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Abstract—The recent advances in light field imaging, sup-
ported among others by the introduction of commercially avail-
able cameras e.g. Lytro or Raytrix, are changing the ways
in which visual content is captured and processed. Efficient
storage and delivery systems for light field images must rely
on compression algorithms. Several methods to compress light
field images have been proposed recently. However, in-depth
evaluations of compression algorithms have rarely been reported.
This paper aims at evaluation of perceived visual quality of
light field images and at comparing the performance of a few
state of the art algorithms for light field image compression.
First, a processing chain for light field image compression and
decompression is defined for two typical use cases, professional
and consumer. Then, five light field compression algorithms are
compared by means of a set of objective and subjective quality
assessments. An interactive methodology recently introduced by
authors, as well as a passive methodology is used to perform these
evaluations. The results provide a useful benchmark for future
development of compression solutions for light field images.

Index Terms—light field, subjective quality evaluation, objec-
tive quality evaluation, image coding, image compression.

I. INTRODUCTION

THE IDEA that light, just as electromagnetism, can be

interpreted as a field was first proposed by Michael

Faraday in 1846. The concept was subsequently formalized

by Andreı̄ Gershun, who coined the term light field (LF) in

his book on radiometric properties of light in 3D space [1].

One way to represent the LF is to describe the radiance

along the light rays in a 3D space with constant illumination.

This can be achieved by using the plenoptic function, which

was first introduced in 1991 by Adelson and Bergen [2]. More

particularly, the plenoptic function L describes the intensity

of the light rays passing through every possible point in space

(Vx, Vy, Vz) at every possible angle (θ, φ), wavelength λ, and

time t, represented as follows:

L = L(θ, φ, λ, t, Vx, Vy, Vz). (1)

Assuming a 3D region free of occlusions at a single time

instance and considering the fact that radiance along rays re-

mains constant in a free space, the above 7D plenoptic function

can be further simplified into a 4D light field function [3].

Such 4D function, representing a set of light rays, can be

parametrized as an intersection of rays with two planes: uv
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describing the rays position in aperture (object) plane and xy

describing the rays position in image plane.

L = L(u, v, x, y). (2)

The parametrized LF function, further referred to as 4D LF,

can be considered as a collection of perspective images of the

xy plane, each observed from a position on the uv plane.

In the past, LF images have been mainly used to navigate

through 3D scenes. Recently, their applications have expanded

thanks to the creation of commercially available devices,

such as Raytrix or Lytro cameras, as well as development

of new visualization devices capable of properly coping with

LF images. However, due to the enhanced features that LF

imaging offers, a vast amount of data is created during the

acquisition step. Therefore, it is necessary to find an efficient

way to compress LF images for transmission and storage.

Currently available techniques to capture and visualize

LF images determine two general approaches for LF im-

age compression. A general diagram of workflow for LF

image acquisition and visualization is depicted in Figure 1.

The first coding approach assumes that the raw sensor data

obtained during the acquisition step is compressed directly

with minimal signal pre-processing such as demosaicing or

devignetting (point A in Figure 1). The actual format of raw

data strongly depends on the exact acquisition device, e.g.

a lenslet based hand-held camera, a multi-camera array, or

a multi-view plus depth acquisition device. Often, extensive

post-processing of the decompressed LF image is necessary

prior to its visualization. Furthermore, additional metadata

about the captured scene and acquisition device, e.g. camera

and color calibration data, is needed to properly process and

visualize the LF image. The second coding approach considers

creation of a 4D LF representation of LF image prior to

compression (point B in Figure 1). As mentioned above, the

4D LF represents a collection of perspective images, which can

be visualized without a need for acquisition related metadata

or post-processing. Process of creation of 4D LF from the

raw sensor data also strongly depends on the exact acquisition

device.

In the context of general LF image manipulation, one

can think of two specific use cases related to either of the

two coding approaches defined above. On the one hand,

professional photographers, operators, and artists may benefit

from LF image acquisition technologies, since they allow for

greater flexibility in terms of optimal parameters selection after

capture. For example, an erroneous selection of focal plane

in a scene may lead to several retakes and thus to greater

costs. Other features, such as change of point of view or
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Fig. 1: General acquisition and display pipeline for LF images.

zoom, may dramatically impact the way scenes are captured.

In this case, it is of paramount importance that key factors in

the acquisition, such as white balance, color, and exposition,

are not altered in the compression step, and that acquisition

metadata is stored to be used during post-processing.

Consumers, on the other hand, may turn to LF imaging

when looking for an enhanced experience to capture a special

moment. Ability to change zoom, perspective, and focus in a

simple and intuitive way without the need for expensive post-

processing software, is in line with the interactivity already

seen in applications like Instagram, in which users can modify

the appearance of the captured scenes with predefined filters.

In this case, the fidelity to the acquisition parameters is less

important. However, the resulting image should not be too

large and ready to be visualized and shared in devices with

limited resources.

In this paper, we compare two main coding approaches

to compress LF images through a set of objective and sub-

jective quality evaluations. More specifically, five different

compression algorithms suitable to either of predefined use

cases are described, investigated, and evaluated. A standard

PSNR metric, adjusted to the properties of LF images, is used

as objective quality metric.

In the past, the authors have used single viewpoint image

visualization to assess the visual quality of LF contents [4].

However, this type of assessment is suboptimal for two main

reasons. The first concerns the number of stimuli needed to

perform the tests, which increases significantly once multiple

viewpoints and refocusing points are selected (in case of the

test conducted in this paper, 720 stimuli were tested). The

increased number of stimuli leads to strain and fatigue for the

subjects and is generally not recommended. Secondly, analysis

of variance performed on the results obtained from different

viewpoints showed that no significant difference can be found

between scores, meaning that subjects would rate different

viewpoints from the same content in a similar way. Thus,

evaluating different viewpoints leads to a lengthy, more costly

and less efficient test, with no visible gain. For the reasons

mentioned above, two methodologies have been selected to

subjectively assess the visual quality of LF image contents.

The first methodology was recently introduced by the authors

and allows for interaction with the displayed content [5]. The

second methodology passively shows the different viewpoints

composing the LF content, in order to ensure that all users see

and rate the exact same content. The two methodologies have

been analysed by the authors and were found to be highly

correlated [6]. The two methodologies are described in details

and applied to the problem of assessing the visual quality of

the five compression algorithms.

The remainder of the paper is organized as follows. Section

II presents the state of the art in related areas of LF imaging,

specifically LF image acquisition, compression, and quality

evaluation. Section III discusses in details the two approaches

examined in the paper. Section IV presents our experiments in

details, whereas section V exposes and comments the results.

Section VI concludes the paper.

II. STATE OF THE ART

This section briefly reviews the state of the art in LF imag-

ing. First, a quick overview of LF image acquisition techniques

is presented. Then, existing algorithms to compress LF images

are discussed in relation to the requirements of previously

defined use cases. Finally, currently available objective and

subjective evaluation methodologies to assess the quality of

LF images are presented.

A. Light field image acquisition

A digital 4D LF, which is a collection of perspective

images, can be obtained by sampling the 4D LF function

defined in Equation 2. The density of the sampling depends

on the acquisition technology used to capture the LF image. In

general, depending on the requirements for baseline, different

acquisition techniques can be used to capture LF images. More

specifically, for baseline in a range of meters, one way of

acquiring LF images is by means of a moving camera. The

idea behind is that by moving a single camera throughout

the scene, we can acquire the different perspective images

that form our 4D LF. In this case, the sampling in xy

plane depends on the camera resolution, and sampling in uv

plane depends on the position of the capturing device and

its shutter speed. Examples of such acquisition devices are

the Stanford Spherical Gantry, a motorized gantry with four

degrees of freedom that can be used to capture 4D LF [7] and

Apple’s setup to construct 360-degree cylindrical panoramic

images [8]. 4D LF can also be acquired by using hand-held

cameras, as long as their position on the uv plane can be

precisely estimated [9].

Another approach is to construct an array of cameras with

synchronized shutter speed capturing the 4D LF at once. In

this case, the uv sampling depends on baseline parameter of

the camera array grid. Using a camera array, a full 4D LF

is formed and new views corresponding to narrower baseline

parameter must be further synthesized if needed. An example

of such acquisition technology is the Stanford Multi-Camera

Array [10].

LF images can also be acquired from multi-view plus depth

data [11]. In this case, the baseline can be wide or narrow,

depending on how the data was created [12].
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For LF image acquisition with narrow baseline a hand-held

plenoptic camera capturing so called “single lens stereo” can

be achieved [13]. It exploits an array of micro lenses placed in

front of the sensor plane [14]. The aperture size of the main

lens limits the possible viewpoints. The spatial resolution (xy

plane) depends on the number of micro lenses, whereas the

angular resolution (uv plane) depends on the number of pixels

behind each micro lens. Hand-held cameras implementing this

model were presented in [15] and are already widely available

to consumers1,2. The raw image obtained with this type of

cameras closely resembles the honeycomb array of lenses that

has been used for the acquisition, and will be from now on

referred to as a lenslet image. It is possible to convert the

lenslet image to a 4D LF that effectively constitutes a sampling

of Equation 2.

B. Light field image compression

Acquiring or synthesizing LF images creates a vast amount

of data (around 150 MB for lenslet images with 15 × 15
viewpoints of resolution of 635 × 434, around 6.8 GB for

15×15 4K images acquired with a multi-camera array). Thus,

a lot of research has been recently focused on finding efficient

compression algorithms to effectively store and transmit LF

images. Depending on the acquisition process, several ap-

proaches have been proposed. Early work focused on com-

pressing synthetic 4D LF using disparity compensation [16],

[17], [18] and geometry estimation [19], and enabling random

access coding [3].

More recently, the effort has been focused on compression

of LF images acquired through hand-held devices. Several

compression algorithms have been proposed to directly com-

press lenslet images through intra coding, exploiting redundan-

cies in its structure. For example, Perra proposed a lossless

compression scheme based on adaptive prediction [20]. Li

et al. incorporated a full inter prediction scheme in HEVC

intra prediction, explicitly exploiting the redundancy in lenslet

images [21], as well as using the disparity compensation

and impainting to efficiently code lenslet images [22]. More

recently, five proposals for lenslet image compression have

been collected within the ICME 2016 Grand Challenge. Three

proposals relied on improving HEVC intra compression effi-

ciency by exploiting the redundancies in the lenslet image [23],

[24], [25], whereas the rest used pseudo-temporal sequences

to code the lenslet images [26], [27].

Another approach is based on compression of 4D LF, which

can be created from raw lenslet image data using specific

transformations. A precursor of the approach is proposed by

Olsson et al. [28]. They propose the creation of sub-images

from integral images. Such sub-images are then encoded

through a pseudo-sequence using H.264. Choudhury et al.

proposed to adapt the method of coded snapshots to LF

image compression through random codes [29]. Dai et al.

coded sub-aperture images using different scanning methods,

including line and rotating scanning [30]. Helin et al. proposed

1https://www.raytrix.de/
2https://www.lytro.com/

predictive coding for sub-aperture views to achieve lossless

compression [31].

No standard approach has been agreed on to compress LF

images. Nevertheless, to help finding a standard representation

for LF images, the JPEG standardization committee launched

in 2014 a new activity called JPEG Pleno. Its goal is to create

a standard framework for efficient storage and transmission

of not only LF images, but also point-cloud, holographic

and other plenoptic content. In particular, JPEG Pleno aims

at finding an efficient way to represent plenoptic content,

while, where needed, also offering compatibility with existing

solutions, such as JPEG and JPEG 2000. In such a framework,

it is essential to analyse and compare different approaches for

compression of LF images as one of the plenoptic content

variations, especially in relation to different use cases, in order

to provide a solid guideline towards the creation of a standard

method. Additionally, a call for proposals for both lenslet and

high density camera array for 4D LF compression, aiming

at the definition of a standard for compression of plenoptic

content, has been issued during the 73rd JPEG Meeting [32].

C. Light field image quality evaluation

Evaluation of visual quality is essential to design and

improvement of coding solutions for LF images. Several

publications have been devoted to comparison and evaluation

of state of the art standard solutions. Alves et al. assessed the

performance of existing still image coding solutions, such as

JPEG 2000 and AVC, on lenslet images [33]. The objective

evaluation was carried out using PSNR as a full reference

metric. Similarly, Vieira et al. compared five different HEVC

compatible coding of lenslet images with different data for-

mats [34], again using PSNR as a full reference metric.

Rizkallah et al. reported the impact of compression of LF

images on refocusing and extended focus images through

objective metrics [35].

A Grand Challenge was organized at ICME 2016 under

a collaboration between Qualinet and JPEG standardization

committee. The goal was to collect new compression solutions

for LF images, and to evaluate them using both objective and

subjective quality assessment methodologies [4]. The Grand

Challenge, however, had some limitations. For starters, it

required to have lenslet images in YUV 420 format as input

of the compression, as well as output for the decompression.

Moreover, the reference was obtained by performing the trans-

formation to 4D LF after chroma subsampling was applied

on the raw lenslet image, rather than transforming directly

the lenslet image in RGB 444. The subjective assessments

were carried out on five discrete views from each content,

which were evaluated separately. Since the assessment was

conducted separately on predefined views, it did not address

the issue of evaluating global quality of experience offered by

a compressed LF image.

Recently, we proposed a new methodology to evaluate a

plenoptic content in an interactive way [5] allowing users

to interact with LF images, visualize different views, apply

refocusing, and globally evaluate the quality of LF images.

To best of our knowledge, no extensive analysis has been
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Fig. 2: Processing chain for lenslet image compression used for two compression algorithms (anchor P01, proponent P02).

Fig. 3: Processing chain for 4D LF compression used for two compression algorithms (anchors P04 and P05).

Fig. 4: Processing chain for hybrid compression of lenslet using intermediate 4D LF transformation (proponent P03). The green

and blue blocks highlight how the compression step involves intermediate transformation to 4D LF, and the decompression

step involves the inverse transformation to lenslet image.

carried out to assess which coding approach for LF image

compression yields better results in terms of visual quality.

III. LIGHT FIELD CODING STRATEGIES

This section describes in details the coding approaches

investigated in the evaluation process, including a thorough

description of five selected algorithms to compress LF images.

Two main coding approaches can be considered for com-

pression of LF images. Referring to the general diagram of

workflow presented in Figure 1, we can compress the data at

two different stages. Compression can be performed on the raw

sensor data that has been captured with the selected acquisition

technology, after minimal processing, such as demosaicing

and devignetting (point A in Figure 1). The 4D LF can be

recovered from the decompressed bitstream through extensive

post-processing, involving camera and color calibration meta-

data which needs to be sent along with the bitstream. The

second coding approach performs compression on the 4D LF

obtained from the raw data (point B in Figure 1). The 4D LF

is a collection of perspective views which can be visualized

as they are, or combined to create new interpolated views,

synthetic aperture, refocusing, and extended focus. Since the

transformation of raw sensor image data to 4D LF is performed

before the compression step, no metadata is required for

visualization. The compression solutions used to code the raw

sensor data, as well as the transformation to 4D LF from the

raw sensor data, strongly depend on the acquisition technology

used to capture LF images. If compression is applied at point

A, the selected scheme will profoundly differ based on the

acquisition technology. On the other hand, a compression

scheme operating at point B can compress 4D LF image

information captured with any acquisition technology.

In order to compare the two coding approaches on a com-

mon ground, we decided to focus our attention on evaluating

coding strategies for lenslet-based acquisition. Lenslet-based

acquisition allows to compare the two approaches on the same

image content captured within the same conditions. In this

case, the raw sensor data is minimally pre-processed to obtain

a lenslet image. From the lenslet image, the 4D LF can be

recovered through rectification, calibration and extraction of

perspective images, using camera and color calibration data.

The extraction of perspective images from the lenslet image

generates N × M views, depending on the uv resolution.

However, the most external views contain too many distortions

to be properly visualized. The 4D LF coding approach can take

advantage of this fact by not coding the most distorted views,

which will likely not be used in the visualization process, thus

further reducing the size of the bitstream.

The rest of the section is organized as follows. The first

coding approach, which deals with compression of lenslet

images, is described. Then, the second coding approach, which

focuses on compression of 4D LF obtained from lenslet

images, is presented. Finally, one hybrid approach to compress

lenslet images through transformation to 4D LF, introduced in

ICME 2016 Grand Challenge, is detailed. Authors are aware

of practical drawbacks and flaws in this solution. However, it

was decided to include it in the evaluation process because

of its optimal performance within the Grand Challenge, and

because it represents a transition point between the two coding

approaches. A summary of the compression schemes can be
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found in Table I.

A. Lenslet image compression

The lenslet coding approach performs compression on the

lenslet image, obtained from the raw sensor data after demo-

saicing and devignetting. Figure 2 depicts the workflow for

the coding approach. The workflow was adopted following the

definition of the ICME 2016 Grand Challenge, which required

to perform compression on YUV 420 lenslet images in 8-bit

precision.

The raw sensor data is first demosaiced, devignetted and

clipped to 8 bits to obtain a lenslet image. The lenslet image

is subsequently converted to YUV 420 format, and compressed

and decompressed using the selected compression scheme.

The output of the decompression step is then upsampled and

converted to RGB 444. Conversion to RGB 444 format is

required to perform the transformation from lenslet image to

4D LF. The 4D LF is created from the decompressed lenslet

image using camera metadata. Color and gamma corrections

are applied separately on each view. The perspective views

forming the 4D LF can subsequentially be visualized on

commercially available displays, or combined to create new

interpolated views, synthetic aperture or refocusing effect.

Two compression algorithms (P01 and P02) compliant

with the workflow depicted in Figure 2 were evaluated. One

compression scheme was selected among the best perform-

ing submitted to ICME 2016 Grand Challenge, and it was

compared to an HEVC anchor. The anchor P01 exploits

HEVC intra profile with default settings to compress the

YUV 420 lenslet image. To perform the compression, the

software x265 was used3. The second algorithm P02 uses

a modified version of HEVC intra profile, which integrates

Locally Linear Embedding (LLE) and Self Similarity (SS)

to exploit the redundancies in the lenslet structure [25]. The

image is partitioned into blocks using HEVC intra prediction

scheme. LLE estimates the current block by selecting the best

linear combination of k nearest neighbors through a least-

square optimization problem. SS predicts the current block

using the best among two blocks, one given by best block

matching in the search window, the other chosen by searching

for best linear combination between the first selected block

and another block in the search window. The codec performs

both LLE and SS, and then choses the prediction method that

gives the smallest rate distortion cost.

B. 4D light field compression

The 4D LF coding approach performs the compression on

the 4D LF, obtained from the lenslet image, after color and

gamma corrections. Figure 3 depicts the workflow for this

coding approach. Two anchors were created to assess the

visual quality of this coding approach. The first anchor P04
assumes the same input as the compression schemes using the

lenslet coding approach (YUV 420 lenslet images). The color

space is then upsampled and converted again to RGB 444,

to be used in the transformation process. To assess the effect

3https://www.videolan.org/developers/x265.html

of chroma subsampling of the lenslet image on the resulting

quality of the final 4D LF, the second anchor P05 performs

the compression on the 4D LF, obtained from lenslet in RGB

444 format, after color and gamma corrections (Figure 3).

In this case, the lenslet image is not transformed to YUV

from RGB, and the color space is not subsampled before the

transformation.

For both anchors, the 4D LF is created from the uncom-

pressed lenslet image using camera metadata, and color and

gamma corrections are applied separately on each view, prior

to compression. Each view is converted from RGB 444 to

YUV 420. The views are arranged in a pseudo-temporal

sequence in spiral order, as depicted in Figure 6. Due to the

geometrical distortions present in the most external views, only

a subset of the views is coded. Specifically, only the 13× 13
internal views out of 15× 15 views are encoded. The pseudo-

temporal sequence is coded with HEVC software x265. In the

decompression step, the views which have not been coded are

replaced with copies of neighboring views, to reconstruct the

15×15 images that compose the 4D LF. After decompression,

the views are upsampled and converted to RGB 444 and

rearranged in the 4D LF. The perspective images composing

the 4D LF can then be visualized on commercially available

displays, or combined to create synthetic aperture, refocusing

and new interpolated views.

C. Hybrid compression of lenslet images

Among the participants to the ICME 2016 Grand Challenge,

which required to have YUV 420 lenslet image as input

and output of the compression and decompression step, one

algorithm performed compression on lenslet images using

intermediate transformation to 4D LF [26]. Figure 4 depicts

the workflow for this algorithm.

The algorithm P03 proposes a compression of 4D LF

images based on pseudo-sequences of perspective views. Due

to the constraints of the Grand Challenge, the YUV 420 lenslet

image is first converted to RGB 444 color space, to be used in

the transformation step. Then the lenslet is processed to obtain

the perspective views that compose the 4D LF. The views are

color and gamma corrected and then converted back to YUV

420. A subset of them is then rearranged in a specific coding

order, that accounts for similarities between adjacent views,

and coded using the JEM encoder4. In the decompression

step, the views are rearranged in the 4D LF. Inverse color

and gamma corrections are applied and the lenslet image is

formed following the inverse process of the transformation to

4D LF.

The conversion from lenslet to 4D LF and back was needed

to be compliant with the requirements of the grand challenge.

However, it can be clearly seen that the proposed approach

is hybrid, in the sense that it compresses lenslet images

through transformation to 4D LF. The tranformation from

lenslet images to 4D LF and back is lossless, as it is defined

in [26].

4https://jvet.hhi.fraunhofer.de/svn/svn HMJEMSoftware/tags/HM-16.6-
JEM-2.0rc1/
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TABLE I: Summary of compression schemes.

Proponents Description

P01 Anchor: Lenslet image compressed using HEVC intra (default settings of x265 software implementation).
P02 Lenslet image compressed using HEVC intra with LLE and SS (software HM-14.0) [25].
P03 Hybrid approach: lenslet image compressed using intermediate transformation to 4D LF and HEVC (software JEM 2.0) [26].
P04 Anchor: 4D LF, obtained after chroma subsampling, compressed using HEVC (default settings of x265 software implementation).
P05 Anchor: 4D LF compressed using HEVC (default settings of x265 software implementation).

(a) Bikes (b) Stone Pillars Outside (c) Fountain & Vincent 2 (d) Friends 1

Fig. 5: Central viewpoint image from each content used in our experiment.

IV. LIGHT FIELD QUALITY ASSESSMENT EXPERIMENT

This section describes the evaluation process in details.

First, the data preparation process is presented, along with the

coding conditions. Methodologies and metrics for objective

and subjective evaluation are then presented in details.

A. Dataset preparation and coding conditions

Four LF images, acquired by a Lytro Illum camera,

were selected from the publicly available EPFL LF image

dataset [36]. More specifically, Bikes, Stone Pillars Outside,

Fountain & Vincent 2 and Friends 1 contents were selected

for our experiments. The central view of each content used is

depicted in Figure 5. The images were carefully selected from

those used in the ICME 2016 Grand Challenge [4] in order

to provide a wide range of scenarios, containing details that

would prove challenging for the compression algorithms. To

obtain the 4D LF, the lenslet images were processed using the

LF MATLAB toolbox [37][38].

The compression algorithms were evaluated on four bitrates

(corresponding to four compression ratios), namely R1 = 1
bpp (10 : 1), R2 = 0.5 bpp (20 : 1), R3 = 0.25 bpp (40 : 1),

R4 = 0.1 bpp (100 : 1). The compression ratios are computed

as ratios between the size of the uncompressed raw images in

10bit precision (5368×7728×10 bits = 414839040 bits) and

the size of the compressed bitstreams.

The uncompressed reference was obtained by demosaicing,

devignetting and clipping to 8 bits the raw sensor data,

transforming it to 4D LF and applying color and gamma

corrections. Unlike the reference used in ICME 2016 Grand

Challenge, which used as a reference the 4D LF obtained from

YUV 420 lenslet image, we obtain our reference from the

lenslet image in RGB 444, without any chroma subsampling.

This reference was selected to have a proper comparison with

acquisition data obtained with minimal pre-processing. For this

Fig. 6: Ordering of the views for coding.

reason, chroma subsampling was not applied on the reference,

since it alters the data.

A total of five compression schemes were evaluated. Each

compression scheme was given a label, as stated before, for

easier identification. A summary of the compression schemes

can be found in Table I. It should be noted that the Quan-

tization Parameters (QP) were selected to match the bitrates

described above.

B. Objective evaluation

To analyze the performance of evaluated coding schemes,

PSNR was selected as a full reference metric. PSNR values

were computed with respect to the uncompressed reference.

The computation is thus performed on the 4D LF after color

and gamma corrections (point B in Figure 1).The PSNR metric

was adapted to better suit properties of LF images. Therefore,

the PSNR value is computed on the Y channel as follows:

PSNRY (k, l) = 10 log
10

2552

MSE(k, l)
, (3)
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in which k and l are the indexes of the acquired views. The

MSE(k, l) for each image is computed as follows:

MSE(k, l) =
1

mn

m∑

i=1

n∑

j=1

[I(i, j)−R(i, j)]2, (4)

where m and n are the dimensions of one viewpoint image

(i.e., n = 625, m = 434). I(i, j) is the Y value for the selected

acquired view in the evaluated 4D LF, whereas R(i, j) is the

corresponding value in the reference 4D LF. In the same way,

the PSNR for the other two channels U and V is obtained. A

weighted average [39] is then computed as follows:

PSNRY UV (k, l) =

6PSNRY (k, l) + PSNRU (k, l) + PSNRV (k, l)

8

(5)

The mean of all viewpoint images is subsequentially computed

to have an average value for PSNR for Y channel and for

Y UV :

PSNRXmean
=

1

(K − 2)(L− 2)

K−1∑

k=2

L−1∑

l=2

PSNRX(k, l),

(6)

in which K = 15 and L = 15 represent the number of

perspective views, and X = Y and X = Y UV for Y channel

and for Y UV channels, respectively.

C. Subjective evaluation

1) Interactive test methodology: A recently introduced

methodology for interactive evaluation of plenoptic content

was selected to perform the first of the two visual assessments

[5]. The methodology is based on Double Stimulus Impairment

Scale (DSIS) [40].

The participants were asked to interact with the LF images

and to rate the level of impairment of the test LF image with

respect to the reference, on a scale from 1 (Very annoying)

to 5 (Imperceptible). Each LF image was presented together

with the uncompressed reference in a side-by-side fashion.

The position of the reference was set to either left or right for

each experiment, and the participants were informed about its

location on the screen.

For each stimulus, the central viewpoint image from the

4D LF was displayed. By clicking inside the displayed image

and dragging the mouse, the other viewpoints from the 4D LF

were accessed and displayed. Each image was displayed in its

native resolution of 625× 434 pixels.

Eleven refocused images were created for each content, us-

ing a modified version of the toolbox function LFFiltShiftSum.

The function shifts all the perspective views according to a

parameter, called slope, and performs a sum of the shifted

images to obtain a single image that is refocused on a specific

plane, which depends on the value of the slope. The number

of images to be shifted and consequently summed defines the

depth of field. Summing all 15×15 images creates the smallest

depth of field, in which only one specific plane in the image

is in focus. On the other hand, taking just the central image,

Fig. 7: Ordering of the views for animation for passive

methodology.

which is equivalent to summing just 1× 1 images, brings all

the objects in focus (largest depth of field). For our tests, it

was decided to sum images from index 3 to index 13 (11×11
images) to have a larger depth of field that still shows an

effects of refocusing. The values of the slopes are summarized

in Table II. The refocused images were accessible through a

slider shown at the bottom of each stimulus. The slopes were

selected so as to assure gradual transition between refocusing

on the foreground and on the background with respect to

semantically relevant objects in each content.

Before the experiments, a training session was organized to

allow participants to get familiar with artifacts and distorsions

in the test images. Five training samples were manually

selected by expert viewers. In order not to influence the

results, the training samples were created by compressing other

content on various bitrates. The content used for the training

was chosen from the same LF image database used for the

test images [36]. The training samples were presented along

with the uncompressed reference, exactly as they were shown

in the test.

The experiment was split into two sessions. In each session,

40 stimuli were shown side by side with the uncompressed

reference, corresponding to approximately 20 minutes per

session. The display order of the stimuli was randomized, and

the same content was never displayed twice in a row. Each

subject took part in all the sessions, thus evaluating the entire

set of stimuli. A break of ten minutes was enforced between

the sessions to avoid fatigue. Before the test, one dummy

sample was inserted to ease the participants into the task. The

resulting scores from dummy stimuli were not included in the

results.

A total of 24 subjects (19 males and 5 females) participated

in the experiment, for a total of 24 scores per stimulus.

Subjects were between 18 and 35 years old, with an average

of 24.8 and a median of 25 years of age. All subjects were

screened for correct visual acuity with Snellen charts, and

color vision using Ishihara charts.

2) Passive test methodology: The second of the two vi-

sual assessments of quality was performed using a passive
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TABLE II: Values of refocusing slope for each content.

Slopes

Content 1 2 3 4 5 6 7 8 9 10 11

Bikes -10 -8 -6 -4 -2 0 2 4 6 8 10
Stone Pillars Outside -10 -8 -6 -4 -2 0 2 4 6 8 10
Fountain & Vincent 2 -10 -8 -6 -4 -2 0 2 4 6 8 10
Friends 1 -5 -4 -3 -2 -1 0 1 2 3 4 5

methodology, to ensure that all participants would visualize

and rate exactly the same viewpoints and refocused views.

The methodology is based on DSIS.

The participants were shown the LF content as a video

sequence navigating between the viewpoints and the refocused

images. Each stimulus was displayed alongside with the

uncompressed reference, in a side by side fashion, and the

subjects knew in advance on which side of the screen the

reference was displayed.

Due to distortions caused by the lenslet structure, several

viewpoints presented artefacts independent from the coding

procedure, and thus had to be discarded, in order not to

negatively influence the results. Therefore, only a subset of

97 out of 225 viewpoints was chosen to be displayed. Ten

viewpoints per second were displayed, to ensure a smooth

transition of the different viewpoints. The viewpoints were

accessed from top to bottom and from left to right and right

to left in alternate order (Figure 7). At the end of the viewpoint

animation, the eleven refocused images were displayed with

a framerate of four refocused images per second, going from

foreground to background and from background to foreground.

The animation setup was chosen and validated by expert

viewers in order to mimic the parallax effect, as well as to

mimic the refocusing effect that occurs when trying to change

the focal point. The total length of the animation for each

stimulus was 14 seconds.

Test subjects were asked to rate the level of impairment

of the test stimuli when compared to the uncompressed

references. The rating was performed on a scale from 1

(Very annoying) to 5 (Imperceptible). Before the experiment,

a training session was organized to allow participants to get

familiar with artefacts and distorsions in the test images. Five

training samples were manually selected by expert viewers.

To help subjects localize and identify compression artefacts

in the fast-paced video, the same content used in the test was

selected for the training. The training samples were presented

along with the uncompressed reference, exactly as they were

shown in the test.

The experiment was split into two sessions. In each session,

40 stimuli were shown side by side with the uncompressed

reference, corresponding to approximately 20 minutes per

session. The display order of the stimuli was randomized, and

the same content was never displayed twice in a row. Each

subject took part in all the sessions, thus evaluating the entire

set of stimuli. A break of ten minutes was enforced between

the sessions to avoid fatigue.

A total of 29 subjects (24 males and 5 females) participated

in the experiment, for a total of 29 scores per stimulus.

Subjects were between 18 and 35 years old, with an average

and median of 23 years of age.

3) Interactive test environment: To avoid the involuntary

influence of external factors and to ensure the reproducibility

of results, the laboratory for subjective video quality

assessment was set up according to ITU recommendation

BT.500-13 [40]. Professional Eizo ColorEdge CG301W

30-inch monitors with native resolution of 2560 × 1600
pixels were used for the test. The background color of the

display was set to mid grey, according to requirements in ITU

Recommendation ITU-R BT.2022 [41]. The monitors were

calibrated using an i1Display Pro color calibration device

according to the following profile: sRGB Gamut, D65 white

point, 120 cd/m2 brightness, and minimum black level of 0.2
cd/m2. The room was equipped with a controlled lighting

system that consisted of neon lamps with 6500 K color

temperature, while the color of all the background walls and

curtains present in the test area was mid grey. The illumination

level measured on the screens was 15 lux. The distance of

the subjects from the monitor was approximately equal

to 7 times the height of the displayed content, conforming

to requirements in ITU Recommendation ITU-R BT.2022 [41].

4) Passive test environment: To perform the tests, the

QualityCrowd 2 framework [42] was used. Nonetheless, it

should be noted that all the participants performed the tests

in the same environment at the same time, with equal lighting

conditions, using the same display model and the same screen

resolution.

Since there is no browser video plugin capable of reliable

real-time decoding and displaying for HEVC, the animations

were encoded with AVC. A two-pass encoding was used and

the deblocking filter was disabled to ensure transparency and

to preserve the original blockiness artefacts when encoded at

low bit rates. Expert viewing session conducted prior to the

main subjective assessment concluded that the AVC video

encoding was visually lossless. Selected settings for AVC

coder are summarised in Table III.

5) Data analysis: Outlier detection was performed accord-

ing to the guidelines defined in ITU recommendation BT.500-

13 [40]. One outlier was detected in both interactive and

passive tests, and the relative scores were discarded, thus

leading to 23 and 28 scores per stimulus, respectively. The

Mean Opinion Score (MOS) was computed, separately for

each methodology, for each coding condition j (i.e., each

content, codec and compression ratio) as follows:
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TABLE III: Selected settings for AVC coder for passive methodology.

-r 30 -s <size> -f rawvideo -pix fmt yuv420p -i <input> -c:v libx264 -profile:v high -x264opts no-scenecut:no-deblock:pass=1 -b:v 8M tmp.mp4
-r 30 -s <size> -f rawvideo -pix fmt yuv420p -i <input> -c:v libx264 -profile:v high -x264opts no-scenecut:no-deblock:pass=2 -b:v 8M <output>

MOSj =
1

N

N∑

i=1

mij , (7)

where N is the number of participants and mij is the score for

stimulus j by participant i. The corresponding 95% confidence

intervals were computed. To determine whether the results

yield statistical significance, a one-sided Welch’s test at 5%
significance level was performed on the scores, with the

following hypotheses:

H0 : MOSA ≤ MOSB

H1 : MOSA > MOSB ,

in which A and B are the codecs that are being compared.

The test was performed for each compression ratio and for

each content, separately for each methodology. If the null

hypothesis were to be rejected, then it could be concluded

that codec A performed better than codec B for the given

content and compression ratio at a 5% significance level.

V. RESULTS AND DISCUSSION

In this section, results of the objective and subjective quality

assessments are presented. Results on the coding approaches

presented in Section III will be discussed separately. First,

the lenslet image compression is analyzed. Then, the 4D LF

compression is discussed. The hybrid approach is compared

to the other approaches. Finally, a comprehensive review of

all the codecs is performed.

A. Compression of lenslet images

For PSNR computed on Y channel (Fig. 8, solid lines),

the performance of the two codecs examined here (P01 and

P02) strongly depends on the content, as it is common

when computing PSNR. In general, P01 outperforms codec

P02 for high bitrates. For low bitrates, P02 outperforms

P01 for contents Bikes and Fountain & Vincent 2, and is

outperformed in the remaining cases. PSNR computed on

YUV channels (Fig. 8, dashed lines) shows similar trends.

Codec P02 has a particularly poor performance with content

Friends 1, and in general performs worse than codec P01 for

high bitrates. Results are particularly surprising since the codec

proposed in P02 is supposed to improve the performance

of HEVC Intra (anchor P01) with new prediction schemes.

To better investigate the reasons behind this behaviour, we

computed PSNR at different stages of the pipeline. Results

from PSNR computation are shown in Figure 9. In particular,

we computed PSNR on the 4D LF without any color or

gamma correction, on the color-corrected 4D LF, on the

gamma-corrected 4D LF and when both corrections were

applied on the 4D LF. Additionally, we compute PSNR on

the lenslet image prior to the transformation, to better assess

the performance of the two codecs on 2D images. The PSNR

was computed with respect to the uncompressed reference at

the same stage of the pipeline.

Results show that, on the lenslet image and on the 4D LF

without any correction, P02 always outperforms P01. On the

gamma-corrected 4D LF, P02 performs better than P01 on

half of the contents. When color correction is applied on the

4D LF, however, we see a degradation in performance, with

P01 outperforming P02 for high bitrates. This suggests that

the prediction method, while working efficiently on compres-

sion of regular images, as proven by the results obtained on

the lenslet image prior to transformation, adapts rather poorly

to the peculiarities of LF images, and is more susceptible to

errors after color correction is applied. Results from PSNR

computed on YUV channels follow the same trend.

Results from both interactive and passive subjective evalu-

ations show that P01 is performing significantly better than

P02 for the highest bitrate. In particular, in the interactive test

P01 is significantly better than P02 for all contents, whereas

in the passive test it is significantly better for 3 out of 4

contents. For bitrate = 0.5 bpp, interactive tests show that P01
performs better than P02 for only 1 out of 4 contents, whereas

passive tests indicate that it outperforms P02 on half of the

contents. For lower bitrates (0.2 and 0.1 bpp) the difference

between the two codecs is negligible.

B. Compression of 4D light field

As discussed in section III, we want to analyse the effect

of downsampling the lenslet image prior to transformation to

4D LF. For this reason, we compare the performance of P04,

which uses a chroma subsampled version of the lenslet image,

with P05, which creates the 4D LF from the lenslet image

which has not been subsampled (see Fig. 3).

For PSNR computed on Y channel (Fig. 8, solid lines), the

two codecs have similar performance for all bitrates for con-

tents Bikes and Stones Pillars Outside, whereas for contents

Fountain & Vincent 2, P05 performs better than P04 for all

bitrates. Although downsampling of chroma channels should

not affect the Y channel, color correction is applied on RGB

channels of the single views, which are then converted to YUV

to compute the PSNR. The downsampling thus affects the Y

channel as well.

Results are similar for PSNR computed on YUV chan-

nels (Fig. 8, dashed lines), although for content Foun-

tain & Vincent 2, the difference between P04 and P05 is

now negligible.

Results from subjective evaluations and pairwise compari-

son (Fig. 10, 11, 12 and 13) show a stronger preference for

codec P05 when compared to codec P04. In particular, results

from the interactive tests show that, for the highest bitrate,

P05 performs significantly better than P04 for two out of four

contents. For bitrate = 0.25 bpp, P05 performs better on three

out of four contents, whereas for the remaining two bitrates

(0.5 bpp, 0.1 bpp) it always performs significantly better than

P04.On the other hand, results from the passive tests show

that P05 always performs significantly better than P04, for

all bitrates.
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(a) Bikes (b) Stone Pillars Outside

(c) Fountain & Vincent 2 (d) Friends 1

Fig. 8: Rate distortion plots for Y channel (solid line) and for YUV channels (dashed line). PSNR was computed on the 4D

LF after color and gamma correction.

C. Hybrid compression of lenslet images

As seen in section III, the third compression scheme P03 is

compressing 4D LF and then converting them back to lenslet

images. It is thus worthy of note to compare the performances

of P01, P02 and P03, since they have the same input and

output in the compression and decompression steps, although

they use different approaches.

From the objective metric point of view, P01 and P03
outperform codec P02 for high bitrates. For low bitrates,

P03 always outperforms P01 and P02, although in case

of content Stone Pillars Outside, the difference between the

codecs is negligible. For PSNR computed on YUV channels

(Fig. 8, dashed lines), codec P03 outperforms the others

for all contents. Interestingly enough, for codec P03 PSNR

computed on YUV channels always has higher values than

PSNR computed on the Y channel, while for all the other

codecs the opposite is true. One possible explanation for

this peculiar behavior is that the inverse color and gamma

transformation applied before transforming the 4D LF back to

lenslet has an effect on the final color performance, leading to

better results in the YUV channels.

The subjective evaluation results do not show the same

trends as the objective results (Fig. 10, 11, 12 and 13). In

particular, results from the interactive tests show that for the

lowest bitrate (0.1 bpp) P03 outperforms P01 on two out of

four contents and never outperforms P02, whereas the passive

tests show that P03 performs better than P01 on only 1 out

of 4 contents, and performs better than P02 on 2 out of

4 (Fig. 13 (a)). For intermediate bitrates (0.5 bpp and 0.25
bpp), interactive tests show that P01 and P03 both perform
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(a) Bikes (b) Stone Pillars Outside

(c) Fountain & Vincent 2 (d) Friends 1

Fig. 9: Rate distorsion plots for Y channel. PSNR was computed at various stage of the pipeline (See Fig. 2).

significantly better than P02 on one out of four contents,

whereas passive tests additionally show that P01 performs

significantly better than P03 on half of the contents for both

bitrates. For the highest bitrate, P01 performs significantly

better than P03 on at least half of the contents (3 out of 4 in

case of passive tests, 2 out of 4 in case of interactive tests),

and outperforms P02 in the majority of cases (3 out of 4 in

case of passive tests, 4 out of 4 in case of interactive tests).

For the objective evaluation, the hybrid scheme P03 per-

forms better than the other lenslet compression schemes.

However, results from the subjective evaluation suggest that

the difference in performance with respect to P01 (simple

HEVC Intra) is negligible for low bitrates, and leads to poorer

results for the highest bitrates.

Since P03 compresses lenslet images through transforma-

tion to 4D LF, it is useful to compare its performance to

the performance of P04. For PSNR computed on Y channel

(Fig. 8, solid lines), the performance of codecs P03 and P04
strongly depends on the content, as expected. For high bitrates,

P04 performs better than P03, with the notable exception of

content Stones Pillars Outside, in which codec P03 performs

slightly better for all bitrates. For low bitrates, however, P04
performs slightly worse than P03 for all contents except

Friends 1, for which P04 performs better than P03. PSNR

computed on YUV channels (Fig. 8, dashed lines) show

similar trends.

Results from subjective evaluation and pairwise comparison

(Fig. 10, 11, 12 and 13), however, show that codec P03 never
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(a) Bikes (b) Stone Pillars Outside

(c) Fountain & Vincent 2 (d) Friends 1

Fig. 10: Results of interactive subjective tests. MOS vs bitrate for all contents, with respective confidence intervals.

performs significantly better than codec P04. In particular, for

the lowest bitrate, results from the interactive tests indicate that

no codec performs significantly better than the other, whereas

results from passive tests suggest that P04 performs better than

P03 on 1 out of 4 contents. For bitrate = 0.25 bpp and 0.5 both

interactive and passive tests agree that P04 outperforms P03
for 2 out of 4 contents and 1 out of 4 contents, respectively. For

the highest bitrate, interactive tests indicate that P04 performs

significantly better than P03 on 1 out of 4 contents, whereas

for the passive tests they are statistically equivalent for all

contents.

D. General discussion

In general, both objective and subjective results show that

coding 4D LF (point B in Figure 1) leads to better performance

when compared to coding lenslet images directly. In particular,

pseudo-temporal ordering of 4D LF, obtained from RGB 444

lenslet image, performs significantly better than the other pro-

posals for at least half of the contents for all bitrates examined

in the subjective assessment of quality, showing that chroma

subsampling of lenslet images can lead to a considerable

reduction in visual quality. It is worth noting, however, that

results from passive tests show that P01 performs statistically

better than P04 on 2 out of 4 contents for the highest bitrate

(Fig. 13 (d)).

Comparison of different lenslet image compression algo-

rithms shows that improvements in performance for 2D image

coding do not necessarily result in better visual quality of LF

image. In particular, whereas HEVC intra with LLE and SS

has better performance in objective evaluation carried out on

lenslet images and 4D LF without color correction, it performs

significantly worse when color correction is applied. Further

work on lenslet image compression should address the effect of

color correction on the final 4D LF, and propose new strategies
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(a) Bikes (b) Stone Pillars Outside

(c) Fountain & Vincent 2 (d) Friends 1

Fig. 11: Results of passive subjective tests. MOS vs bitrate for all contents, with respective confidence intervals.

to appropriately cope with this issue.

Coding 4D LF has the benefit of not requiring any metadata

to be correctly displayed. Moreover, it can be used to code 4D

LFs acquired with different acquisition technologies. Since

the most distorted views in the 4D LF can be discarded in

the compression process, it also allows for bitrate saving. As

we previously mentioned, the transformation to 4D LF is an

additional step that would be not suitable for low-memory

devices. Thus, if consumers’ market is the desired target,

a solution that does not require any transformation would

be preferrable. In this case, coding 4D LFs seems the most

suitable choice.

The additional step of converting to 4D LF is not an issue

if the target is the professional market. However, fidelity to

acquisition parameters is of paramount importance. As seen

before, chroma subsampling leads to poorer performances,

especially after color correction has been applied. On the other

hand, coding 4D LF leads to discarding metadata, which could

be used in post-processing softwares, as well as potentially

discarding some heavily distorted views. In this case, both

approaches presented in this paper do not seem suitable. A

new approach should be designed, aimed at high fidelity to

acquisition parameters.

VI. CONCLUSION

In this paper, two different coding approaches for light field

image compression were defined, described, and evaluated.

Objective and subjective quality assessments of five different

compression algorithms, following the aforementioned coding

approaches, were conducted. Experimental results provide

some insights on the impact of compression algorithms within,

as well as across predefined use cases, on the perceived

quality. This reveals the necessity of further investigations and

improvements of compression algorithms especially in terms
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(a) R4 (b) R3 (c) R2 (d) R1

Fig. 12: Pairwise comparison results for interactive subjective tests. Each cell contains the number of contents for which the

null hypothesis was rejected, for each compression ratio. The null hypothesis is defined as MOSi ≤ MOSj , in which i

indicates the row and j the column of the matrix.

(a) R4 (b) R3 (c) R2 (d) R1

Fig. 13: Pairwise comparison results for passive subjective tests. Each cell contains the number of contents for which the null

hypothesis was rejected, for each compression ratio. The null hypothesis is defined as MOSi ≤ MOSj , in which i indicates

the row and j the column of the matrix.

of processing of the metadata related to light field image data

rendering.

More specifically, subjective quality evaluations show that

one coding approach, namely, compressing 4D LF, yields

significantly better results in terms of visual quality for all

bitrates when compared to compressing lenslet images. The

4D LF coding approach is particularly suitable for general

consumers’ use case, since it does not involve additional

computations at the decoder side to be properly rendered.

Moreover, the coding approach does not require metadata to be

successfully decoded and displayed, thus reducing the bitrate.

Finding a successfull approach for the professional market,

however, is still an open issue. A new method for compressing

lenslet images while taking into account color fidelity must

be designed for this type of market. Further research should

focus on how to modify the proposed compression algorithm

for light field images to further improve the performance and

to meet the needs of all use cases.
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