
Comparison and Evaluation of Advanced
Motion Models for Vehicle Tracking

Robin Schubert, Eric Richter, Gerd Wanielik
Professorship of Communications Engineering

Chemnitz University of Technology
Reichenhainer Straße 70, 09126 Chemnitz, Germany

Email: {robin.schubert, eric.richter, gerd.wanielik}@etit.tu-chemnitz.de

Abstract— The estimation of a vehicle’s dynamic state is one
of the most fundamental data fusion tasks for intelligent traffic
applications. For that, motion models are applied in order to in-
crease the accuracy and robustness of the estimation. This paper
surveys numerous (especially curvilinear) models and compares
their performance using a tracking tasks which includes the
fusion of GPS and odometry data with an Unscented Kalman
Filter. For evaluation purposes, a highly accurate reference
trajectory has been recorded using an RTK-supported DGPS
receiver. With this ground truth data, the performance of the
models is evaluated in different scenarios and driving situations.
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I. INTRODUCTION

Vehicle tracking is one of the most important data fusion
tasks for Intelligent Transportation Systems (ITS). Especially
for advanced driver assistance systems such as Collision
Avoidance/Collision Mitigation (CA/CM), Adaptive Cruise
Control (ACC), Stop-and-Go-Assistant, or Blind Spot Detec-
tion, a reliable estimation of other vehicles’ positions is one
of the most critical requirements.

In order to increase the stability and accuracy of the
estimation, the vehicles are mostly assumed to comply with
certain motion models which describe their dynamic behavior.
Another advantage of this approach is the ability to predict
the vehicle’s position in the future (which can for instance be
used to calculate a collision probability). From the data fusion
point of view, the task is to estimate the parameters of the
model – taking into account all available observations. The
most common approach for this task is the Kalman Filter or
one of its derivates [1].

The application of motion models has been intensively
studied for a variety of ITS applications, for instance radar
tracking [2] or navigation [3]. However, even applications
which are from a superficial point of view not concerned
by vehicle tracking often require a reliable estimation of the
ego vehicle’s motion in order to compensate estimates of
tracked objects accordingly (an example which illustrates this
is motion based pedestrian recognition [4]). Thus, the term
vehicle tracking in this paper refers to the task of estimating
the model parameters of either the ego vehicle or vehicles in
its surrounding.

In the past, numerous motion models (with different de-
grees of complexity) have been proposed for this task. Some

authors also compared different motion models for a certain
applications in a rather general way using simulated data (e.
g. [5]). However, the question which motion model is most
suitable for describing vehicles’ motions in certain scenarios
has not yet been sufficiently answered and will therefore be
the subject of this paper. In particular, an evaluation approach
is proposed which is based on the combination of GPS and
odometry measurements. By comparing the estimates of every
model with a highly accurate reference trajectory, the filters’
performances can be compared and evaluated.

The paper is organized as follows: Section II surveys the
most common motion models and their state transition equa-
tions. In the following section, the methodology for evaluating
the models is described. Finally, the results of the comparison
are presented and discussed in section IV.

II. SURVEY ON MOTION MODELS

A. Systematization

As indicated above, the models proposed in literature are
numerous. A first systematization can be achieved by defining
different levels of complexity. At the lower end of such a scale,
linear motion models are situated. These models assume a
constant velocity (CV) or a constant acceleration (CA). Their
major advantage is the linearity of the state transition equation
which allows an optimal propagation of the state probability
distribution.1 On the other hand, these models assume straight
motions and are thus not able to take rotations (especially the
yaw rate) into account.

A second level of complexity can be defined by taking
rotations around the z-axis into account. The resulting models
are sometimes referred to as curvilinear models. They can
be further divided by the state variables which are assumed
to be constant. The most simple model of this level is the
Constant Turn Rate and Velocity (CTRV) model, which is
commonly used for airborne tracking systems [6].2 By defining
the derivative of the velocity as the constant variable, the
Constant Turn Rate and Acceleration (CTRA) model can
be derived. Both CTRV and CTRA assume that there is no

1However, note that the measurement equation is necessarily nonlinear if
the orientation angle is included in the state vector.

2Note that in literature, this model is sometimes referred to as CTR.
However, in order to obtain a consistent nomenclature, CTRV will be
consequently used throughout this paper.
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Fig. 1. Overview about linear and curvilinear motion models. Every
sophisticated model can be transformed into a simpler one by setting one
state veriable to zero.

correlation between the velocity v and the yaw rate ω. As a
consequence, disturbed yaw rate measurements can change the
yaw angle of the vehicle even if it is not moving.

In order to avoid this problem, the correlation between v and
ω can be modeled by using the steering angle Φ3 as constant
variable and derive the yaw rate from v and Φ. The resulting
model is called Constant Steering Angle and Velocity (CSAV).
Again, the velocity can be assumed to change linearly, which
leads to the Constant Curvature and Acceleration (CCA)
model.4 The connections between all models described so far
are illustrated in figure 1.

From a geometrical point of view, nearly all curvilinear
models are assuming that the vehicle is moving on a circular
trajectory (either with a constant velocity or acceleration). The
only exception is the CTRA model which models a linear
variation of the curvature and thus assumes that the vehicle is
following a clothoid.

While in theory curvilinear models describe the motion of
road vehicles very accurately, errors may result from highly
dynamic effects such as drifting or skidding. While models
which are able to cope with such effects do exist (e. g. [7]),
they will not be considered here for two reasons: Firstly, most
ITS applications are designed for scenarios with non-critical
dynamics. Furthermore, the information which are necessary
for estimating the additional parameters (e. g. slip from every
tire, lateral acceleration) are not observable by exteroceptive
sensors. Thus, such models can be used for estimating the ego
vehicle’s motion, only.

B. State Transition Equations

Many of the described models (with the exception of CCA)
are well-known and will thus be treated very briefly. Further
details can be found in [1].

3This angle is defined between the axis of motion and the direction of the
front wheels.

4If the steering angle would be used as a state variable instead of the
curvature, the model could also be named Constant Steering Angle and
Velocity (CSSA). From an algorithmic point of view, however, both names
refer to the same model.

1) CV: As the CV model with the state space

~x(t) =
(

x vx y vy

)T
(1)

is a linear motion model, the linear state transition

~x(t + T ) = A(t + T )~x(t) (2)

is substituted by the state transition function vector

~x(t + T ) =


x(t) + Tvx

vx

y(t) + Tvy

vy

 (3)

in order to use it within the Unscented Kalman Filter frame-
work.

2) CTRV: The state space

~x(t) =
(

x y θ v w
)T

(4)

can be transformed by the non-linear state transition

~x(t + T ) =


v
ω sin(ωT + θ)− v

ω sin(θ) + x(t)
− v

ω cos(ωT + θ) + v
ω sin(θ) + y(t)

ωT + θ
v
ω

 . (5)

3) CTRA: The state space of this models expands the last
one by a:

~x(t) =
(

x y θ v a w
)T

. (6)

The state transition equation for this model is:

~x(t + T ) =


x(t + T )
y(t + T )
θ(t + T )
v(t + T )

a
ω

 = ~x(t) +


∆x(T )
∆y(T )

ωT
aT
0
0

 , (7)

with

∆x(T ) = 1
ω2 [(v(t)ω + aωT ) sin(θ(t) + ωT )
+a cos(θ(t) + ωT )
−v(t)ω sin θ(t)− a cos θ(t)]

(8)

and

∆y(T ) = 1
ω2 [(−v(t)ω − aωT ) cos(θ(t) + ωT )
+a sin(θ(t) + ωT )
+v(t)ω cos θ(t)− a sin θ(t)]

. (9)

4) CCA: The state space

~x(t) =
(

x y θ v a c
)T

(10)

is similar the one of the CTRA model, except that the yaw rate
ω is replaced by the curvature c = R−1, where R represents
the radius the vehicle is currently driving. Because of

R =
1
c

= − v(t)
ω(t)

= const., (11)
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and
v(t) = v(t0)− at, (12)

the yaw rate becomes a function of time

ω(t) = (−v(t0)− at)c. (13)

The continuous system can be described by

~̇x(t) =


v(t) cos (ω(t)t + θ(t0))
v(t) sin (ω(t)t + θ(t0))

ω(t)t
a
0
0

 . (14)

Using the equations 12 and 13, the final system follows to

~̇x(t) =


(v0 + at) cos((−v0 − at)ct + θ0)
(v0 + at) sin((−v0 − at)ct + θ0)

(−v0 − at)c
a
0
0

 (15)

The discrete state transition equation arises from integrating
the continuous one

~x(t + T ) =
∫ t+T

t

~̇x(t) dt + ~x(t), (16)

which leads to the state transition equation 17 with

γ1 =
1
4a

(
cv2 + 4aθ

)
, (18)

γ2 = cTv + cT 2a− θ, (19)

η =
√

2πvc, (20)

ζ1 = (2aT + v)
√

c

2aπ
, (21)

ζ2 = v

√
c

2aπ
, (22)

C(ζ) =
∫ ζ

0

cos
(π

2
x2

)
dx, (23)

and

S(ζ) =
∫ ζ

0

sin
(π

2
x2

)
dx. (24)

Since equations 23 and 24 represent the fresnel integrals [8],
a numerical approximation is used for calculating their values.

µBlox 
Antaris

Vehicle 
Odometry

Data Fusion

GPS Position

Velocity, Yaw Rate

Leica
GPS 1200Evaluation

Position Reference

Fig. 2. The experimental setup for the model evaluation. The odometry was
obtained by internal vehicle sensors.

III. METHODOLOGY

A. Experimental Setup

In order to perform a motion model evaluation on the basis
of real experimental data, the system setup shown in figure
2 was used. The data fusion module estimates the current
position of the ego vehicle; taking into account GPS/EGNOS,
velocity, and yaw rate measurements (the latter are obtained
via CAN bus from the internal vehicle sensors).

In addition, a DGPS receiver with RTK capabilities is used
to obtain a highly accurate reference trajectory. Under optimal
conditions, the accuracy of the position measurements is in
the range of a few centimeters. An integrated monitoring
algorithm reports if this accuracy cannot be achieved; such
measurements are not used for the evaluation.

Several test drives have been performed using the test
vehicle Carai (compare figure 3). Different routes have been
chosen to reflect typical scenarios for ITS applications, in
particular urban environments and highways (see figure 4).

B. Model Choice

For the sake of clarity, not all models introduced in section
II are included in the evaluation. It is rather the aim of this
paper to bilaterally compare certain models in order to answer
particular questions. In fact, the following issues shall be
analyzed:
• The influence of explicitly modeling the yaw rate – this

can be investigated by comparing CV and CTRV.
• The influence of modeling the acceleration (by comparing

CTRV and CTRA).
• The influence of modeling the correlation between v and

ω (by comparing CTRA and CCA).

~x(t + T ) =



x + η cos(γ1 )C (ζ1 )+η sin(γ1 )S(ζ1 )−η cos(γ1 )C (ζ2 )−η sin(γ1 )S(ζ2 )+2 sin(γ2)
√

ac+2 sin(θ)
√

ac
4
√

acc

y + −η cos(γ1 )S(ζ1 )+η sin(γ1 )C (ζ1 )−η sin(γ1 )C (ζ2 )+η cos(γ1 )S(ζ2 )+2 cos(γ2)
√

ac−2 cos(θ)
√

ac
4
√

acc

− 1
2 cT 2a− cTv + θ

aT + v

a

c


(17)
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Fig. 3. The test vehicle Carai which was used for measurement recording.

Fig. 4. Bird eye’s view on a sample scenario. The reference trajectory is
drawn blue, whereas CTRV and CTRA are yellow and green, respectively.

Thus, only four models are analyzed: CV, CTRV, CTRA,
and CCA.

C. Filter Algorithm

1) The Unscented Kalman Filter: As the aim of this paper
is to compare different models, the same filter is used for
the data fusion. As at least the measurement equations of all
models are nonlinear, the Unscented Kalman Filter (UKF) was
chosen for that task. It has been shown that this filter is able
to perform nonlinear propagations of probability distributions
more accurately than the linearized Extended Kalman Filter
(EKF) [9]. The fundamentals of the UKF will be very briefly
summarized in the following - more detailed descriptions can
be found (among others) in [10].

The UKF is an unbiased, minimum-mean squared error
estimator of a dynamic system with the state vector ~x and
the covariance matrix P . In general, the structure of the
UKF is similar to the well-known Extended Kalman Filter
(EKF), that is, it predicts the state of the system using a

(typically nonlinear) state transition equation f(~x) and corrects
this prediction by incorporating observations which may come
from different sensors.

The particularity of the UKF derives from the fact that
for predicting the state vector of the system, not only one
single value, but a whole probability distribution has to be
transformed. While this is an easy task in the linear case, it
causes significant problems if the state transition equation is
nonlinear. The EKF’s approach to that issue is a linearization
of f(~x) around the current value of ~x. The covariance matrix
can then be predicted using the Jacobian of f(~x).

However, this approach has the unpleasing property of
underestimating the uncertainty in many cases – in particular
when transforming polar into cartesian coordinates and vice
versa [11]. Although that property can partly be compensated
by adding more process noise, it generally deteriorates the
performance of the filter and in the worst case causes it to
divert from the true value.

Another approach for transforming probability distributions
in a nonlinear manner is to sample the distribution and
transform the samples separately. If the samples are drawn
randomly, this approach is called particle filter [12]. While
this filter yields good tracking results, it requires a large
amount of computational resources due to the large number
of particles which are necessary to adequately represent the
distribution. Other approaches are thus using deterministically
chosen samples to transform the probability distribution. One
special case of those so called Sigma Point Kalman Filters is
the Unscented Kalman Filter.

The UKF performs the so called Unscented Transformation
in order to calculate the sigma points (i. e. the samples) from
the probability distribution. In particular, the sigma points at
the discrete time stage k − 1 are obtained by

χ
k−1 =

[
~x

k−1 ~x
k−1 + γ

√
P

k−1 ~x
k−1 − γ

√
P

k−1

]
, (25)

where L is the size of the state vector and γ =
√

α2(L + κ) is
a scaling parameter.5.

√
P denotes the Cholesky decomposition

of the covariance matrix, i. e. every column of the lower-
triangular Cholesky-decomposed P -matrix is added to and
subtracted from the mean. After applying the state transition
equation to the sigma points, that is χ

k
= f(χ

k−1), the
predicted mean and covariance of the state vector can be
calculated as follows:

~x∗
k

=
2L∑
i=0

Wm
i χ

i,k
(26)

P ∗
k

=
2L∑
i=0

W c
i (χ

i,k
− ~x∗

k
)(χ

i,k
− ~x∗

k
)T (27)

5There are three scaling parameters which determine the behaviour of the
filter: α determines the spread of the sigma points around the mean value
and is usually set to a small value (for the application described here, it is
set to 10−5). β can be set to 2 if Gaussian distributions are assumed, while
κ = 3− L (see [10] for details).

733



In these equations, the weights Wi can be derived from the
above-mentioned scaling parameters:

Wm
0 = γ2−L

γ2 ,

W c
0 = γ2−L

γ2 + 1− α2 + β,

Wm
i = W c

i = 1
2γ2 , i 6= 0

(28)

While the update step is now complete, the state still has to be
corrected by the observations. For that, it is at first transformed
into the observation space using the (in general also nonlinear)
function h in order to obtain the expected observations ~y∗ and
their covariance U∗:

Υ
k

= h(χ
k
) (29)

~y∗
k

=
2L∑
i=0

Wm
i Υ

i,k
(30)

U∗
k

=
2L∑
i=0

W c
i (Υ

i,k
− ~y∗

k
)(Υ

i,k
− ~y∗

k
)T (31)

Finally, the predicted and the observed measurements can be
combined in the fusion step of the UKF:

Pxk,yk
=

2L∑
i=0

W c
i (χ

i,k
− ~x∗

k
)(Υ

i,k
− ~y∗

k
)T (32)

K
k

= Pxk,yk
U∗

k

−1, (33)

x
k

= x∗
k

+ K
k
(~y

k
− ~y∗

k
), (34)

P
k

= P ∗
k

+ K
k
U∗

k
KT

k
(35)

2) Noise Considerations: It should be noted that neither the
process nor the measurement noise have been mentioned so
far. They can be incorporated into the state estimation in two
different ways: For purely additive noise with zero mean, the
process noise covariance matrix Q and the measurement noise
covariance matrix R can simply be added to equation 27 and
31, respectively. In this paper, such an approach is used for
the measurement noise only. For the process noise, however,
this approach does not appear reasonable, as this would mean
to derive a time-discrete covariance matrix by linearization
– whose avoidance is one of the main advantages of the
UKF. Instead, the state vector is augmented by some noise
variables en as proposed in [10]. Thus, the noise is included
into the estimation process. Apart from avoiding linearization,
this approach is also able to cope with non-additive or non-
white noise.

While the measurement noise can be chosen identical for
every model, difficulties arise from the process noise pa-
rameters. This is due to the fact that this noise refers to
different state variables in every model. For example, the
process noise in the CV model disturbs vx and vy , while
for the CCA model c and a are affected. In order to cope
with that problem, the following procedure is proposed: If
different models contain the same error variables (e. g. ea in
all models which assume constant acceleration), the values are
chosen identically. Unique noise parameters of single models

TABLE I
NOISE PARAMETERS FOR THE UNSCENTED KALMAN FILTER

Error variable Standard Derivation
evx 0.5
evy 0.5
ev 0.5
ew 0.25
ea 0.5
ec 0.25

TABLE II
ERROR COMPARISON FOR URBAN AND HIGHWAY SCENARIO

 Model 
RMS [m] CV CTRV CTRA CCA 

Sc
en

ar
io

 

U
rb

an
 Euclidian 3.17 2.36 1.85 2.49

Lateral 2.32 1.76 1.31 1.68

Longitudinal 2.16 1.58 1.31 1.84

H
ig

hw
ay

 

Euclidian 3.89 3.98 3.35 3.36
Lateral 1.67 1.52 1.35 1.35
Longitudinal 3.52 3.68 3.07 3.08

 

are chosen in a way which maximizes the filter performance.
The intuition behind this proposal is that the performance of
the filters should not artificially be decreased. The concrete
values of the noise terms can be found in table I.

IV. RESULTS

Table II shows the results of comparing all presented models
for the two scenarios urban and highway. It is distinguished
between the euclidean, the lateral, and longitudinal error,
respectively. It can be seen that the sophisticated models
CTRV, CTRA and CCA provide a better performance than
the simple CV model in almost every case. Furthermore, the
incorporation of the acceleration additionally improves the
overall tracking performance.

In order to evaluate the influence of modeling the yaw rate
and using it as an additional observation, the CV and CTRV
models have been compared using scenes with a high curvature
only (ω > 2 ◦/s) (compare figure 5). The diagram shows
that the CV model generates large position errors due to high
curvature, whereas the CTRV model is able to provide a better
estimation.

The advantage of using acceleration enhanced models like
CTRA is illustrated in figure 6. There, only situations with
accelerations higher than 0.5 m/s2 are included. Especially in
such high acceleration situations, the CTRA model performs
much better than the CTRV model.

As shown in figure 7, it appears that there is no significant
difference between the CCA and CTRA model. Due to the
much higher calculation effort the CTRA model should be
used instead of the CCA model.

V. CONCLUSIONS

In this paper, it has been shown that the choice of an
appropriate model can significantly increase the performance
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Fig. 5. Euclidean error of CV and CTRV model in a highway scenario
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Fig. 6. Euclidean error of CTRV and CTRA model in a highway scenario
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Fig. 7. Euclidean error of CTRA and CCA model in an urban scenario

of a vehicular tracking system. in general, more sophisticated
models outperform simpler ones, especially in situations where
the assumptions of the simple models are no longer true.
However, it appears that making models more sophisticated
does not lead to better performances in any case, as the
example of the CCA model shows.

In order to further improve tracking systems, it is often
beneficial to combine the strengths of different models and
simultaneously avoid their weaknesses. An algorithm which
follows this aim has been proposed by [1] and is called the
Interacting Multiple Model filter. However, the increased per-
formance of such a filter is always bought with computational
costs.

REFERENCES

[1] Y. Bar-Shalom and X.-R. Li, Multitarget-Multisensor tracking: Princi-
ples and Techniques. Storrs, CT: YBS Publishing, 1995.

[2] E. Richter, R. Schubert, and G. Wanielik, “Advanced Filtering Tech-
niques for Multisensor Vehicle Tracking,” in Procs. of IEEE Intelligent
Vehicle Symposium (under review), 2008.

[3] R. Schubert, N. Mattern, and G. Wanielik, “An evaluation of nonlinear
filtering algorithms for integrating gnss and inertial measurements,” in
Proc. of ION/IEEE Positioning, Localization and Navigation Symposium
PLANS (accepted for publication), 2008.

[4] B. Fardi, I. Seifert, G. Wanielik, and J. Gayko, “Motion-based pedestrian
recognition from a moving vehicle,” in Proc. IEEE Intelligent Vehicles
Symposium, 2006, pp. 219–224.

[5] M. Tsogas, A. Polychronopoulos, and A. Amditis, “Unscented Kalman
Filter Design for Curvilinear Motion Models Suitable for Automotive
Safety Applications,” in Proc. 8th International Conference on Informa-
tion Fusion. IEEE, 2005, pp. 1295–1302.

[6] S. S. Blackman and R. Popoli, Design and Analysis of Modern Tracking
Systems. Artech House, 1999.

[7] R. Pepy, A. Lambert, and H. Mounier, “Reducing navigation errors by
planning with realistic vehicle model,” in Intelligent Vehicles Sympo-
sium, 2006 IEEE, 13-15 June 2006, pp. 300–307.

[8] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, ninth dover printing,
tenth gpo printing ed. New York: Dover, 1964.

[9] S. Julier and J. K. Uhlmann, “A general method for approximating
nonlinear transformations of probability distributions,” RRG, Dept.
of Engineering Science, University of Oxford,” technical report,
November 1996. [Online]. Available: http://www.cs.unc.edu/∼welch/
kalman/media/pdf/Julier1997 SPIE KF.pdf

[10] E. A. Wan and R. van der Merwe, Kalman Filtering and Neural
Networks, ser. Adaptive and Learning Systems for Signal Processing,
Communications, and Control. John Wiley & Sons, Inc., 2001, ch.
The Unscented Kalman Filter, pp. 221–280.

[11] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear
estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–
422, 2004. [Online]. Available: http://www.cs.ubc.ca/∼murphyk/Papers/
Julier Uhlmann mar04.pdf

[12] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter
– Particle Filters for Tracking Applications. Artech House, 2004.

735


