deadline constraint of ti is fulfilled. That is,

the run-time of PEj must be less than di . Let the run-time of PEj be denoted by mj .

A feasible task to PE mapping occurs when each task in the metatask can be mapped

to at least one PEj while satisfying all of the associated task constraints. If mPEj
<

mti , then ti cannot be executed on PEj .

2.2 Formulating the energy-makespan minimization problem

Given is a set of PEs and a metatask, T . The problem can be stated as:

• The total energy consumed by the PEs is minimized.

• The makespan, M , of the metatask, t , is minimized.

We can say mathematically,

minimize

n
∑

i=1

m
∑

j=1

pijxij and minimize max

n
∑

i=1

tijxij

subject to the following constraints:

xij ∈ 0,1, i = 1,2, . . . , n; j = 1,2, . . . ,m, (4)

ti → mj , ∀i,∀j ; if mPEj
> mti ; then xij = 1, (5)

tijxij ≤ di, ∀i,∀j, xij = 1, (6)

(tijxij ≤ di) ∈ 0,1, (7)

n
∏

i=1

(tijxij ≤ di) = 1, ∀i,∀j, xij = 1, (8)

m
∑

j=1

Dj ≤ D, xij = 1. (9)

Constraint 4 is the mapping constraint. ti is assigned to PEj when xij = 1. Con-

straint 5 elaborates on this mapping in conjunction to the memory requirements and

states that a mapping can exist only if PEj has enough memory to execute ti . Con-

straint 6 relates to the fulfilment of the deadline of each task. Constraint 7 shows
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there is a Boolean relationship between the deadline and the actual execution time

of the tasks. Constraint 8 relates to the deadline constraints of the metatask that will

hold if and only if the deadline, di , for each ti ∈ T is satisfied. Constraint 9 pertains

to the total dollar cost constraint, D.

The EATA problem formulation is a multi-constrained, multiobjective optimiza-

tion problem. The preference must be given to one objective over the other because

the optimization of energy and M oppose each other. The formulation is in the same

form as the Generalized Assignment Problem (GAP) except for Constraints (6, 7, 8,

and 9). The major difference between GAP and EATA is that the capacity of resources

in GAP, in terms of the utilization of instantaneous power, is defined individually,

whereas in EATA the capacity of resources is defined in groups [22].

3 Proposed algorithms

In this section, we will describe the inner workings of our eight proposed heuris-

tics. Figure 1 illustrates the relationship between 4EMM and the proposed heuris-

tics.

All of the task execution times are obtained from an estimated time of completion

(ETC) matrix [23]. An ETC matrix is a 2-d array with |T | rows and |P E p| columns.

Each element in the ETC matrix corresponds to an execution time of ti on PEj , where

i is the row and j is the column. To generate the ETC matrix, we use a coefficient-

of-variation based (CVB) ETC matrix generation method [24]. There are three major

parameters that determine the heterogeneity of the ETC matrix:

Fig. 1 Simulation flow chart
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1. The average execution time of each ti ∈ T , µtask.

2. The variance in the task execution time, Vtask.

3. The variance in the PE heterogeneity, VPE .

Because CVB uses a gamma distribution [25], the characteristic shape parameter, α,

and scale parameter, β , must be defined. The gamma distribution’s parameters, αtask,

αPE , βtask, and βPE can be interpreted in terms of µtask, Vtask, and VPE . For a gamma

distribution, µ = βα and V = 1/
√

α. Then

αtask = 1/V 2
task, (10)

αPE = 1/V 2
PE, (11)

βtask = µtask/αtask, (12)

βPE = G(αtask, βtask)/αPE, (13)

where G(αtask, βtask) is a number sampled from a gamma distribution.

The di for each ti is derived from the ETC matrix and can be represented by

di =
|ti |

|P E |
· argj max(tij ) · kd , (14)

where kd is a parameter that can tighten di [26, 27].

3.1 Greedy heuristics

The resource allocation (Step 1 of 4EMM) for the following six greedy heuristics

is achieved by CRAH. Algorithm 1 shows the pseudo-code for CRAH. The CRAH

algorithm takes as inputs an ETC matrix, P E p , and di for all ti ∈ T . The output

of CRAH is the T to P E mapping, the energy consumption of the best solution,

Emin, and M . At Line 1, one of the six greedy heuristics is invoked to rearrange

the ETC matrix in the order the tasks will be scheduled. This step is different for

each heuristic. Figure 2 illustrates one method of rearranging the ETC matrix. Figure

2(a) shows the original ETC matrix. The rows are sorted in ascending order (Fig.

2(b)). Next, the rows of the ETC matrix are swapped such that the execution times

in the first column are arranged in ascending order (Fig. 2(c)). Because one must

maintain indexing for a given ETC matrix, under each operation, we maintain the

associated index with each element of the matrix. For the above mentioned matrix

rearranging procedures, the corresponding index matrices (I-ETC’s) are shown in

Figs. 2(d)–(f). Next, an estimated energy consumption (EEC) matrix is generated

by multiplying the PE’s instantaneous power consumption by the tasks’ estimated

completion time.

The outer while loop (Line 3) repeats until there is no significant improvement in

solution quality. Let k be the number of loops with no improvement. The solution is

considered sufficient when k ≥ kmax. An initial resource allocation, P E , is generated
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Input: ETC, P E p , di ∀ti ∈ T

Output: T to P E mapping, Emin, M

INVOKE Greedy Heuristic to rearrange ETC and generate EEC;1

while k < kmax do2

Generate Random P E ;3

CALCULATE Esol;4

Emin ← Esol;5

repeat6

E′
min ← Emin;7

foreach PEj ∈ P E p do8

Add PEj to P E ;9

CALCULATE Esol;10

if Esol < Emin then Emin ← Esol Remove PEj from P E ;11

end12

foreach PEj ∈ P E do13

Remove PEj from P E ;14

CALCULATE Esol;15

if Esol < Emin then Emin ← Esol Add PEj to P E ;16

end17

if Emin ≥ Emin then18

INCREMENT k19

else20

k ← 0;21

Emin ← Emin22

end23

until Emin ≥ E′
min ;24

end25

Algorithm 1: Constructive resource allocation heuristic (CRAH)

Fig. 2 ETC matrix rearranged

for G-Min

∣

∣

∣

∣

∣

∣

8 7 10

10 9 5

6 12 7

∣

∣

∣

∣

∣

∣

(a)

∣

∣

∣

∣

∣

∣

7 8 10

5 9 10

6 7 12

∣

∣

∣

∣

∣

∣

(b)

∣

∣

∣

∣

∣

∣

5 9 10

6 7 12

7 8 10

∣

∣

∣

∣

∣

∣

(c)

ETC Matrices

∣

∣

∣

∣

∣

∣

1 2 3

1 2 3

1 2 3

∣

∣

∣

∣

∣

∣

(d)

∣

∣

∣

∣

∣

∣

2 1 3

3 2 1

1 3 2

∣

∣

∣

∣

∣

∣

(e)

∣

∣

∣

∣

∣

∣

3 2 1

1 3 2

2 1 3

∣

∣

∣

∣

∣

∣

(f)

Index Matrices



Comparison and analysis of eight scheduling heuristics

by randomly adding PEs until D is violated. Next, one of the six greedy heuristics is

invoked to schedule the tasks, calculate M , and determine the energy consumption of

this solution, Esol.

Inside the repeat-until loop (Line 6), P E is modified (Every PEj ∈ P E p is added

and removed from P E ) until a locally optimal solution has been found. In Line 7,

note that E′
min is the energy minima found in the previous iteration. In Lines 10

and 15, the solution is evaluated. The change to P E that results in the largest de-

crease in Esol is recorded as P E . When a local energy minima is reached, Emin (i.e.,

CRAH can no longer add or remove a PE to decrease the energy consumption), the

repeat-until loop terminates. If Emin is less than the global energy minimum, Emin,

then Emin is set to Emin. A new random P E is generated and the outer while loop

repeats.

3.1.1 Greedy heuristic scheduling algorithm

The greedy heuristic scheduling algorithm (GHSA) performs the task scheduling

(Step 3 of 4EMM) for G-Min, G-Deadline, G-Max, and Max-Min. The major dif-

ference among the four greedy heuristics is how these heuristics schedule T to P E .

Algorithm 2 shows the pseudo-code for GHSA. GHSA takes as input an ETC matrix,

P E p , di ∀ti ∈ T , and P E . The output of GHSA is the T to P E mapping, Esol, and M .

GHSA starts at the first element of the ETC matrix and assigns the task to the most

suitable PE. Because a ti to PEj mapping must adhere to the di constraint, at Line 5,

the GHSA heuristic must set PEj to the minimum DVS level, DVS1 (Table 2). The

DVSk is incrementally increased until di is violated. If the task does not meet the

deadline when running at the highest DVS level (DVS4)then GHSA attempts to as-

sign ti to the next PE in the ETC matrix. If GHSA fails to schedule ti to any of the

PEs, then the deadline constraint cannot be satisfied and a flag, dflag, is set (Line 9) to

indicate there does not exist any feasible solution. When ti is successfully assigned to

a PE, we must take into account the run-time of ti and the energy consumed by PEj .

In Line 6, ETC(ij) is added to mj and in Line 7, EEC(ij) is added to Esol. If a feasi-

ble solution is obtained, we must calculate the energy consumed, Esol, to process the

ti to P E mapping. Note that the energy consumed during idle time is accounted for

at Line 15. That is,

Eidle = pj · tidle · kidle, (15)

where tidle is the difference between M and mj . kidle is a scalar relating the instanta-

neous power of a PE under load to an idle PE.

Table 2 Power scalars for each

DVS level DVS level Speed Power scalar

1 70% 0.3430

2 80% 0.5120

3 90% 0.7290

4 100% 1
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3.1.2 G-Min

The G-Min heuristic (Algorithm 3) schedules the tasks with the shortest execution

times first. The motivation behind scheduling the shortest tasks first is to induce slack

in the schedule. This slack allows the subsequent tasks with longer execution times

to be scheduled without violating the deadline constraints. G-Min receives an ETC

matrix as input and outputs the rearranged ETC matrix, EEC matrix, and I-ETC. Let

R be a row in the ETC matrix and Ci be the ith column in the ETC matrix. Note

Input: ETC, P E p , di ∀ti ∈ T , and P E

Output: T to P E mapping, Esol, M

foreach ti ∈ T do1

foreach PEj ∈ P E do2

for DVSk = 1 to 4 do3

if tijk + mj ≤ di then4

Assign ti to PEj at DVSk ;5

mj ← mj + ETC(ij);6

Esol ← Esol + EEC(ij);7

end8

end9

if ti not assigned then10

dflag ← 1;11

EXIT;12

end13

end14

end15

foreach PEj ∈ P E do16

Esol ← Esol + Eidle;17

end18

Algorithm 2: Greedy heuristic scheduling algorithm (GHSA)

Input: ETC

Output: ETC, EEC, I-ETC

foreach R ∈ ETC do1

Sort R in ascending order;2

Sort corresponding row in I-ETC;3

end4

∀R ∈ ETC, swap R such that C1 is in ascending order;5

Apply same changes to I-ETC;6

INVOKE GHSA;7

Algorithm 3: G-Min
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Input: ETC

Output: ETC, EEC, I-ETC

foreach R ∈ ETC do1

Sort R in ascending order according to each ti ’s di ;2

Sort corresponding row in I-ETC;3

end4

∀R ∈ ETC, swap R such that C1 is in ascending order;5

Apply same changes to I-ETC;6

INVOKE GHSA;7

Algorithm 4: G-Deadline

Fig. 3 ETC matrix rearranged
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that G-Min, G-Deadline, G-Max, and MaxMin all have the same inputs and outputs.

Figure 2 illustrates the process of rearranging the ETC matrix. G-Min rearranges

the ETC matrix exactly as described in Sect. 3.1.3. After being rearranged, the ETC

matrix is sent to GHSA to be evaluated.

3.1.3 G-Deadline

One of the major differences between G-Deadline and G-Min is in the task scheduling

(Step 3 in 4EMM). In G-Deadline (Algorithm 4), the tasks with the most urgent

deadlines are scheduled first. Because tasks are scheduled based on urgency, the tasks

that are scheduled later would have a better chance of being scheduled. Figure 3

shows how the ETC matrix is rearranged. As seen in Fig. 3(c), the rows are sorted

in ascending order. In Fig. 3(d), the rows are swapped such that the execution times

in the first column in the ETC matrix are arranged in ascending order based on the

task’s deadline. After G-Deadline rearranges the ETC matrix, GHSA is invoked.

3.1.4 G-Max

In G-Max (Algorithm 5), the tasks with the longest execution times are scheduled

first. When the tasks with the longest execution times are scheduled first, only the
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Input: ETC

Output: ETC, EEC, I-ETC

foreach R ∈ ETC do1

Sort R in ascending order;2

Sort corresponding row in I-ETC;3

end4

∀R ∈ ETC, swap R such that C1 is in descending order;5

Apply same changes to I-ETC;6

INVOKE GHSA;7

Algorithm 5: G-Max

Input: ETC

Output: ETC, EEC, I-ETC

foreach R ∈ ETC do1

Sort R in descending order;2

Sort corresponding row in I-ETC;3

end4

∀R ∈ ETC, swap R such that C1 is in ascending order;5

Apply same changes to I-ETC;6

INVOKE GHSA;7

Algorithm 6: MaxMin

Fig. 4 ETC matrix rearranged
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tasks with the shortest execution times remain. Because these tasks have the shortest

execution times, GHSA can more easily scheduled these tasks without violating the

deadline constraints. Figure 4 demonstrates the process of rearranging the ETC ma-

trix for G-Max. In Fig. 4(b), the rows of the ETC matrix are sorted in ascending order.

In Fig. 4(c), the rows are swapped so that the execution times in the first column are

arranged in descending order.

3.1.5 MaxMin

During the initial phase of MaxMin (Algorithm 6), tasks are scheduled to the least

efficient PEs. The major motivation behind MaxMin to allow there to be slack in the

schedules of the most efficient PEs late in the scheduling process. The subsequent

tasks can be executed on the most efficient PEs. Figure 5 shows the process of re-

arranging the ETC matrix. In Fig. 5(b), the rows of the ETC matrix are sorted in
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Fig. 5 ETC matrix rearranged
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Input: ETC, P E p , di ∀ti ∈ T , and P E

Output: T to P E mapping, Esol, M

foreach ti ∈ T do1

Calculate TSi ;2

end3

Sort TS in descending order;4

foreach ti ∈ TS do5

foreach PEj ∈ P E do6

Calculate PSij ;7

end8

j ← argj min(PSij );9

for DVSk = 1 to 4 do10

if tijk + mj ≤ di then11

Assign ti to PEj at DVSk ;12

mj ← mj + ETC(ij);13

Esol ← Esol + EEC(ij);14

end15

end16

if ti not assigned then17

dflag ← 1;18

EXIT;19

end20

end21

foreach PEj ∈ P E do22

Ej ← Ej + Eidle;23

end24

Algorithm 7: ObFun

descending order. In Fig. 5(c), the rows are swapped so that the execution times in

the first column are arranged in descending order.

3.1.6 ObFun

ObFun is a greedy heuristic that uses two objective functions to determine task to PE

mappings. The pseudo-code for ObFun is presented in Algorithm 7. ObFun takes as

input an ETC matrix, P E p , di ∀ti ∈ T , and P E . The output of ObFun is T to P E

mapping, the energy consumed by this solution, Esol, and M .
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Table 3 Parameters used in

TaskSelect and PE Select Parameters

α1 0.520656

α2 0.381958

α3 0.0431519

α4 0.160583

α5 0.522339

α6 0.696564

β1 0.0970764

β2 0.400818

β3 0.773407

In Line 2, ObFun generates the TaskSelect array (TS). Every ti has an entry in TS

that is based on the following:

TSi = α1(T2,i − T1,i) + α2(P2,j − P1,j )

+ α3
T1,i + T2,i

∑tasks
k=1 (T1,k + T2,k)

+ α4 + α5 + α6, (16)

where T1,i denotes the minimum estimated completion time of ti . T2,i represents

the second shortest estimated completion time of ti . P1,j and P2,j are the first and

second most power-efficient PEs for task ti respectively. α1−3 are weight parameters

and α4−6 are values added to TS if the following conditions are met.

• α4 is added if the PE with the shortest execution time for ti is also the most power-

efficient.

• α5 is added if the PE with the shortest execution time for ti and the PE that is the

second most power-efficient are the same, or vice-versa.

• α6 is added if the PE with the second shortest execution time for ti and the PE that

is second most power-efficient are the same.

The values of these parameters are recorded in Table 3.

In Line 4, TS is sorted in descending order to allow ObFun to schedule the most

appropriate tasks (according to the objective function) first. In Line 7, the most suit-

able PE for each task is determined and placed in the PE Select array, PS. Each PE is

given a value for every task from the following objective function:

PS = β1T1,PEj ,ti + β2P1,PEj ,ti + β3load(PEj ), (17)

where T1,PEj ,ti is the execution time of ti on processor PEj , P1,PEj ,ti is the instanta-

neous power consumption of processor PEj when executing task ti , and load(PEj )

is a value added when certain conditions are met. The value of load(PEj ) is zero if

ti satisfies di when assigned to PEj . If ti does not satisfy di , then load(PEj ) equals

mj − di . Following the above, ti is assigned to the PE with the lowest PS value. In

Line 12, Obfun determines the lowest DVSk that PEj can be set to before scheduling

ti to PEj . After ti is schedules, the executing time of ti and the energy consumed by
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Input: ETC, P E p , di ∀ti ∈ T , and P E

Output: T to P E , Esol, M

foreach ti ∈ T do1

foreach PEj ∈ P E do2

for DVSk = 1 to 4 do3

Calculate Utijk ;4

end5

end6

end7

foreach ti ∈ T do8

j, k ← argj,k max(Utijk);9

if tijk + mj ≤ di then10

Assign ti to PEj at DVSk ;11

mj ← mj + ETC(ij);12

Esol ← Esol + EEC(ij);13

else14

Utijk ← 0;15

end16

if ti not assigned then17

dflag ← 1;18

EXIT;19

end20

end21

foreach PEj ∈ P E do22

Esol ← Esol + Eidle;23

end24

Algorithm 8: UtFun

PEj must be recorded. In Line 13, ETC(ij) is added to mj , and in Line 14, EEC(ij)

is added to Esol. If ti can not meet di when PEj is running at the highest DVS level

(DVS4), then a flag is set (Line 16) to indicate a feasible solution does not exist.

If a feasible solution is found, then the total energy consumption of the solution is

calculated in a manner analogous to GHSA.

3.1.7 UtFun

The UtFun heuristic uses a utility function to determine task to PE assignments. Util-

ity functions are often used in economics to measure the relative benefits from various

goods and services [28]. In UtFun, the utility function calculates the benefit gained

from each task to PE assignment.

Algorithm 8 displays the pseudo-code for UtFun. The inputs to UtFun are an ETC

matrix, P E p , di ∀ti ∈ T , and P E . The outputs of UtFun are the T to P E mapping,

Esol, and M . UtFun enters a loop where the utility of each task is calculated for

each PE and DVS level (Line 4). The utility is a function of the PE’s speed and the
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execution time of the task. The speed and utility can be represented by:

S(v) =
k1 · (v − vt )2

v
, (18)

Utility = Sp · T q , (p, q > 0), (19)

where p determines the relative importance of the speed, and q determines the rela-

tive significance of the execution time of the task. In Line 11, the task is assigned to

the PE and DVS level that yield the highest utility. Assigning ti to the PEj with the

highest utility does not guarantee that the deadline constraint will be satisfied. Vio-

lating the deadline will cause the utility for this specific ti -PEk pair to be set to zero

(Line 15). UtFun identifies the PE-DVS level pair with the next highest utility and

assigns the task to this PE. If a valid task assignment has occurred, then the execution

time of ti and the energy consumed by PEj must be taken into account. ETC(ij) is

added to mj (Line 12) and EEC(ij) is added to Esol. If the task cannot be assigned

to any of the PEs without breaking the deadline, then dflag is set to indicate that a

feasible solution does not exist. If a feasible solution is found, then the total energy

consumption is calculated in a manner analogous to GHSA and ObFun.

3.2 Genetic algorithms

Genetic algorithms are a type of evolutionary algorithm that are modeled after bi-

ological evolution. At the beginning of a genetic algorithm, an initial population of

solutions is randomly generated. After solution initialization, there are four steps in a

genetic algorithm that repeat until a halting condition is reached.

1. Evaluation: The costs of every solution are calculated.

2. Ranking: Each solution is ranked based on their costs.

3. Reproduction: The highest ranked solutions are modified via crossover and mu-

tation.

4. Replacement: The lowest ranked solutions are replaced by the reproduced solu-

tions.

Every time the algorithm completes the above mentioned four steps, a generation

has completed. After the evaluation step, the genetic algorithm checks if the halting

condition has been reached.

Each solution in a genetic algorithm is represented by a chromosome. Figure 6

gives an example of a chromosome. Every element of the chromosome represents

a task and contains an integer specifying the PE to which the task is assigned. For

instance, we can observe that PE1 is assigned t1 and ti−1, PE2 is assigned t3, and

PE3 is assigned t1. A natural curiosity at this point would be which of the two tasks,

t2 or ti−1, is first executed on PE1. This is Step 2 in 4EMM, which is the resource

matching step. The actual scheduling, that is which task executes first on a given PE,

is part of Step 3 in 4EMM. Step 3 is achieved by invoking GenAlg or GenAlg-DVS.

(GenAlg and GenAlg-DVS will be explained in the subsequent text.)

In this paper, solution ranking is determined by solution domination and Pareto-

ranks. A given solution dominates another solution if every objective is better. The
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objectives examined in this paper are makespan and energy consumption. A so-

lution’s Pareto-rank is the number of other solutions that do not dominate it. In

Fig. 7, each solution is represented by a circle. The solution’s makespan and en-

ergy consumption are indicated by the position on the graph. The Pareto-rank of

each solution is indicated by the number in each circle. The lowest ranked solution

has a Pareto-rank of 1 because only one solution (Circle 3) does not have a both

a shorter makespan and a lower energy consumption. The highest ranked solutions

have a Pareto-rank of 5 because none of the other five solutions have both a shorter

makespan and a lower energy consumption.

In genetic algorithms, there are two genetic operators used to maintain genetic

diversity. Crossover is a genetic operator used to vary the solutions from one gener-

ation to the next. GA-A uses a two-point crossover technique. Two-point crossover

selects the same cut points in two parent chromosomes, then swaps the information

between the two points, creating two child chromosomes. Figure 8 illustrates two-

point crossover. In this example, the first cut is made between t2 and t3, and the

second cut is made between t7 and t8. Examination of the child chromosomes reveals

that the tasks between the two cuts in the parent chromosomes have been swapped.

Mutation is another genetic operator used to maintain genetic diversity in the solu-

tions from one generation to the next. During mutation, a number of task assignments

in a solution will randomly be reassigned to a different PE. This random assignment

is performed to avoid local minimas.

Fig. 6 Chromosome

Fig. 7 Pareto-Rank
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Fig. 8 Crossover

3.2.1 GA-A

The GA-A algorithm is a naturally inspired genetic algorithm that maintains a pool

of solutions and follows the four steps of genetic algorithms. GA-A does the re-

source allocation (Step 1 of 4EMM) and resource matching (Step 2 of 4EMM) for

both GenAlg and GenAlg-DVS. Because we want to have a diverse population, an

intuitive way to generate solutions would be to consider multiple P E ’s. The pool

of solutions is randomly divided into multiple solution clusters, each with a differ-

ent P E . Algorithm 9 shows the pseudo-code for GA-A. The inputs to GA-A consist

of an ETC matrix, P E p , and di ∀ti ∈ T and outputs the T to P E mapping, Emin,

and M . In Line 2, GA-A randomly generates initial solutions. GA-A invokes GenAlg

or GenAlg-DVS to evaluate the initial solutions in Line 3. GenAlg and GenAlg-DVS

will be described in detail later in this section. For the time being, assume GenAlg

and GenAlg-DVS are generic solution evaluation procedures. Note that GenAlg or

GenAlg-DVS is invoked in Lines 3, 8, and 22. After the initial solutions have been

evaluated, GA-A enters a nested while loop (Lines 4 and 5) that repeats until the halt-

ing condition has been satisfied. After every generation, the outer while loop (Line 4)

calculates the global minimum energy consumption, Emin, and the inner while loop

records the local minimum energy consumption, Emin.

In Line 6, every solution is ranked based on solution domination. The solution

reproduction step within a genetic algorithm can be carried out after the solutions

have been ranked. This is achieved by discarding the lowest ranked solutions in Cm,

and reproducing high-ranked solutions to take their place. The reproduced solutions

are modified via crossover or mutation, as previously described. A system variable,

pm, determines the probability that a newly reproduced solution will be changed via

mutation or crossover.

After the solution reproduction step, GA-A invokes GenAlg or GenAlg-DVS to

re-evaluate the solutions. If any of the solutions are more energy-efficient than the

previous best, then k2 is set to zero and Emin is updated. If a more energy efficient

solution has not been found in the last k2,max generations, then the inner while loop

(Line 5) terminates. Because we want to give GA-A the opportunity to find a better

solution, k1 is set to zero if Emin < Emin. Otherwise, k1 is incremented. If k1 > k1,max,

then the program terminates.
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Input: ETC, P E p , di ∀ti ∈ T

Output: T to P E mapping, Emin, M

Generate C ;1

Generate Initial Solutions;2

INVOKE GenAlg/GenAlg-DVS;3

while k1 ≤ k1,max do4

while k2 ≤ k2,max do5

Rank Solutions;6

Carry out Solution Reproduction;7

INVOKE GenAlg/GenAlg-DVS;8

if Any Sn ∈ Cm Improved then9

k2 ← 0;10

else11

INCREMENT k2;12

end13

end14

if Any Cm ∈ C Improved then15

k1 ← 0;16

else17

INCREMENT k1;18

end19

Rank Clusters;20

Carry out Cluster Reproduction;21

INVOKE GenAlg/GenAlg-DVS;22

end23

Algorithm 9: GA-A

In Line 20, cluster ranking is performed. Clusters are composed of multiple solu-

tions, so each cluster contains many sets of costs. The clusters are ranked with partial

domination [12]. Cluster domination, Cdom, is represented by a scalar value instead

of a Boolean value. Let x and y be clusters and NIS(x) be the set of noninferior

solutions in x. If a and b are solutions in Cx , then DOM(a, b) is equal to 1 if a

is not dominated by b and 0 otherwise. Mathematically, cluster domination can be

represented by:

Cdom(x, y) = max(a ∈ NIS(x))
∑

b∈NIS(y)

DOM(a, b), (20)

Crank[x] =
∑

y∈C∀x 
=y

Cdom(x, y). (21)

From the above, we can observe that cluster ranking can be obtained by summing

the Cdom value for each cluster. After the clusters have been ranked, cluster repro-

duction is carried out in a manner analogous to solution reproduction (Line 21). The

lowest ranked clusters are deleted and replaced by newly reproduced clusters. The
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Input: ETC, EEC, di ∀ti ∈ T , C , and T

Output: Esol ∀Sn ∈ C and M

foreach Cm ∈ C do1

foreach Sn ∈ Cm do2

ESn ← 0;3

foreach ti ∈ T do4

if ETC(ij) + mj ≤ di then5

Assign ti to PEj ;6

mj ← mj + ETC(ij);7

ESn ← ESn + EEC(ij);8

else9

Sn is invalid;10

end11

end12

end13

end14

Algorithm 10: GenAlg

reproduced clusters are modified via mutation or crossover. Cluster mutation and

crossover are analogous to solution mutation and crossover.

3.2.2 GenAlg

The GenAlg algorithm carries out the task scheduling (Step 3 in 4EMM) and eval-

uates the solutions (Step 4 in 4EMM) that are produced in GA-A. Algorithm 10

shows the pseudo-code for GenAlg. The inputs for GenAlg are an ETC matrix, P E p ,

di ∀ti ∈ T , C , and P E . GenAlg outputs Esol and M . The first two for loops (Lines 1

and 2) iterate through every solution in C . In Line 3, the energy consumption of Sn

is set to 0 because no tasks have been scheduled. The next for loop (Line 4) iterates

through Sn and the tasks are scheduled to the specified PE (Line 6) if the deadline

constraint is not violated. The run-time and energy consumption of ti is added to

PEj ’s total run-time (mj ) and ESn , respectively. If the task cannot be scheduled to

PEj without violating the deadline constraint, then the corresponding solution is in-

valid. Notice that GenAlg does not make use of the PEs’ DVS levels. We wanted

to see how the results of a genetic algorithm, which has a global viewpoint of the

problem, are effected by DVS techniques.

GenAlg-DVS (Algorithm 11) makes use of the PEs’ DVS modules. Because

GenAlg-DVS uses DVS levels, we will be able to compare the results to GenAlg

and see how using the PE’s DVS module affects the energy consumption of the so-

lution. The inputs and outputs of GenAlg-DVS are the same as GenAlg’s. The first

difference between GenAlg and GenAlg-DVS can be seen in Line 5. Two variables

are introduced (Lines 5 and 6) to control the while loop at Line 7. Let ta denote

whether or not the task has been assigned, and k be the DVS level. If ta is equal to

0, then the task has not been scheduled to a PE. If ti cannot be scheduled to PEj at
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Input: ETC, EEC, di ∀ti ∈ T , C , and T

Output: Esol ∀Sn ∈ C and M

foreach Cm ∈ C do1

foreach Sn ∈ Cm do2

ESn ← 0;3

foreach ti ∈ T do4

ta ← 0;5

k ← 1;6

while ta = 0 & k ≤ 4 do7

if tijk + mj ≤ di then8

Assign ti to PEj at DVSk ;9

ta ← 1;10

mj ← mj + tijk ;11

ESn ← ESn + EEC(ij);12

else13

k ← k + 1;14

end15

end16

if ta = 0 then17

Sn is invalid;18

end19

end20

end21

end22

Algorithm 11: GenAlg-DVS

DVSk without violating the deadline constraint, then k is incremented at Line 14. If ti
cannot satisfy the deadline constraint at DVS4, then Sn is invalid.

4 Simulations, results, and discussion

All of the heuristics introduced in this paper were implemented in Matlab. Matlab can

efficiently perform operations on large matrices [29]. Because our simulations make

use of large matrices, using Matlab appeared to be the best choose. The dimensions of

the ETC matrix used in our simulation were as large as 100,000 tasks by 16 PEs. Our

results were obtained on a 2.4 GHz Core 2 Duo system with 2 GB of main memory

running the Windows 7 operating system.

The set of tasks used in this simulation study were obtained from an ETC matrix

(explained in the subsequent text). There were two major goals for our simulation

study:

1. To compare and analyze the performance of the eight introduced scheduling

heuristics.

2. To measure the impact of system parameter variation.
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Table 4 Summary of system

parameters System parameters

µtask Average task execution time 10

Vtask Variance in task execution {0.1, 0.15, 0.35}

time

VPE Variance in PE heterogeneity {0.1, 0.15, 0.35}

kd Deadline scaling variable {1, 1.3, 1.8}

|P E | Number of PEs 16

|T | Number of tasks {100, 1,000, 10,000, 100,000}

DVSk Number of DVS Levels 4

4.1 Workload

Based on the number of tasks, the simulation was divided into two parts. For small-

sized problems (up to 1,000 tasks), all of the eight proposed heuristics were evalu-

ated. Due to the long run-times of GenAlg and GenAlg-DVS, it became impractical to

compute a solution for a problem with more than 1,000 tasks. For large-sized prob-

lems (more than 1,000 tasks and up to 100,000 tasks), GenAlg and GenAlg-DVS

were not evaluated.

For the workload, we obtained task characteristics from an ETC matrix. An expla-

nation of the generation of our CVB ETC matrix was detailed in Sect. 3.1. The mean

task execution time, µtask, was fixed at 10, while the variance in the tasks, Vtask, and

the variance in the PEs, VPE , varied between 0.1 to 0.35. These values were chosen to

incorporate variance in our task execution times and are supported in previous studies,

such as [21, 24, 30], and are derived from real world applications. The deadline, di , of

each ti is based on the ETC matrix and given by (14). To vary the heterogeneity of di ,

the kd parameter in (14) is varied from 1 and 1.8. For small-size problems, the num-

ber of tasks was varied from 100 to 1,000 and the number of PEs was set to 16 [31].

One can choose a large number of PEs; however, studies show that in essence the

number of PEs proportionally relates to the number of tasks [32]. Therefore, is one

must have 256 PEs to choose from, then they must have at least 500,000 tasks to

solve. The dollar cost constraint, D, is obtained by multiplying the number of PEs by

the average price per PE. We used an average cost of $10 per PE, which gives us a

total dollar cost constraint of $160. The dollar cost constraint is only a number which

we assigned. We could replace D with a different number and the solution would not

be affected. To create a PE pool, P E p , with high heterogeneity, some PEs execute

tasks faster than other PEs. Because faster PEs generally cost more than slower PEs,

the costs of the PEs in P E p proportionally relate to their speeds. The number of DVS

levels was set to 4. We admit that having larger numbers of DVS levels can produce

refined solutions. However, the general characteristics of the algorithms will have no

bearing on larger or smaller numbers of DVS levels [20, 33–35]. For large-size prob-

lems, the number of tasks varied from 10,000 to 100,000. The rest of the parameters

were kept the same as those for the small-size problems. To facilitate readability, all

of the above system parameters are summarized in Table 4.
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Fig. 9 100 task problem-size

4.2 Comparative results

4.2.1 Small-size problems

The simulation results for the small-size problems are shown in Figs. 9, 10, 11. These

figures show the average energy consumption and makespan of the eight proposed
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Fig. 9 (Continued)

heuristics. To thoroughly benchmark our heuristics, we considerable varied the simu-

lation system parameters. The Vtask, VPE , and kd parameters each have three possible

values as observed in Table 6. That means that there will be 33 combinations, which

gives us a total of 27 sets of parameters. This represents every combination of the sys-

tem parameters listed in Table 4. To gain confidence in our results, the simulations
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Fig. 10 Energy consumption for 100 tasks with varied kd

were run ten times for each set of parameters. That is a total of 270 simulations per

heuristic.

There is a great deal of information that can be gathered from the plots. The gray

box is the range that represents ±1 times the standard deviation. The mean is rep-

resented by a black box in the middle of the gray box. The whiskers extend to ±1

times the standard deviation. The bold line that spans the entire plot is the grand

mean. The outliers and extremes are denoted by circles and asterisks, respectively. In

the subsequent text, we will discuss the results for 100, 1,000, 10,000, and 100,000

tasks.

100 tasks The plot in Fig. 9(a) shows that among the eight heuristics, G-Min, G-

Deadline, and G-Max consumed the least amount of energy when scheduling 100

tasks. These three heuristics produced very similar results. Based on the mean value,

G-Max consumed the least energy (1.09% less than G-Deadline). G-Max schedules

the tasks with the longest execution times first. Because the later tasks have the short-

est execution times, there is enough slack in the schedule to fit these tasks. However,

based on the range of the minimum execution times, G-Min performed better than the

other seven heuristics. G-Min had a lower minimum and maximum energy consump-

tion than G-Max. Because G-Min schedules the tasks with the shortest execution

times first, there is slack in the schedule for the subsequent tasks, which have the

longest execution times. These results show that the motivation behind both G-Min
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Fig. 11 1,000 task problem-size

and G-Max are effective in producing high quality solutions. UtFun had the worst

performance among the eight heuristics. The performance was the worst because the

utility function used in UtFun favors the PEs with mid-ranged energy consumption.

Such a favoritism may not assign tasks in an energy efficient manner. Note that G-

Min, G-Deadline, G-Max, and GenAlg-DVS all produced a mean energy consump-

tion lower than the grand mean.
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Fig. 11 (Continued)

The makespan obtained by each heuristic can be seen in Fig. 9(b). GenAlg ex-

hibited the lowest average makespan. Because GenAlg does not make use of DVS

techniques, the makespan was shorter than any other heuristic. MaxMin had the

longest makespan. Initially, MaxMin assigns tasks to the least efficient PEs. This

is done to allow slack in the schedules of the more efficient PEs. For the heuristics

that make use of DVS, G-Min, G-Deadline, and G-Max obtained extremely compa-
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Table 5 Average run-time in

seconds No. of tasks 100 1,000 10,000 100,000

ObFun 3.87E−3 2.90E−2 0.439 21.2

UtFun 9.44E−3 7.55E−2 0.707 7.18

G-Min 3.02E−3 2.43E−2 0.233 2.38

G-Deadline 2.90E−3 2.38E−2 0.228 2.34

G-Max 3.00E−3 2.50E−2 0.235 2.47

MaxMin 5.07E−3 4.12E−2 0.404 4.04

GenAlg 156 2313 DNE DNE

GenAlg-DVS 185 2426 DNE DNE

rable makespans (0.51% difference between the mean of the three). G-Min had the

lowest mean makespan. G-Deadline had a slightly lower absolute minimum energy

consumption than G-Min and G-Max, but also had a significantly higher maximum

makespan.

G-Min and G-Max take opposite approaches when scheduling tasks. G-Min as-

signs the tasks with the shortest executions times first, while G-Max assigns the tasks

with the longest execution times first. Because G-Deadline assigns tasks based on

their deadlines, it does not factor in their execution times. This means that G-Deadline

should often times give results that are in between the results of G-Min and G-Max.

When looking at specific cases, we can observe that certain heuristics perform better

with different simulation system parameters. We observed that with a loose deadline

(kd = 1.8), G-Max performed well. With a mid-ranged deadline (kd = 1.3), G-Min

produced better results. When the deadline got tight (kd = 1), G-Deadline outper-

formed G-Min and G-Max. Figure 10 depicts the above results.

1,000 tasks Figure 11(a) shows the energy consumption for 1,000 task problems.

Again, G-Min, G-Deadline, and G-Max consumed the least energy. Observer that

G-Max had the lowest mean energy consumption (1.71% less than G-Min) and G-

Deadline had the lowest minimum energy consumption. The above results validate

what we discovered in our 100 task simulations. Our results show that G-Deadline

has a larger range of minimum execution times than G-Min or G-Max. G-Deadline

had a lower global minimum and a higher global maximum. We can see that UtFun

consumed the most energy of any of the heuristics. There are a few key differences

between our 100 and 1,000 task simulations. First, we can see that ObFun demon-

strated a much better mean energy consumption. ObFun’s mean energy consumption

is now lower than the grand mean. We can also observe that GenAlg-DVS performed

worse in the simulations with 1,000 tasks than it did in the 100 task simulations.

GenAlg-DVS is a genetic algorithm that depends on chance to produce a quality

solution. As the number of tasks increase, the number of possible solutions exponen-

tially increases. This means that as the number of tasks increase, the execution time

needed by GenAlg-DVS to render a good solution is greatly increased. Table 5 shows

that GenAlg-DVS has an execution time of over 40 minutes when solving a 1,000

task problem. Allowing GenAlg-DVS to execute any longer would be impractical.
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Fig. 12 Energy consumption for 1,000 tasks with kd = 1.8 and high heterogeneity (Vtask = VPE = 0.35)

Figure 11(b) depicts the makespan of the eight heuristics. Notice that GenAlg

obtained the lowest makespan of any heuristic. Because GenAlg executes the PEs

at the fastest speed available, the makespan is minimized. The problem with this

approach is that only the makespan is minimized. Figure 11(a) shows that GenAlg

exhibits a poor mean energy consumption. When analyzing makespan, GenAlg-DVS

must be compared to the rest of the heuristics to give us a fair comparison. G-Min, G-
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Deadline, and G-Max all had a mean makespan within 0.57% of each other, so there

is not one heuristics that is significantly better than the others. If we look at values

from individual sets of parameters, then there may be some situations where a certain

heuristic performs better than the others. When kd was set to 1.8 and there was high

heterogeneity in the ETC matrix (Vtask = VPE = 0.35), G-Max had a mean makespan

11.42% higher than G-Deadline. These results are depicted in Fig. 12. When there is

a high degree of heterogeneity in the ETC matrix, there are more tasks with longer

execution times. Because there is an increased number of tasks with longer execution

times, G-Max has less slack towards the end of the scheduling. This leaves less slack

before the deadline to schedule the shorter tasks and in turn increases the makespan.

When kd was 1.3 and there was medium heterogeneity (Vtask = 0.35 and VPE = 0.1),

ObFun produced a makespan 13.14% lower than G-Min.

4.2.2 Large-size problems

10,000 task problem size As mentioned previously, GenAlg and GenAlg-DVS are

not included in the simulations for large-sized problems due to their slow termina-

tion times. Figure 14(a) shows that there are four heuristics with highly comparable

results, namely G-Min, G-Deadline, G-Max, and ObFun. ObFun obtained a mean

energy consumption only 3.48% greater than the G-Min. We also can observe that

as the problem size increases, ObFun performs better. In certain cases, ObFun ob-

tained the lowest mean energy consumption. Figure 13 illustrates the mean energy

consumption when VPE is set to 0.1 and Vtask is set to 0.35. In the above case, ObFun

had a mean energy consumption 8.65% lower than any other heuristic. When there is

high task heterogeneity, the objective function used in ObFun (16), is especially ef-

fective. Equation (16) considers the tasks with the first and second shortest execution

times. When the heterogeneity of the tasks is high, it is important to inspect more

than one task during the task scheduling process. Because ObFun considers multiple

tasks with it’s objective function, ObFun produced better results in this case.

The plot in Fig. 14(b) shows that for a 10,000 task problem, ObFun identifies the

lowest mean makespan. The TaskSelect and PE Select objective functions introduced

in ObFun factor in the loads of each PE when scheduling tasks. This prevents ObFun

from scheduling a majority of the tasks to a few (most efficient) PEs. This induced

a scheduling slack for the later tasks. When there are more tasks in the problem, it

becomes critical that tasks are more evenly distributed among the PEs. Again, UtFun

had the highest mean energy consumption. This shows that the utility function used in

UtFun (19) does not make good decisions when selecting PE-task pairs. UtFun tends

to assign tasks to PEs with mid-range efficiency. Our results show that heuristics that

initially assign tasks to the most efficient PEs exhibit lower better results.

100,000 tasks Figures 15(a) and (b) details the energy consumption and makespan

of the eight heuristics with a 100,000 task problem. ObFun had the lowest mean en-

ergy consumption and was 55.18% smaller than the next lowest solution. The lowest

mean makespan was also achieved by ObFun (41.56% lower than any other heuris-

tic). Because the objective functions implemented in ObFun examine the effects of

multiple tasks and multiple PEs before selecting a task-PE pair, ObFun performs ex-

tremely well in large-sized problems. We can see that UtFun had the largest mean
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Fig. 13 Energy consumption for 10,000 tasks with Vtask = 0.35 and VPE = 0.1

energy consumption and largest mean makespan. UtFun continues to demonstrate

the same weaknesses observed in all of the other simulations. Because the utility is

a function of a PE’s speed and the execution time of the task (19), UtFun does not

schedule tasks to the most energy efficient PEs. Based on mean energy consumption

and mean makespan, G-Deadline had the second best solution. G-Deadline schedules

tasks with the most urgent deadline first. If the tasks with the most urgent deadlines
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Fig. 14 10,000 task problem-size

are not scheduled first, then these tasks may need to be scheduled to an inefficient

PE to meet it’s deadline constraint. ObFun, G-Min, G-Deadline, and G-Max all had

mean energy consumptions and a mean makespan lower than the grand mean.

The run-times of the eight proposed heuristics can be seen in Table 5. Because

genetic algorithms rely on evolutionary procedures, such as mutation, crossover, and

reproduction, to arrive at an “optimal” solution, their run-times are much higher than
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Fig. 14 (Continued)

greedy heuristics. G-Min, G-Deadline, and G-Max had the shortest run-times. Note

that the GenAlg and GenAlg-DVS heuristics were not executed in the 10,000 and

100,000 task size simulations; therefore, the corresponding entries in Table 5 indicate

that these heuristics did not execute (DNE).

Finally, we evaluate the dollar cost. As explained earlier, the total dollar cost con-

straint, D, was set to $160 in our simulations. The average dollar cost of P E for
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Fig. 15 100,000 task problem-size

each heuristic is reported in Table 6. All of the heuristics produced very comparable

results. UtFun had the lowest average dollar cost by a mere 0.18%.

To summarize, when solving problems with 100 and 1,000 tasks, G-Min, G-

Deadline, and G-Max obtained solutions with the lowest energy consumption and

the shortest makespan. For 10,000 task problems, ObFun, G-Min, G-Deadline, and

G-Max demonstrated the highest solution quality. Finally, for the 100,000 task prob-
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Fig. 15 (Continued)

lems, ObFun vastly out performed all other heuristics. When considering execu-

tion times, G-Min, G-Deadline, and G-Max had the best results. All of the pro-

posed heuristics produced results with comparable average dollar costs. Overall,

we may conclude ObFun is the best heuristic for large-sized problems, and G-Min,

G-Deadline, and G-Max are the best heuristics for small-sized problems.
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Table 6 Average dollar cost
Heuristic Dollar Cost

ObFun $156.14

UtFun $155.86

G-Min $156.66

G-Deadline $156.67

G-Max $156.28

MaxMin $156.64

GenAlg $156.87

GenAlg-DVS $156.88

5 Conclusion

This paper introduced an energy minimizing task scheduling strategy in distributed

systems. The problem was formulated as an extension of the Generalized Assignment

Problem. Eight heuristics were proposed to solve this problem. Six of these heuris-

tics were greedy heuristics, namely ObFun, UtFun, G-Min, G-Deadline, G-Max, and

MaxMin. The last two heuristics were based on naturally inspired genetic algorithms,

namely GenAlg and GenAlg-DVS. The eight heuristics were compared against each

other with both small and large problem sizes. The simulation results showed that

for small-sized problems, G-Min, G-Deadline, and G-Max performed the best. For

large-sized problems, ObFun had superior performance in term of mean energy con-

sumption and mean makespan against all of the other proposed heuristics.

For the aforementioned problems, we are aware of other possible mathematical op-

timization techniques that can be utilized, such as dynamic programming, constraint

satisfaction, linear programming, trajectory optimization, integer programming, com-

binatorial optimization, quadratic programming, nonlinear programming, weighted

sums of functions, convex programming, normal-boundary intersection, semidefi-

nite programming, homotopy, stochastic programming, game theory, robust program-

ming, infinite-dimensional optimization, constraint programming, calculus of varia-

tions, optimal control, goal programming, and multilevel programming. However, we

leave that as future work.
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