
Comparison and Evaluation
of Clone Detection Tools

Stefan Bellon, Rainer Koschke, Member, IEEE Computer Society, Giuliano Antoniol, Member, IEEE,

Jens Krinke, Member, IEEE Computer Society, and Ettore Merlo, Member, IEEE

Abstract—Many techniques for detecting duplicated source code (software clones) have been proposed in the past. However, it is not

yet clear how these techniques compare in terms of recall and precision as well as space and time requirements. This paper presents

an experiment that evaluates six clone detectors based on eight large C and Java programs (altogether almost 850 KLOC). Their clone

candidates were evaluated by one of the authors as an independent third party. The selected techniques cover the whole spectrum of

the state-of-the-art in clone detection. The techniques work on text, lexical and syntactic information, software metrics, and program

dependency graphs.

Index Terms—Redundant code, duplicated code, software clones.

Ç

1 INTRODUCTION

REUSE through copying and pasting source code is
common practice. So-called software clones are the

results. Sometimes these clones are modified slightly to
adapt them to their new environment or purpose. Several
authors report 7 percent to 23 percent code duplication [1],
[2], [3]; in one extreme case, authors reported 59 percent [4].

The problem with code cloning is that errors in the
original must be fixed in every copy. Other kinds of
maintenance changes, for instance, extensions or adapta-
tions, must be applied multiple times, too. Yet, it is usually
not documented where code was copied. In such cases, one
needs to detect them. For large systems, detection is feasible
only by automatic techniques. Consequently, several tech-
niques have been proposed to detect clones automatically
[1], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. The abundance
of techniques calls for quantitative evaluations.

This paper presents an experiment conducted in 2002 that
evaluates six clone detectors based on eight large C and Java
programs (altogether almost 850 KLOC). The experiment
involved several researchers who applied their tools on
these systems. Their clone candidates were evaluated by one
of the authors, namely, Stefan Bellon, as an independent

third party. The selected techniques cover the whole
spectrum of the state of the art in clone detection. The
techniques work on text, lexical and syntactic information,
software metrics, and program dependency graphs. Fig. 1
lists the participants, their tools, and the type of information
they leverage.

The remainder of this paper is organized as follows: The
next section describes the techniques we evaluated and
related techniques for clone detection. Section 3 gives an
operational structural definition of clone types used in the
evaluation. The setup for the experiment is described in
Section 4 and its results are presented in Section 5. Section 6
describes related research in clone detection evaluation.

2 CLONE DETECTION

Software clone detection is an active field of research. This
section summarizes research in clone detection.

Textual comparison. The approach of Ducasse et al.
compares whole lines to each other textually [4]. To
increase performance, lines are partitioned using a hash
function for strings. Only lines in the same partition are
compared. The result is visualized as a dot plot, where
each dot indicates a pair of cloned lines. Clones may be
found as certain patterns in those dot plots visually.
Consecutive lines can be summarized to larger cloned
sequences automatically as uninterrupted diagonals or
displaced diagonals in the dot plot.

Johnson [13] uses the efficient string matching by Karp
and Rabin [14] based on fingerprints.

Token comparison. Baker’s technique is also a line-
based comparison. Instead of a string comparison, the token
sequences of lines are compared efficiently through a suffix
tree. First, each token sequence for a whole line is
summarized by a so-called functor that abstracts from
concrete values of identifiers and literals [1]. The functor
characterizes this token sequence uniquely. Assigning
functors can be viewed as a perfect hash function. Concrete
values of identifiers and literals are captured as parameters

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 9, SEPTEMBER 2007 577

. S. Bellon is with Axivion GmbH, Nobelstr. 15, 70569 Stuttgart, Germany.
E-mail: bellon@axivion.com.

. R. Koschke is with the Universität Bremen, Fachbereich 03, Postfach 33 04
40, 28334 Bremen, Germany. E-mail: koschke@tzi.de.

. G. Antoniol is with the Département de Génie Informatique, !Ecole
Polytechnique de Montréal, Pavillons Lassonde, MacKay-Lassonde, 2500,
chemin de Polytechnique, Montréal (Quebec), Canada, H3T 1J4.
E-mail: antoniol@ieee.org.

. J. Krinke is with Fern-Universität in Hagen, Universitätsstr. 27, 58097
Hagen, Germany. E-mail: krinke@ieee.org.

. E. Merlo is with the Department of Computer Engineering, Ecole
Polytechnique of Montreal, PO Box 6079, Station Downtown, Montreal
(Quebec), Canada, H3C 3A7. E-mail: ettore.merlo@polymtl.ca.

Manuscript received 11 Apr. 2006; revised 21 Oct. 2006; accepted 14 May
2007; published online 10 July 2007.
Recommended for acceptance by M. Harman.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0089-0406.
Digital Object Identifier no. 10.1109/TSE.2007.70725.

0098-5589/07/$25.00 ! 2007 IEEE Published by the IEEE Computer Society

to this functor. An encoding of these parameters abstracts
from their concrete values but not from their order so that
code fragments may be detected that differ only in
systematic renaming of parameters. Two lines are clones
if they match in their functors and parameter encoding.

The functors and their parameters are summarized in a
suffix tree, a trie that represents all suffixes of the program
in a compact fashion. A suffix tree can be built in time and
space linear to the input length [7], [15]. Every branch in the
suffix tree represents program suffixes with common
beginnings, hence, cloned sequences.

Kamiya et al. increase recall for superficially different yet
equivalent sequencesbynormalizing the token sequences [9].

Because syntax is not taken into account, the found
clones may overlap different syntactic units, which cannot
be replaced through functional abstraction. In either a
preprocessing [16], [17] or a postprocessing [18] step, clones
that completely fall in syntactic blocks can be found if block
delimiters are known.

Metric comparison. Merlo et al. gather different metrics
for code fragments and compare these metric vectors
instead of comparing code directly [2], [3], [12], [19]. An
allowable distance (for instance, euclidean distance) for
these metric vectors can be used as a hint for similar code.
Specific metric-based techniques were also proposed for
clones in Web sites [20], [21].

Comparison of abstract syntax trees (AST). Baxter et al.
partition subtrees of the abstract syntax tree of a program
based on a hash function and then compare subtrees in the
same partition through tree matching (allowing for some
divergences) [8]. A similar approach was proposed earlier
by Yang [22] using dynamic programming to find differ-
ences between two versions of the same file.

Comparison of program dependency graphs (PDG).
Control and data flow dependencies of a function may be
represented by a program dependency graph; clones may
be identified as isomorphic subgraphs [10], [11]; because
this problem is NP-hard, Krinke uses approximative
solutions.

Other techniques.Marcus andMaletic use latent semantic
indexing (an information retrieval technique) to identify
fragments in which similar names occur [23]. Leitao [24]
combines syntactic and semantic techniques through a
combination of specialized comparison functions that com-
pare various aspects (similar call subgraphs, commutative
operators, user-defined equivalences, and transformations
into canonical syntactic forms). Each comparison function
yields an evidence that is summarized in an evidence-factor
model yielding a clone likelihood. Wahler et al. [25] and

Li et al. [26] cast the search for similar fragments as a data
mining problem. Statement sequences are summarized to
item sets. An adapted data mining algorithm searches for
frequent item sets.

3 BASIC DEFINITIONS

This section presents definitions that form the foundation
for the evaluation. These definitions represent the con-
sensus among all participants of the experiment accounting
for the different backgrounds of the participants.

The foremost question to answer is, “What is a clone?”
Roughly speaking, two code fragments form a clone pair if
they are similar enough according to a given definition of
similarity. Different definitions of similarity and associated
levels of tolerance allow for different kinds and degrees of
clones.

A piece of code, A, is similar to another piece of code, B,
if B subsumes the functionality of A; in other words, they
have “similar” preconditions and postconditions. We call
such a pair ðA;BÞ a semantic clone. Unfortunately, detecting
semantic clones is undecidable in general.

Another definition of similarity considers the program
text: Two code fragments form a clone pair if their program
text is similar. The two code fragments may or may not be
equivalent semantically. These kinds of clones are often the
result of copy&paste; that is, the programmer selects a code
fragment and copies it to another location.

Copy&paste is a frequent programming practice and an
example of ad hoc reuse. The automatic clone detectors
evaluated in this experiment find clones that are similar in
program text and, hence, the latter definition of a clone pair
is adopted in this paper.

Clones of this nature may be compared on the basis of
the program text that was copied. We can distinguish the
following types of clones:

. Type 1 is an exact copy without modifications
(except for white space and comments).

. Type 2 is a syntactically identical copy; only
variable, type, or function identifiers were changed.

. Type 3 is a copy with further modifications; state-
ments were changed, added, or removed.

Some of the tools report so-called parameterized clones
[6], which are a subset of type-2 clones. Two code fragments
A and B are a parameterized clone pair if there is a bijective
mapping from A’s identifiers onto B’s identifiers that
allows an identifier substitution in A resulting in A0 and
A0 is a type-1 clone to B (and vice versa).

Differentiating parameterized clones would have re-
quired us to check for consistent renaming when we
evaluated the clone pairs proposed by the tools. Because
the validation was done completely manually and because
not all tools make this distinction, we did not distinguish
parameterized clones from other type-2 clones.

While type-1 and type-2 clones are precisely defined and
form an equivalence relation, the definition of type-3 clones
is vague. Some tools consider two consecutive type-1 or
type-2 clones together forming a type-3 clone if the gap in
between is below a certain threshold of lines. Another
precise definition could be based on a threshold for the

578 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 9, SEPTEMBER 2007

Fig. 1. Participating scientists. CloneDR is a trademark of Semantic

Designs Inc.

Levenshtein Distance, that is, the number of deletions,
insertions, or substitutions required to transform one string
into another.

Because there is no consensus on a suitable similarity
measure for type-3 clones, all clones reported by the
evaluated tools that are not type-1 or type-2 clones fall into
the category type-3 in our study. It is then the decision of
the human analyst whether type-3 clone candidates are real
clones.

We are now in a position to define clone pairs more
precisely:

Definition 1. A clone (pair) is a triple ðf1; f2; tÞ where f1 and
f2 are two similar code fragments and t is the associated type of
similarity (type 1, 2, or 3).

As a matter of fact, in the evaluation, we further
constrained the above definition by the additional require-
ment that clones may be replaced through function calls,
that is, that they are syntactically complete. Some of the
tools report code fragments that are at different syntactic
nesting levels (e.g., a fragment consisting of parts of two
different consecutive function bodies), which could indeed
be replaced through macros; but a maintenance program-
mer would never want to replace them because the
replacement would make it hard to understand the
program.

So, the next question is, “What is a code fragment,
exactly?” We could treat a sequence of tokens as a code
fragment. Yet, the notion of a token differs from tool to tool
(e.g., are preprocessor tokens considered?) and not all tools
report token sequences. Rather than tokens, our definition of
code fragments is based on text. Tokensmay bemapped onto
text and the source text is a less debatable point of reference
(it is only less debatable rather than not at all debatable
because of macros and preprocessor directives in whose
presence one could use the preprocessed or original text).

Program text may be referenced by filename and row
and column information. Unfortunately, not all tools report
column information. Thus, the least common denominator
for the definition of a code fragment for our evaluation is
filename and row information.

Definition 2. A code fragment is a tuple ðf; s; eÞ which
consists of the name of the source file f , the start line s, and the
end line e of the fragment. Both line numbers are inclusive.

4 EXPERIMENTAL SETUP

This section explains how the experiment was set up.

Explanations of our general idea as well as in-depth

descriptions of the metrics used for the comparison will

be given.

4.1 Preparations

We analyzed C and Java systems. Using two different

languages and systems of different sizes decreases the

degree of bias.
We conducted the experiment in two phases: a test run

and the main experiment.

4.1.1 Test Run

The goal of the test run was to identify potential problems

for the main run. The test phase analyzed two small

C programs (bison and wget) and two small Java programs

(EIRC and spule).
In the test run, we noticed that some tools report the start

and end lines of the code fragments a line earlier or later if

the lines consist of only a brace. In practice, this difference is

irrelevant, but it complicates the comparison of clones from

different tools.
For this reason, the source code for the main run was

“normalized.” Empty lines were removed. Lines containing

only opening or closing braces were removed and the

braces were added to the line above, paying attention to

single-line comments, etc. (see Fig. 2).
Tools using layout information [12] in order to detect

clones may be affected by this normalization, but to make

the comparison easier, all participants agreed to the

normalization.

4.1.2 Main Run

The main run consisted of the analysis of four programs

written in C and four Java programs. The size of the source

code of the programs varied from 11K SLOC to 235K SLOC.

Fig. 3 gives an overview of the programs used in the

experiment.
As some tools can be configured, we split the main run

into a mandatory and a voluntary part. The mandatory part

has to be done with the “default” settings of the particular

tool, whereas in the voluntary run, each scientist could tune

the settings of his or her tool based on her or his own

experimentation with the subject system in order to gain the

best results.

BELLON ET AL.: COMPARISON AND EVALUATION OF CLONE DETECTION TOOLS 579

Fig. 2. Original code and the same code normalized.

Fig. 3. Overview of the programs used in the main run.

The tools were operated by the participants in a fixed
period of time (five weeks) and the results were collected
and evaluated by Stefan Bellon.

By consensus among all participants, only clones that are
at least six lines long were reported. Smaller clones tend to
be more spurious. Some of the tools applied a preprocessor
before they did the analysis; others worked directly on the
original program text.

4.2 Benchmark

We compared the individual results from the participants
against a reference corpus of “real clones” similarly to the
evaluation scheme in information retrieval. Each clone pair
suggested by a tool will be called candidate and each clone
pair of the reference corpus will be called reference in the
following.

The obvious, naive ways to create such a reference
corpus are:

1. union of candidates reported by different tools,
2. intersection of candidates reported by different tools,

and
3. candidates that were found jointly by N tools.

All three ways have deficiencies. The first alternative will
result in a precision of 1 for each tool as all the candidates a
tool reports are present in the reference corpus. Addition-
ally, we get many spurious false positives among the
references. The second alternative has the reverse effect: The
recall for all tools is 1 and we obtain many spurious true
negatives (it suffices that a single tool cannot detect a certain
clone). The third alternative is a compromise between the
first two and does not really help either. Apart from the fact
that we have to justify the chosen value of N , there can
always beN tools that report the same false positive, or only
N # 1 tools find a true positive.

Instead, we built the reference corpus manually. Stefan
Bellon—as an independent party (referred to as oracle in the
following—looked at 2 percent of all 325,935 submitted
candidates and built a reference corpus by inserting
proposed candidates (sometimes after having modified
them slightly). In the following, we will use the term oracled
for all candidates viewed by Stefan Bellon to decide
whether or not to accept it as a clone. Please note that
oracled includes rejected and accepted as is or in varied form.

An automatic selection process made sure that he did not
know which tools proposed the candidate and that the
2 percent was distributed equally, so that no tool is
preferred or discriminated against. As much as we wished
to classify more than just 2 percent of the candidates, it was
impossible considering our time constraints: It took 44 hours
to classify the first 1 percent and another 33 hours for the
second 1 percent.

We anticipated this problem in the design of the
experiment and took two countermeasures. First, one
evaluation was done after 1 percent of the candidates had
been oracled. Then, another 1 percent was oracled. The
interesting observation (as can be seen in Section 5.3) was
that the relative quantitative results are almost the same.
Second, we injected clones that we did not disclose to the
participants in the given programs. The injected clones
helped us to get a better idea of the potential recall. Fig. 4

shows how many clone pairs of which clone type were
injected into the programs and how many were found by
the union of the tools.

The distribution of the injected clones among the
programs is not even as Stefan Bellon started introducing
many clones in two programs and then noticed that he
would exceed his time constraints. After injecting the clone
pairs into the programs, they were added to the reference
corpus as well.

4.3 Methods of Evaluation—Metrics

This section defines the measurements taken to compare the
automatic clone detection tools.

The evaluation is based on clone pairs rather than
equivalence classes of clones because, only for type-1 and
type-2 clones, the underlying similarity function is reflexive,
symmetric, and transitive. The similarity of type-3 clones is
not transitive: If A is a type-3 clone of B and B one of C, the
similarity between A and C might be too low to qualify it as
type-3 clone. Moreover, some tools report their clones not as
classes but as clone pairs.

In order to determine whether a candidate matches a
reference, we need a precise measurement. Pragmatically,
we did not insist on completely overlapping code fragments
but allowed a “sufficiently large” overlap between candi-
dates and reference clone pairs.

Definition 3. Overlap is the ratio of code common to two code
fragments, CF1 and CF2, i.e., their intersection correlated to
their union. Let linesðCF Þ denote the set of lines of a code
fragment CF ; then, overlapðCF1; CF2Þ is defined as:

overlapðCF1; CF2Þ ¼
jlinesðCF1Þ \ linesðCF2Þj

jlinesðCF1Þ [linesðCF2Þj
:

Definition 4. Contained is the ratio of code of one code fragment
contained in another one. Let linesðCF1Þ denote the set of lines
of the first code fragment and linesðCF2Þ the set of lines of the
second code fragment; then, containedðCF1; CF2Þ is defined as:

containedðCF1; CF2Þ ¼
jlinesðCF1Þ \ linesðCF2Þj

jlinesðCF1Þj
:

Now, we use the above two definitions to create two
metrics that tell us how well a candidate hits a reference.

580 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 9, SEPTEMBER 2007

Fig. 4. Injected secret clones.

For the following two definitions to work, we have to make
sure that the two code fragments CF1 and CF2 that make up
a clone pair are ordered as follows:

CF1 < CF2 , ðCF1:Filename < CF2:FilenameÞ _

ðCF1:Filename ¼ CF2:Filename ^

CF1:StartLine < CF2:StartLineÞ _

ðCF1:Filename ¼ CF2:Filename ^

CF1:StartLine ¼ CF2:StartLine ^

CF1:EndLine < CF2:EndLineÞ:

Thus, for a valid clone pair CP ¼ ðCF1; CF2; tÞ, CF1 <

CF2 must always hold (code fragments of candidates with
the wrong order are simply swapped in order to meet this
criterion).

Definition 5. The good-value between two clone pairs CP1 and
CP2 is defined as follows:

goodðCP1; CP2Þ ¼ minðoverlapðCP1:CF1; CP2:CF1Þ;

overlapðCP1:CF2; CP2:CF2ÞÞ:

Two clone pairs CP1 and CP2 are thus called a good-matchðpÞ
iff, for p 2 ½0; 1&, holds

goodðCP1; CP2Þ ' p:

We are using the minimum degree of overlap because it
is stricter than the maximum or average.

Definition 6. The ok-value between two clone pairs CP1 and
CP2 is defined as follows:

okðCP1; CP2Þ ¼ minðmaxðcontainedðCP1:CF1; CP2:CF1Þ;

containedðCP2:CF1; CP1:CF1ÞÞ;

maxðcontainedðCP1:CF2; CP2:CF2Þ;

containedðCP2:CF2; CP1:CF2ÞÞÞ:

Two clone pairs CP1 and CP2 are thus called an ok-matchðpÞ

iff, for p 2 ½0; 1&, holds:

okðCP1; CP2Þ ' p:

The meanings of the good-value and ok-value can be
seen easily by way of an example. An ok-match(p) applies
if, in at least one direction, a clone pair is contained in
another one for a portion of more than (or equal to)
p (100%; that is, one fragment subsumes another one
sufficiently. However, this leads to the anomaly that one
clone pair can be a lot larger than the other one. With the
good-match(p) criterion, this cannot happen as the inter-
section of both clone pairs is used. The example of Fig. 5
illustrates this.

The vertical line in the middle symbolizes the linear
source code. The first source line is at the top; the last one is
at the bottom. The code fragments of the participating clone
pairs are represented by the filled rectangles. The left side
stands for the first clone pair; the right side stands for the
second. The dotted arrows symbolize how the code
fragments were copied. Let us assume that the left side is
the clone candidate and the right side is a clone pair from
the reference corpus. The first code fragment of the

candidate is one line shorter and starts and ends earlier
than the corresponding code fragment of the reference. The
second code fragment of the candidate, however, is
completely contained within the corresponding code frag-
ment of the reference but two lines shorter.

This yields a good-value as follows:

goodðCP1; CP2Þ ¼ min
5

8
;
6

8

! "

¼
5

8
< 0:7 ¼ p:

Thus, the example does not satisfy the criterion for a
good-match(0.7).

The ok-value is calculated as:

okðCP1; CP2Þ ¼ min

!

max
5

6
;
5

7

! "

;

max
6

6
;
6

8

! ""

¼
5

6
> 0:7 ¼ p:

Thus, the example is an ok-match(0.7).
The following inequality always holds:

okðCP1; CP2Þ ' goodðCP1; CP2Þ:

The inequality means that a good-match(p) is a stronger
criterion than an ok-match(p) for the same value of p. In our
experiment, we decided to use a value of p ¼ 0:7. Because
the threshold for the acceptable length of a clone was 6 in
the experiment, the choice of p ¼ 0:7 allows two six-line
code fragments to be shifted by one line. For instance, if one
clone pair’s fragment starts at line 1 and ends at 6, and the
other’s fragment starts at line 2 and ends at 7, the degree of
overlap is 5=7 > 0:7 ¼ p. This choice accommodates the off-
by-one disagreement in the line reporting of the evaluated
tools. Because both measures are essentially measures of
overlaph—-good from the perspective of both fragments and
ok from the perspective of the smaller fragment—we chose
to use the same threshold for both measures for reasons of
uniformity.

Finally, a mapping from candidates to references has to
be established. Each candidate is mapped to the reference
that it best matches. The idea of the algorithm for establish-
ing this mapping is shown in Fig. 6 (in reality, a more
efficient implementation is used).

There are two dimensions to optimize for the mapping
from candidates onto references: the good and ok values.

BELLON ET AL.: COMPARISON AND EVALUATION OF CLONE DETECTION TOOLS 581

Fig. 5. Example of overlapping of two clone pairs.

Predicate better in Fig. 6 is used to define the optimiza-

tion criterion. The motivation for predicate better is to

map references to candidates that result in a good value as

high as possible and in an ok value as high as possible

without compromising the good value (i.e., the match

remains in the good category). Fig. 7 is used to explain the

constituents of better in detail. In Fig. 7, you can see the

direction of each constituent of better by means of the

path the (good, ok) coordinate of the best matching

reference takes during the algorithm: If possible, it moves

towards the upper right corner of the good/ok value space.

The shaded part below the diagonal is irrelevant because

good > ok always holds. Predicate better yields true if at

least one of the following properties is true:

1. good ' p ^ good > good_max. The good-value in-
creases and climbs above threshold p (arrows
leading into the small triangle in the top right corner
of Fig. 7).

2. good ¼ good_max ^ ok > ok_max. The good-value
stays the same and the ok-value increases (arrows
leading vertically upward in Fig. 7).

3. ok ' p ^ ok_max < p. The ok-value climbs from
below threshold p to above threshold p (arrows
leading from the white triangle into the gray
rectangle and not being vertical arrows in Fig. 7).

4.3.1 Quality of the Detection

Based on the above definitions, we can define several

measures to determine various aspects of detection quality.

In the following definitions, T is a variable denoting one of

the participating tools, P is a variable denoting one of the

analyzed programs, and ! is a variable denoting the clone

type that is observed. All three variables have a special

value “all” referring to all tools, programs, and clone types,

respectively. ! , furthermore, has a special value “unknown”

as some tools cannot categorize clone types.
First, we introduce some base numbers. Then, we define

recall and precision using these base numbers.

Definition 7. Let CandsðP; T ; !Þ denote the candidates that are

reported for program P by tool T regarding the clone type ! .

Let RefsðP; !Þ denote the references that are present in the

reference corpus for program P regarding clone type ! .

Let OKRefsðP; T ; !Þ denote references of program P and

clone type ! that are matched with ok ' 0:7 by tool T .

Let GoodRefsðP; T ; !Þ denote references of program P and

clone type ! that are matched with good ' 0:7 by tool T .

Let DetectedRefsðP; T ; !Þ denote a synonym either for

OKRefsðP; T ; !Þ or for GoodRefsðP; T ; !Þ, depending on

whether it is used in good or ok context.

Let FoundSecretsðP; T ; !Þ denote the number of injected

secret clones of clone type ! that tool T found for program P .

Let OracledCandsðP; T ; !Þ denote all candidates of tool T

for program P and clone type ! that were investigated by the

oracle.

Let RejectedCandsðP; T ; !Þ denote all candidates of tool T

for program P and clone type ! that were investigated by the

oracle but for which good < 0:7 or ok < 0:7, respectively

(depending on the context), hold after the human investigation.
Let TrueNegativeRefsðP; T ; !Þ denote all references of

clone type ! and program P of the reference corpus where no

candidate of tool T produces good ' 0:7 or ok ' 0:7

(depending on the context) after the evaluation.

The reference set is formed by clones proposed by at

least one tool that was confirmed by the human oracle and

by those clones that we injected manually. Consequently, a

true negative across all tools exists when an injected clone

was not found or the human oracle has modified the clone

pair so the resulting reference was not matched by a

candidate in any tool’s set (even the candidate that caused

the clone to be put into the reference set in the first place).
Based on the above base numbers, we can define recall

and precision as follows:

Definition 8.

RecallðP; T ; !Þ ¼
jDetectedRefsðP; T ; !Þj

jRefsðP; !Þj
;

PrecisionðP; T ; !Þ ¼
jDetectedRefsðP; T ; !Þj

jCandsðP; T ; !Þj
:

The recall metric is meaningful even though we oracled

only 2 percent, but the precision metric applied to our

incomplete reference set would yield only a lower bound of

the actual precision. That is why we use a different metric to

582 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 9, SEPTEMBER 2007

Fig. 6. Mapping algorithm.

Fig. 7. Graphical representation function better.

get an idea of the quality of the proposed candidates that is

based on the candidates we actually validated as follows:

Definition 9.

RejectedðP; T ; !Þ ¼
jRejectedCandsðP; T ; !Þj

jOracledCandsðP; T ; !Þj
:

Note that Rejected equals 1# Precision if all candidates

are oracled.

4.3.2 Clone Size Aspects

Next, we define aspects of clone sizes measured as lines of

code. With these measurements, we can investigate the

volume of code proposed as clones by the tools.

Definition 10. Let sizeðCF Þ denote the size of a code fragment

CF as follows:

sizeðCF Þ ¼ CF:EndLine# CF:StartLineþ 1:

Definition 11. Let MaxRefSizeðP; !Þ denote the size of the

reference of program P with clone type ! and maximal clone

pair size, where the following definition of size for a clone pair

CP is used:

sizeðCP Þ ¼ maxðsizeðCP:CF1Þ; sizeðCP:CF2ÞÞ:

Let MaxCandSizeðP; T ; !Þ be defined analogously to

MaxRefSize.

Definition 12. Let AvgRefSizeðP; !Þ denote the average size of

the references of program P with clone type ! , where the

following definition of size of a clone pair CP is used:

sizeðCP Þ ¼
sizeðCP:CF1Þ þ sizeðCP:CF2Þ

2
:

Let AvgCandSizeðP; T ; !Þ, StdDevRefSizeðP; !Þ (standard

deviation), and StdDevCandSizeðP; T ; !Þ be analogously

defined.

4.3.3 Cloning Scope

The following measurements allow us to investigate

whether code is more often copied within files or across

files.

Definition 13. Let IntraFileRefsðP; !Þ denote all references of

program P and clone type ! , where, for each reference CP , this

equality holds:

CP:CF1:F ilename ¼ CP:CF2:F ilename:

Let IntraFileCandsðP; T ; !Þ be defined analogously.

Definition 14. Let AcrossFileRefsðP; !Þ denote all references of

program P and clone type ! where for each reference CP this

inequality holds:

CP:CF1:F ilename 6¼ CP:CF2:F ilename:

Let AcrossFileCandsðP; T ; !Þ be analogously defined.

4.3.4 Distinctiveness of Tools

The measurements defined in this section allow us to
investigate the distinctive contribution of a tool and also its
distinctive deficiencies.

Definition 15. Let OnlyRefsðP; T ; !Þ denote all references of
program P and clone type ! for which only tool T has
candidates with good ' 0:7 or ok ' 0:7, respectively (depend-
ing on the context).

Definition 16. Let OnlyButOneRefsðP; T ; !Þ denote all refer-
ences of program P and clone type ! for which tool T is the
only tool that has no candidates with good ' 0:7 or ok ' 0:7,
respectively (depending on the context).

Definition 17. Let OverlappingCandsðP; T ; !Þ denote all
candidates of program P , tool T and clone type ! for which
this inequality for each clone pair CP holds:

CP:CF1:EndLine ' CP:CF2:StartLine:

5 EVALUATION

This section describes the results of the experiment. First,
we present the reference set. Then, we take a closer look at
one of the analyzed programs. Finally, have a look at the
results of a few of the other analyzed programs.

We must note that Merlo et al. used two different clone
detection techniques in this experiment: a metric-based one
for function clones and a token-based one for type-1 and
type-2 clones.

5.1 The Reference Set

Jens Krinke’s tool is able to analyze C systems only. All
other tools handle both C and Java. Krinke was not able to
analyze the largest of the C programs, namely, postgresql.
Matthias Rieger was not able to analyze postgresql and the
largest Java program, namely, j2sdk.1.4.0-javax-swing.
Hence, values for those programs do not exist for those
two tools because of scalability issues.

We should also note that according to the experimental
setup, clones must consist of contiguous pieces of code,
which puts Krinke’s tool at a disadvantage. His tool takes
only control and data flow into account and is independent
of the textual order of statements, so it may report clones
that need not consist of consecutive lines of code.

Fig. 8 presents an overview of the number of references
and candidates involved. The last three columns reflect the
state after 2 percent of the candidates were oracled.

The yield value in Fig. 8 is the percentage of oracled
candidates that were accepted as references:

jRefsj=jOracledCandsj:

It is a meaningful value for a single tool. To give an idea of
the overall acceptance rate, we are using it across tools here.
However, across several tools, the value must be taken with
caution because two identical oracled and accepted candi-
dates from two tools end up as only one reference. They
count as two oracled candidates but only as one accepted
reference. Because oracling two identical candidates is
negligible given the high absolute number and the low

BELLON ET AL.: COMPARISON AND EVALUATION OF CLONE DETECTION TOOLS 583

percentage of candidates we actually looked at in our
experiment, the yield value in Fig. 8 is still a meaningful
lower bound for the overall acceptance rate.

Figs. 9 and 10 show the influence of our choice for the ok-
metric and good-metric. You can easily see that both the
number of rejected candidates and the number of true
negatives increase when looking at the good-matches
compared to the ok-matches, which is the expected
behavior. The good-metric is more strict than the ok-metric
and, therefore, the misses occur at a higher rate: More
candidates are rejected because they do not match the
references according to the good-metric and more refer-
ences are missed because the candidates do not overlap
with them well enough.

Please note that RejectedCands is the number of
candidates that were considered by the oracle but—in the
part of the experiment when all candidates are compared
with the reference set—matched no reference. This can
happen for three reasons: The reference is an injected
hidden clone, or the candidate was rejected by the oracle, or
the candidate was changed by the oracle so much that the

original candidate failed to match closely enough (with
”closely enough” defined by the ok or the good-metric).
This number is reported in column 1 in Figs. 9 and 10. The
number of candidates that were rejected outright is the
difference between the numbers in columns 3 and 4 of
Fig. 8.

5.2 Detailed Results for cook

Due to lack of space, we are not able to present the results
for all programs in this paper. Our technical report has the
full details [33]. In this paper, we will present the detailed
results for one program, namely, cook, and a summary of the
results for the other programs. We chose cook because it is
the second-largest program that all participants could
analyze. SNNS is even larger and still was analyzed by all
participants. However, results for SNNS were already
presented during the First International Workshop on
Detection of Software Clones (colocated with the 2002
International Conference on Software Maintenance) and the
slides are available from [34] as well. Therefore, we focus on
cook in this paper. The results for cook are representative for
the other programs as well. Differences will be pointed out
explicitly.

Unless stated otherwise in the following discussion, all
values are given with respect to the good-metric and after
2 percent of the candidates were oracled.

Only two participants took the opportunity to send in a
voluntary submission as well: Kamiya and Merlo. For both
participants, unless stated otherwise, statements apply to
both the mandatory and the voluntary data, which were
very similar. We explicitly state differences between the
mandatory and voluntary data if there are any.

5.2.1 Quality of the Detection

Fig. 11 shows the number of reported candidates by the
participants. In one single aspect the program cook is
exceptional: For the other seven programs, Kamiya reports
more clones than all other participants. In the case of cook,
however, Kamiya reports relatively few clones. The second
most clones are usually reported by either Baker or Krinke.
Looking at the clone type information, it can be seen that

584 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 9, SEPTEMBER 2007

Fig. 8. Candidates and references after 2 percent of the candidates were

oracled.

Fig. 9. Rejected candidates and unrecognized references using the

ok-match criterion after 2 percent of the candidates were oracled.

Fig. 10. Rejected candidates and unrecognized references using the

good-match criterion after 2 percent of the candidates were oracled.

Krinke reports all his clones as type 3, whereas Kamiya and
Rieger do not classify their clones at all. Baker and Baxter
can identify type-1 and type-2 clones. Although it is hard to
see in Fig. 11—because Merlo reported only very few type-1
clones in cook—he is the only one who is able to classify all
three clone types.

In program cook, there are 402 reference pairs. In Fig. 12,
you can see how the candidates match those references
according to the ok-metric and the good-metric. It is
interesting to note that Merlo, with only a fifth of the
number of candidates that Krinke reported, manages to
match more references than Krinke does. Another interest-
ing point to note is the decrease of the matched references
when looking at the ok-metric and the good-metric. Merlo
loses almost no found reference when applying the stronger
good-metric instead of the weaker ok-metric. This means
that the clone candidates Merlo proposes are much closer to
the real references than those of the other participants.

The distribution of how many references are jointly
found by how many tools can be seen in Fig. 13. You can
observe that a large number of the references is found only
by one tool. And, in program cook, there was not even one
single reference that was found by all tools.

In the source code of the program cook, we injected three
secret clones:

1. One 40-line clone that is an identical copy of a
sequence of statements in the same file.

2. A 28-line copy of a complete function across files
where the parameter and all references to it in the
function were renamed, thus resulting in a type-2
clone.

3. Another 22-line code fragment consisting of one
complete function that was copied in the same file
and two single-line statements were added, thus
resulting in a type-3 clone.

The secret type-1 clone was found by Kamiya, Baker, and
Rieger. All three found it according to the good-metric. The
secret type-2 clone was found by all but Rieger and was
found according to the good-metric. The type-3 clone was
found by Kamiya, Baker, and Rieger, but only according to
the ok-metric, not according to the good-metric, therefore, it
is not accounted for in Fig. 14, which summarizes the
number of secret references found by each tool.

The percentage of rejected candidates and recall are
shown in Fig. 15. In general, tools that report a large
number of candidates have a higher recall and a higher
number of rejected candidates. For tools that report fewer
candidates, the opposite is true. Only Krinke’s tool has
neither high recall nor high precision.

It is interesting to note that Baker’s type-1 candidates are
worse than her type-2 candidates, whereas the opposite is
true for Baxter. The above-mentioned observation that
Merlo’s candidates fit the references very well is confirmed
here again: Very few of his oracled candidates do not match
a reference.

As we oracled only 2 percent of the submitted candi-
dates, our values of recall and precision must be interpreted
with caution. They can be compared among the different
participants and the different programs, but are only
relative numbers unless 100 percent are oracled.

5.2.2 Clone Size Aspects

In order to answer the question of how big clones tend to be
(for our experiment, they had to be at least six lines long), we
measured clone sizes as well. Fig. 16 shows the sizes of the
code fragments for the individual tools. It is noteworthy that
all three token-based techniques report clones that are longer
than the clones of the other tools. Baxter andMerlo report by

BELLON ET AL.: COMPARISON AND EVALUATION OF CLONE DETECTION TOOLS 585

Fig. 11. Number of submitted candidates for program cook.

Fig. 12. Number of candidates matching references for program cook.

Fig. 13. Number of references of program cook that were matched by

N tools.

Fig. 14. Number of secret references found as good matches in program

cook (three in total).

far the smallest clones. This can be explained by the fact that
Merlo explicitly looks for function clones and Baxter’s clones
must be able to get refactored by macro or function
replacement. This again favors clones that are completely
contained in one function. The token-based tools often detect
code snippets that span more than one function.

5.2.3 Cloning Scope

Another interesting issue is whether more clones occur by
cloning within the same file or by cloning across file
boundaries (see Fig. 17). However, this is a program-
specific value. Other programs have other ratios between
intrafile clones and across-file clones. From the data we
have, we can neither conclude a trend to intrafile nor to
across-file clones as a general rule.

5.2.4 Distinctiveness of Tools

We wanted to know whether there are tools that find clones

that no other tool can detect or whether there are tools that

do not find particular clones that are otherwise found by all

other tools. Those values are shown in Fig. 18.
In order to be able to refactor clones by replacing them

with macros or functions, it is necessary that the code

fragments of a clone pair do not overlap. The last column of

Fig. 18 shows that not all tools pay attention to nonoverlap-

ping. As a consequence, the tools by Baker, Kamiya, and

Rieger cannot be used for automatic refactoring straight-

forwardly (regardless of precision of the candidates).

586 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 9, SEPTEMBER 2007

Fig. 15. Percentage of rejected candidates and recall for cook. (a) RejectedCands; see Definition 9. (b) Recall; see Definition 8.

Fig. 16. Sizes of code fragments in program cook.

Fig. 17. Found references in the same file and in different files of

program cook.

5.3 Further Results

Having presented the detailed data for program cook, we
will present selected data for different evaluations and
other programs to underline certain observations or to show
differences.

Fig. 19 shows the number of candidates matching
references after only 1 percent of the candidates were
oracled. It is noteworthy that if we compare this figure to
Fig. 12, we do not see much difference with respect to the
distribution of the bars. The only difference is the absolute
number of candidates, which is almost a factor of 2 between
Fig. 19 and Fig. 12.

So, despite having oracled only 2 percent of the
candidates, it looks like, even with this small portion, the
results are stable. This can be seen even better with the
values of program eclipse-ant in Fig. 20: Even with such a
small reference corpus, the relative results remain exactly
the same.

Another interesting observation can be made when
comparing the mandatory and the voluntary submissions
of Kamiya and Merlo. There is almost no difference
between the mandatory and voluntary submission for
Merlo. Merlo maintains a high precision and a low recall
for both submissions. In contrast, Kamiya managed to
reduce his false positives with his voluntary submission,

which is very obvious in the program netbeans-javadoc.

Figs. 21 and 22 illustrate this reduction: He submitted only a

forth of the candidates and still gets even better results.
In order to test the sensitivity of the results to the

threshold p, we tried values for 0.6, 0.7, and 0.8. The

absolute values of the results change as expected. The

number of rejected candidates and true negatives increases

with increasing p while recall and the number of found

injected clones decrease. However, the relation among the

results for the individual tools remains the same.

5.4 Clones Injected in All Systems

The fact that only between 24 percent and 46 percent of the

injected secrets within all systems were found by the

individual tools (ignoring Krinke, who found only 4 percent

because he analyzed only three of the eight programs)

needs more discussion. Seven of the injected clone pairs

were not found by any of the participants. Of those clone

BELLON ET AL.: COMPARISON AND EVALUATION OF CLONE DETECTION TOOLS 587

Fig. 18. Further interesting values for program cook.

Fig. 19. Number of matching references for program cook after 1 percent

of oracling.

Fig. 20. Number of candidates matching references for program eclipse-

ant (a) after 1 percent oracling and (b) after 2 percent oracling.

pairs, one is a type-2 clone, the others are type-3. All
injected type 1 clones were found.

There is no obvious explanation why the type-2 clone
was missed. The missed type-3 clones were one method,
one class declaration, one statement sequence, one try-catch
block, and two struct declarations.

The cloned method had one declaration with initializa-
tion added, three statements added (x++, --x, x = x > 15

? 15 : x;) at three different places, and variables renamed.
Given the fact that the code fragments consisted of 10 or
14 lines, respectively, one can argue that the difference is
substantial and, hence, it could be considered reasonable
that the tools did not find that clone pair.

The class declaration had comments changed, one
declaration of a local variable added, and a null expression
replaced by a function call on the right-hand side of an
assignment. These were also quite substantial changes in
relation to the 11 lines.

The statement sequence of 12 or 13 lines, respectively,
had one declaration with initialization added, a variable
replaced by a literal, and two assignments added in the
middle and at the end. These sequences was relatively
similar.

In the try-catch block (in total, 9 and 11 lines, respec-
tively), a method call was replaced by a string literal, an

assignment was added, a simple assignment was turned
into a declaration with initialization, a throw statement was
added, and a package qualifier was extended. These were,
again, relatively many changes.

Two struct declarations overlapped in five identical
components, and one struct had removed only one
component. This change could have been found.

The other pair of struct declarations had two identical
component declarations, three structurally identical, yet
renamed components, one component added as second
element, and two components added at the end. This pair
was more different than the one described above.

In many of the missed cases, one can argue that the
clones were too different. This is an inherent difficulty of
the definition of type-3 clones. Yet, some were relatively
similar from our point of view. One case shows a weakness
of current clone detectors, which fail to unify different token
sequences (even the AST-based tool) into the same syntactic
category. While a string literal is rather different from a
function call that returns a string, both are expressions of
type string. The tools do not make this abstraction.

The fact that a substantial part of the injected secret
clones were not found by the individual tools suggests that
there are many other clones undiscovered in the programs.

5.5 Performance Aspects

Fig. 23 summarizes performance measures for the various
tools. We note that the tools ran on different (yet ordinary)
hardware platforms so that absolute numbers are not
exactly comparable. We will mention the worst cases for
each tool in the following.

The token-based techniques are very efficient. Baker’s
tool required less than 12 seconds and 62 MB and Kamiya
needed 40 seconds and 47 MB for postgresql. Interestingly,
Kamiya’s tool is less efficient for Java; for j2sdk1.4.0-javax-
swing it used 184 seconds and 44 MB (9 seconds, 50 MB for
Baker). Yet, the most efficient tool was Merlo’s. His tool
never needed more than 4 seconds. Baxter’s tool needed
3 hours and 628 MB for SNNS. Rieger’s tool failed to
analyze the largest C and Java systems. For SNNS, Rieger
needed 840 seconds and 380 MB [35]. Similarly, Krinke’s
tool failed on postgresql (it analyzes only C). For Cook, it
needed about 245 hours and 12 MB, and for SNNS about
63 hours and 64 MB.

6 RELATED RESEARCH

This section relates our evaluation to other similar studies.
Bailey and Burd compared three clone and two plagiar-

ism detectors [36]. Among the clone detectors were three of
the techniques we evaluated, namely, the techniques by

588 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 9, SEPTEMBER 2007

Fig. 21. Number of submitted candidates for program netbeans-javadoc.

Fig. 22. Number of matching references for program netbeans-javadoc.

Fig. 23. Performance comparison.

Kamiya [9], Baxter [8], and Merlo [12]. Bailey and Burd used
their own reimplementation of Merlo’s technique; the other
tools were original. The plagiarism detectors were JPlag [37]
and Moss [38].

All clone candidates of the techniques were validated by
Bailey and the accepted clone pairs formed a reference set
against which the clone candidates were compared. Several
metrics were proposed to measure various aspects of the
found clones, such as scope (i.e., within the same file or
across file boundaries), and the findings in terms of recall
and precision were reported.

Our evaluation confirmed the study by Bailey and
Burd. The syntax-based technique by Baxter had the
highest precision (100 percent) and the lowest recall
(9 percent) in this experiment. Kamiya’s technique had
the highest recall and a precision comparable to the other
techniques (72 percent). Interestingly, Merlo’s metric-
based technique showed the least precision (63 percent),
although in our study it is one of the most precise ones.
The difference can be explained by the fact that Merlo
compared not only metrics but also the tokens and their
textual images to identify type-1 and type-2 clones in our
study.

Although the case study by Bailey and Burd showed
interesting initial results, it was conducted on only one
relatively small system (16 KLOC). However, because the
size was limited, Bailey was able to validate all clone
candidates, while we were not because we dealt with many
more and much larger systems. In both studies—Bailey’s
and ours—it is difficult to assess recall as none of us
conducted an exhaustive manual search for clones. Our
countermeasure was to inject clones that should be found.

The system Bailey analyzed was written by a postgrad-

uate in Java. The systems we analyzed were written by

multiple authors in Java or C, which allowed us to compare

cloning in two different languages (although we could not

identify any significant difference).
Other evaluations. While Bailey and Burd and our study

focus on quantitative evaluation of clone detectors, other
authors evaluated clone detectors for their fitness for a
particular maintenance task. Rysselberghe andDemeyer [39]
compared text-based, token-based, and metric-based clone
detectors for refactoring. They compare these techniques in
terms of suitability (Can a candidate be manipulated by a
refactoring tool?), relevance (Is there a priority regarding
which of the matches should be refactored first?), confidence
(Can one solely rely on the results of the code cloning tool, or
ismanual inspectionnecessary?), and focus (Doesonehave to
concentrate on a single class or is it also possible to assess an
entire project?). They assess these criteria qualitatively based
on the clone candidates produced by the tools. Fig. 24
summarizes their conclusions.

We should note that Rysselberghe and Demeyer origin-
ally state that the focus for suffix-tree based techniques is
limited to smaller systems. They experienced a long
runtime for a rather small system (11 KLOC C++) because
of a high space demand on a 64 MB RAM machine. It is
proven that suffix trees are linear in size of the program [7],
and Baker’s [1] and our own studies [40] showed that suffix-
tree based clone detection scales very well in practice. The
problem Rysselberghe and Demeyer encountered must be
caused by their implementation.

Bruntink et al. use clone detection to find cross-cutting
concerns in C programs with homogeneous implementa-
tions [41]. In their case study, they used CCFinder

(Kamiya’s [9] tool that we evaluated), one of the Bauhaus1

clone detectors, namely ccdiml, which is a variation of
Baxter’s technique [8], and a PDG-based detector PDG-DUP
[11]. The cross-cutting concerns they looked for were error
handling, tracing, precondition and postcondition checking,
and memory error handling. The study showed that the
clone classes obtained by Bauhaus’ ccdiml can provide the
best match with the range checking, null-pointer checking,
and error handling concerns. Null-pointer checking and
error handling can be found by CCFinder almost equally
well. Tracing and memory error handling can best be found
by PDG-DUP.

7 CONCLUSION

It is difficult to determine a clear “winner” of this
competition because all tools have their strength and
weaknesses and, hence, are suitable for different tasks
and contexts. Nevertheless, the comparison shed light on
some facts that were unknown before. Strengths as well as
weaknesses of the tools were discovered.

There are several important points to note when looking
at the results of the comparison:

. The two token-based techniques and the text-based
technique (Baker, Kamiya, and Rieger) behave
astonishingly similarly.

. The tools based on tokens and text have higher
recall.

. Merlo’s tool and Baxter’s AST-based tool have
higher precision.

. The PDG-based tool (Krinke) does not perform too
well (sensible only for type-3 clones).

. There is a large number of rejected candidates
(between 24 percent for Baxter and 77 percent for
Krinke).

. Many injected secret clones were missed (only
between 24 percent and 46 percent of the injected
secrets were found by the individual tools, ignoring
Krinke who found only 4 percent because he
analyzed only three of the eight programs).

The AST-based detection has a very high precision but
currently has considerably higher costs in terms of execu-
tion time. The opposite is true for token-based techniques. If
ideas from the token-based techniques could be made to
work on ASTs, we would be able to find syntactic clones

BELLON ET AL.: COMPARISON AND EVALUATION OF CLONE DETECTION TOOLS 589

1. http://www.axivion.com.

Fig. 24. Assessment by Rysselberghe and Denmeyer.

with less effort. In fact, the Bauhaus project has developed a
combined technique along these lines since then. The
combined technique uses suffix-tree based recognition on
serialized ASTs. The resulting AST node sequences are then
cut into syntactic units based on the AST structure [40].
Other combinations of the techniques should be explored
further, too.

The syntax-based technique could be improved if they
took more advantage of their syntactic knowledge. When
we validated clone candidates, we often noticed fragments
which are indeed clones from a purely syntactic point of
view but are rarely meaningful, such as sequences of
assignments, very long initializer lists for arrays, and
structurally equivalent code with totally different identifiers
of record components. Such spurious clones could be
filtered out by syntactic property checks. Such a post-
processing is described by Kapser and Godfrey [42] using
lightweight parsing.

Type-1 and type-2 clones can be found reliably with
existing techniques. Type-3 clones are more difficult to
detect because they are inherently more vague. Here, in
particular, we need to further explore meaningful defini-
tions and types of similarity. Then, tools could be adjusted
to find them more reliably. In particular, the tools currently
lack abstraction. For instance, if two fragments are identical
except that one uses a literal in several places where the
other uses a function call, then current tools may be able to
find the many type-1 and type-2 correspondences between
the two fragments. Yet, they fail to notice that one fragment
can be transformed into the other by replacing a literal by a
function call consistently. Hence, they fail to identify the
fact that the fragments are clones as a whole.

We used a human oracle to judge the clone candidates
submitted by the tools. To avoid bias, an independent
person (Stefan Bellon) investigated the candidates without
knowing who submitted them (we were not developing
clone detectors ourselves at the time of the experiment).

Still, the results are dependent on the judgment of Stefan
Bellon. Because there is no definite definition of a clone,
other judges might decide differently. Walenstein et al., for
instance, report on differences among different human
raters for clone candidates [43]. Yet, Walenstein et al.
assumed a scenario in which clones ought to be removed.
Their guidelines in the experiments suggested that clones
should be detected worth removing. So, the sources of
interrater difference could be the dissimilarity among
clones or the appraisal of the need for removal. To see
how much the results depend upon Bellon, we plan to
replicate the experiment with different independent judges.
Using independent judges may also help us to eventually
reach a better consensus on what we consider clones in the
first place. In particular, for only similar, not identical
fragments, opinions differ.

Moreover, we will revisit our definition of a code
fragment. In its current form, clones must consist of
contiguous pieces of code, which puts Krinke’s tool at a
disadvantage. His tool takes only control and data flow into
account and is independent of the textual order of
statements, so it may report clones that need not consist
of consecutive lines of code.

Another point of improvement that relates to the bench-
mark is to use token counts instead of lines as a measure of

clone size. We often found clones that contained two
statements separated by several blank or commented lines.
In addition, generated files (like parsers) should be excluded
from the benchmark because generated code tends to be
regular and appears as spurious clone candidates.

The current benchmark requires a yes/no decision. It
would be beneficial if human judges could express their
confidence on a more refined ordinal scale. Finally, the
benchmark should organize clones as equivalence classes
for types 1 and 2 rather than clone pairs, which would ease
the validation.

Because of limited space, only an excerpt of the results
could be presented here (see [33], [44] for all results). The
whole benchmark suite with source code of the comparison
framework, the data submitted by the participants, the
reference set, and evaluation results are available online at
[34] so that the experiment can be inspected in detail,
replicated, and enhanced for new systems and clone
detectors. We hope the benchmark evaluation becomes a
standard procedure for every new clone detector.

ACKNOWLEDGMENTS

The authors would like to thank all the participants in the
experiment. They also would like to thank Magiel Bruntink
and Brenda Baker for their comments on this paper. The
authors also thank the anonymous reviewers for their
valuable comments.

REFERENCES

[1] B.S. Baker, “On Finding Duplication and Near-Duplication in
Large Software Systems,” Proc. Second Working Conf. Reverse Eng.,
L. Wills, P. Newcomb, and E. Chikofsky, eds., pp. 86-95, July 1995.

[2] K. Kontogiannis, R.D. Mori, E. Merlo, M. Galler, and M. Bernstein,
“Pattern Matching for Clone and Concept Detection,” Automated
Software Eng., vol. 3, nos. 1-2, pp. 79-108, June 1996.

[3] B. Laguë, D. Proulx, J. Mayrand, E.M. Merlo, and J. Hudepohl,
“Assessing the Benefits of Incorporating Function Clone Detection
in a Development Process,” Proc. Int’l Conf. Software Maintenance,
pp. 314-321, 1997.

[4] S. Ducasse, M. Rieger, and S. Demeyer, “A Language Independent
Approach for Detecting Duplicated Code,” Proc. Int’l Conf.
Software Maintenance (ICSM ’99), 1999.

[5] J.H. Johnson, “Visualizing Textual Redundancy in Legacy
Source,” Proc. Int’l Conf. Computer Science and Software Eng.
(CASCON ’94), p. 32, 1994.

[6] B.S. Baker, “A Program for Identifying Duplicated Code,” Proc.
24th Symp. Interface, pp. 49-57, Mar. 1992.

[7] B.S. Baker, “Parameterized Pattern Matching: Algorithms and
Applications,” J. Computer System Science, vol. 52, no. 1, pp. 28-42,
Feb. 1996.

[8] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
Detection Using Abstract Syntax Trees,” Proc. Int’l Conf. Software
Maintenance, 1998.

[9] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multi-
Linguistic Token-Based Code Clone Detection System for Large
Scale Source Code,” IEEE Trans. Software Eng., vol. 28, no. 7,
pp. 654-670, July 2002.

[10] J. Krinke, “Identifying Similar Code with Program Dependence
Graphs,” Proc. Eighth Working Conf. Reverse Eng. (WCRE’ 01), 2001.

[11] R. Komondoor and S. Horwitz, “Using Slicing to Identify
Duplication in Source Code,” Proc. Int’l Symp. Static Analysis,
pp. 40-56, July 2001.

[12] J. Mayrand, C. Leblanc, and E.M. Merlo, “Experiment on the
Automatic Detection of Function Clones in a Software System
Using Metrics,” Proc. Int’l Conf. Software Maintenance, pp. 244-254,
Nov. 1996.

[13] J.H. Johnson, “Identifying Redundancy in Source Code Using
Fingerprints,” Proc. Int’l Conf. Computer Science and Software Eng.
(CASCON ’93), pp. 171-183, 1993.

590 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 9, SEPTEMBER 2007

[14] R.M. Karp and M.O. Rabin, “Efficient Randomized Pattern-
Matching Algorithms,” IBM J. Research and Development, vol. 31,
no. 2, pp. 249-260, Mar. 1987.

[15] E. McCreight, “A Space-Economical Suffix Tree Construction
Algorithm,” J. ACM, vol. 32, no. 2, pp. 262-272, 1976.

[16] J.R. Cordy, T.R. Dean, and N. Synytskyy, “Practical Language-
Independent Detection of Near-Miss Clones,” Proc. Int’l Conf.
Computer Science and Software Eng. (CASCON ’04), pp. 1-12, 2004.

[17] D. Gitchell and N. Tran, “Sim: A Utility for Detecting Similarity in
Computer Programs,” Proc. 30th SIGCSE Technical Symp. Computer
Science Education, pp. 266-270, 1999.

[18] Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue, “On
Software Maintenance Process Improvement Based on Code
Clone Analysis,” Proc. Int’l Conf. Product Focused Software Process
Improvement, pp. 185-197, 2002.

[19] K. Kontogiannis, R. DeMori, M. Bernstein, M. Galler, and E.
Merlo, “Pattern Matching for Design Concept Localization,” Proc.
Second Working Conf. Reverse Eng., (WCRE ’95), pp. 96-103, July
1995.

[20] G. DiLucca, M. DiPenta, and A. Fasolino, “An Approach to
Identify Duplicated Web Pages,” Proc. Int’l Computer Software and
Applications Conf. (COMPSAC ’02), pp. 481-486, 2002.

[21] F. Lanubile and T. Mallardo, “Finding Function Clones in Web
Applications,” Proc. Conf. Software Maintenance and Reeng., pp. 379-
386, 2003.

[22] W. Yang, “Identifying Syntactic Differences Between Two
Programs,” Software—Practice and Experience, vol. 21, no. 7,
pp. 739-755, July 1991.

[23] A. Marcus and J. Maletic, “Identification of High-Level Concept
Clones in Source Code,” Proc. Int’l Conf. Automated Software Eng.,
pp. 107-114, 2001.

[24] A.M. Leitao, “Detection of Redundant Code Using R2D2,” Proc.
Workshop Source Code Analysis and Manipulation, pp. 183-192, 2003.

[25] V. Wahler, D. Seipel, J.W. von Gudenberg, and G. Fischer, “Clone
Detection in Source Code by Frequent Itemset Techniques,” Proc.
Workshop Source Code Analysis and Manipulation, pp. 128-135, 2004.

[26] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A Tool for
Finding Copy-Paste and Related Bugs in Operating System Code,”
Operating System Design and Implementation, pp. 289-302, 2004.

[27] “Cook,” http://miller.emu.id.au/pmiller/software/cook/, 2007.
[28] “The Stuttgart Neuronal Network Simulator,” http://www-ra.

informatik.uni-tuebingen.de, 2007.
[29] “PostgreSQL,” http://www.postgresql.org, 2007.
[30] “Javadoc, http://javadoc.netbeans.org, 2007.
[31] “Eclipse,” http://www.eclipse.org, 2007.
[32] “Java 2 SDK,” http://java.sun.com, 2007.
[33] S. Bellon, “Vergleich von Techniken zur Erkennung duplizierten

Quellcodes,” master’s thesis no. 1998, Universität Stuttgart,
Germany, 2002.

[34] S. Bellon, “Detection of Software Clones—Tool Comparison
Experiment,” http://www.bauhaus-stuttgart.de/clones, 2007.

[35] S. Ducasse, O. Nierstrasz, and S. Demeyer, “On the Effectiveness
of Clone Detection by String Matching,” J. Software Maintenance
and Evolution: Research and Practice, vol. 18, no. 1, pp. 37-58, Jan.
2006.

[36] J. Bailey and E. Burd, “Evaluating Clone Detection Tools for Use
during Preventative Maintenance,” Proc. Second IEEE Int’l Work-
shop Source Code Analysis and Manipulation (SCAM ’02), pp. 36-43,
Oct. 2002.

[37] L. Prechelt, G. Malpohl, and M. Philippsen, “JPlag: Finding
Plagiarisms among a Set of Programs,” technical report, Univ. of
Karlsruhe, Dept. of Informatics, 2000.

[38] S. Schleimer, D.S. Wilkerson, and A. Aiken, “Winnowing: Local
Algorithms for Document Fingerprinting,” Proc. SIGMOD Int’l
Conf. Management of Data, pp. 76-85, 2003.

[39] F. Van Rysselberghe and S. Demeyer, “Evaluating Clone Detection
Techniques from a Refactoring Perspective,” Proc. Int’l Conf.
Automated Software Eng., 2004.

[40] R. Koschke, R. Falke, and P. Frenzel, “Clone Detection Using
Abstract Syntax Suffix Trees,” Proc. Working Conf. Reverse Eng.,
2006.

[41] M. Bruntink, R. van Engelen, and T. Tourwe, “On the Use of Clone
Detection for Identifying Crosscutting Concern Code,” IEEE
Trans. Software Eng., vol. 31, no. 10, pp. 804-818, Oct. 2005.

[42] C. Kapser and M. Godfrey, “Improved Tool Support for the
Investigation of Duplication in Software,” Proc. Int’l Conf. Software
Maintenance (ICSM ’05), pp. 305-314, 2005.

[43] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia, “Problems
Creating Task-Relevant Clone Detection Reference Data,” Proc.
Working Conf. Reverse Eng., 2003.

[44] S. Bellon, “Vergleich von Techniken zur Erkennung Duplizierten
Quellcodes,” master’s thesis, Univ. of Stuttgart, Germany, Sept.
2002.

Stefan Bellon received the degree in computer
science from the University of Stuttgart in 2002,
where he was a student at the time of the
experiment reported in this paper. He is mana-
ging director and one of the founders of Axivion
GmbH, a spin-off of the Bauhaus research
project, offering tools and services to better
support software maintenance and evolution.
His research interests are in clone detection,
program analysis, and software maintenance.

Rainer Koschke received the doctoral degree in
computer science from the University of Stutt-
gart in Germany. He is a professor of software
engineering at the University of Bremen in
Germany. His research interests are primarily
in the fields of software engineering and program
analyses. His current research includes archi-
tecture recovery, feature location, program ana-
lyses, clone detection, and reverse engineering.
He is a member of the IEEE Computer Society.

Giuliano Antoniol received the degree in
electronic engineering from the Universitá di
Padova in 1982. In 2004, he received the PhD
degree in electrical engineering from the Ecole
Polytechnique de Montreal. He has worked for
companies, research institutions, and universi-
ties. In 2005, he was awarded the Canada
Research Chair Tier I in Software Change and
Evolution. He is currently a full professor at the
Ecole Polytechnique de Montreal, where he

works in the areas of software evolution, software traceability, and
search-based software engineering. He is a member of the IEEE.

Jens Krinke received the PhD degree in
computer science from the University of Passau,
Germany, in 2003. He is now an assistant
professor of software technology at Fern Uni-
versität/University in Hagen. He has worked on
various aspects of program slicing, in particular
on context-sensitive program slicing of concur-
rent programs. Other research interests include
clone detection, aspect mining, and distance
teaching of software engineering through com-

puter-supported collaborative learning. He is a member of the IEEE
Computer Society.

Ettore Merlo received the PhD degree in
computer science from McGill University (Mon-
treal) in 1989 and the laurea degree from
University of Turin (Italy) in 1983. He led the
software engineering group at the Computer
Research Institute of Montreal (CRIM) until
1993, when he joined Ecole Polytechnique de
Montreal as a professor. His research interests
are in software analysis, software reengineering,
user interfaces, software maintenance, artificial

intelligence, and bioinformatics. He is a member of the IEEE.

. For more information on this or any ot her computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BELLON ET AL.: COMPARISON AND EVALUATION OF CLONE DETECTION TOOLS 591

