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Using both simulated and experimental data, detailed comparisons are made between the different

physical interpretations and responses of several important models commonly employed for fitting

and analyzing conductive-system data sets, such as those for ionic glasses. Those considered are one

following directly from stretched-exponential temporal response, designated the Kohlrausch K0;

several ones indirectly associated with such stretched-exponential response: the original modulus

formalism ~OMF! model and corrected modulus formalism ~CMF! ones; and the ZC model, one

whose real-part conductivity expression has been termed ‘‘universal dynamic response.’’ In

addition, several models involving dielectric dispersion, rather than resistive dispersion, are found

to be less appropriate for the present data than are the CMF ones. Of the four main

conductive-system models the CMF approach fits data for a wide variety of materials much better

than do the others. The OMF is shown to be both experimentally and theoretically defective and

leads to poor and inconsistent fitting results. The simple ZC model involves nonphysical

low-frequency-limiting real-part conductivity response and is usually less appropriate even than the

K0. High- and low-frequency expressions and fit results for the various dielectric elements are

presented, along with discussion of characteristic, peak, and mean relaxation times for the various

models, failing to confirm some proposed relations between these quantities suggested earlier.

© 2003 American Institute of Physics. @DOI: 10.1063/1.1539092#

I. INTRODUCTION

There are currently four main approaches for analyzing

dispersive frequency response data of ionic materials. Of

these, three involve stretched-exponential correlation-

function temporal response and lead to different types of

Kohlrausch frequency-response models, all ultimately de-

rived from stretched-exponential correlation-function tempo-

ral response.1,2 The K0 model, conceptually the simplest, is

just the Fourier transform of stretched-exponential

response.3–8 Next is the original modulus formalism ~OMF!
of Moynihan and associates,9,10 and the third is the corrected

modulus formalism ~CMF!.3,7,8,11–14 The fourth model, the

ZC, involves complex power-law behavior with an exponent

n, and it is often designated as ‘‘universal dynamic response’’

~UDR! when only the real part of its conductivity is consid-

ered ~Ref. 6! and references therein, Ref. 15.

Although prior work indicates that the CMF is both

theoretically and experimentally more appropriate than the

OMF and ZC/UDR approaches,6–8,16 both of the latter mod-

els continue to be widely used for data fitting and analysis.

The present work includes new comparisons between these

various models in order to help the reader pick the most

appropriate one for future use. The four models, as well as

several dielectric-dispersion ones, are defined and discussed

in Sec. II, and some of their fitting results to experimental

data are illustrated in Sec. III. Finally, Sec. IV compares

formulas and fit results for mean values, peak values, and

various dielectric constants calculable using these models.

II. SUMMARY OF VARIOUS RESPONSE MODELS

A. Kohlrausch response models and the OMF and
CMF approaches

Electrode effects and possible nearly-constant-loss

~NCL! behavior16–19 are included here as appropriate, to-

gether with the basic fitting models discussed in the follow-

ing. Let us use the subscript k, taken equal to D, 0, 1, or Z, to

distinguish some of the different types of dispersive fre-

quency response models. Here D specifies bulk dielectric

response and Z designates the ZC model. For k50, define

the stretched-exponential temporal response as

f0~ t !5exp@2~ t/to!b0# , 0,b0<1, ~1!

where to is the characteristic relaxation time of the response.

The 0 subscripts are changed in Eq. ~1! to D ones for dielec-

tric situations. In most of the literature involving Kohlrausch

~also designated by KWW or just K! response models, no

distinction has been made between the K5D , 0, and 1 val-

ues of the fractional exponent bk , and it has usually been

designated as just b, sometimes leading to ambiguity.

Next, define the normalized frequency response

quantity2,3

Ik~v ![
Uk~v !2Uk~` !

Uk~0 !2Uk~` !
5Ik82iIk9 , ~2!

so Ik(0)51 and Ik(`)50. For pure dielectric dispersion,2,20

UD(v)[e(v), where e~v! is the complex dielectric con-

stant. For pure conductive-system dispersion set k50, 1, or Z

and Uk(v)[r(v), where r~v! is the complex resistivity,

equal to the inverse of the complex conductivity s(v)a!Electronic mail: macd@email.unc.edu

JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 7 15 FEBRUARY 2003

32580021-9606/2003/118(7)/3258/10/$20.00 © 2003 American Institute of Physics

Downloaded 11 Mar 2005 to 152.2.181.221. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



5s8(v)1is9(v). Note that for conductive systems, the CMF

and the OMF have usually implicitly or explicitly assumed

that the quantity r`[r(`) is zero, although the effects when

it is small but nonzero have been discussed elsewhere.3,14

For simplicity and because r` cannot be determined by data

fitting unless the data extend to very high frequencies, it will

also be taken as zero herein.

For k5D or 0 but not 1, the normalized frequency re-

sponse is given by2,10,13

Ik~v !5E
0

`

exp~2ivt !S 2

dfk~ t !

dt
D dt . ~3!

For the K0 Kohlrausch response model, the f0(t) used in

Eq. ~3! is that of Eq. ~1! and is a conductive-system correla-

tion function. The k5D fD(t) quantity is proportional to the

dielectric transient response current, and the ID(v) fre-

quency response is that of the KD model.2,20 Note that Eqs.

~2! and ~3! should be applied only for a single dispersive

process.12 Thus, effects not directly associated with such dis-

persion are not then included in the response, and only ones

arising entirely from mobile charge effects are involved

herein for kÞD .

The situation is a bit more complex for the conductive-

system K1 Kohlrausch response model, that appropriate

when k51 and used for both the OMF and CMF approaches.

The OMF K1 analysis begins with the f0(t) quantity, de-

fined as a conductive-system correlation function for electric

field decay at constant dielectric displacement.10 This mac-

roscopic approach, which also involves a quantity equivalent

to I0(v), has come to be known as the original modulus

formalism because it was first derived at the complex modu-

lus level, where M (v)5iveVr(v)5M 8(v)1iM 9(v).

Here eV is the permittivity of vacuum. A microscopic model

with formally equivalent frequency response to the K113,14

was also published in 1973;21 see further discussion in Sec.

III.

The corrected form of the K1 conductive-system modu-

lus formalism, the CMF, when expressed at the modulus

level, may be written as3–5,13,14

M C1~v !5iveVr0I1~v !5@12I0~v !#/eC1` , ~4!

where I0(v) follows from Eqs. ~1! and ~3! with k50, r0

[r(0), and eC1` is the high-frequency-limiting value of the

conductive-system part of the dielectric constant, eC1(v)

51/M C1(v). Here the subscript C is used to denote the

conductive-system response just as D has been used to des-

ignate the bulk dielectric response, that present in the ab-

sence of mobile charges. The corresponding high-frequency-

limiting bulk dielectric constant is eD` , and thus for

conductive materials e`[eC1`1eD` , where e` is the high-

frequency-limiting value of e~v! for either the experimental

data or for the total CMF theoretical model.

It is important to recognize that although in the modulus

formalism the I0(v) appearing in Eq. ~4! stems from

stretched-exponential temporal response involving b5b0 ,

the I1(v) of this equation differs in form from I0(v), and

thus its time-domain transform is not of stretched-

exponential form,5,14 as is that of the K0 model. Therefore,

when Eq. ~4! is a part of a full K1 data fitting model with b0

free to vary, fitting will lead to a different estimate of it than

that which would have been obtained had the K0 model,

where M C0(v)5iveVr0I0(v), been used for fitting. The

new b estimate, arising from using the K1 model, is natu-

rally termed b1 , and it is thus not appropriate to set k51 in

Eq. ~3!. Recent fitting results for CMF b1 temperature, and

ionic-concentration dependencies appear in Ref. 8 where b1

is shown to be virtually independent of either variation.

Conductive-system analysis3,7,8,13,14 leads to the follow-

ing important CMF general definitions of eC1` , whose value

may be estimated from data fitting as illustrated later:

eC1`5s0to /^x21&1eV5s0to^x&01 /eV

5@gN~qd !2/6kBeV#/T5A/T , ~5!

where to is, as usual, the characteristic relaxation time of the

dispersion. Here x[t/to , and so to^x&015^t&01 and

to
21^x21&15^t21&1 . The quantity ^t& is the mean of t over

the distribution of relaxation times of the dispersed response

model.2,12,13 For the present Kohlrausch models, the 01 sub-

script indicates that ^x&01 is the mean of x over the K0 dis-

tribution involving b1 rather than b0 , as implied by Eq. ~4!.
The normalized means satisfy ^x&0151/^x21&1 because of

the close relation between the K0 and K1 distributions of

relaxation times.3,12,22 Here N is the maximum mobile charge

number density; g is the fraction of charge carriers of charge

q that are mobile; and d is the rms single-hop distance for the

hopping entity. As usual we shall take the quantities in the

square brackets of Eq. ~5! temperature independent, so the

parameter A is then independent of temperature.8

Because there is always a contribution to the experimen-

tal high-frequency dielectric response from dipolar and vi-

bronic bulk-material effects, it is insufficient to fit experi-

mental data with a purely conductive-system response

model, such as that of Eq. ~4!. For the usual frequency range

employed for most measurements on ionic materials, roughly

1022 – 106 Hz, bulk dielectric dispersion is negligible, and, in

the absence of ionic conduction, bulk response is adequately

described by the frequency-independent dielectric constant

eD` . Although this quantity seems to increase somewhat

with an increase in mobile charge concentration,8 for sim-

plicity I shall follow common practice here and take it inde-

pendent of frequency over the measured range as well as

independent of ionic concentration.

The OMF equation corresponding to the CMF one of Eq.

~4! is3,10,23

M 1~v !5iveVr0I1~v !5@12I0~v !#/e` , ~6!

differing only in the replacement of eC1` by e` , where e`

[eC1`1eD` . It thus accounts for the effects of eD` by

implicitly combining conductive-system and dielectric re-

sponses in Eq. ~6!, improper because only the pure

conductive-system Eq. ~4!-model follows directly from Eqs.

~1! to ~3!.
In contrast, the full CMF fitting approach must include

the effect of eD` in a way more satisfactory than that of the

OMF, and thus it needs to involve a nondispersive dielectric-

response addition to the K1 model. The simplest way is to

include a separate free fitting parameter, ex5eD` ; the result-
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ing composite model is denoted CK1. It thus involves the

conductive-system parameters s0 , to , and b1 , as well as

eD` , and Eq. ~5! allows an estimate of eC1` to be calculated

when the value of ^x&01 is known ~see Sec. IV C!.
A more general alternative model is to include in parallel

with K1 a constant phase element ~PCPE!, defined at the

complex dielectric level as

ePC~v ![APC~ iv !2gPC, ~7!

where 0<gPC<1.8,16,18,19 The resulting composite model,

which can also represent nearly constant loss effects when

present, is termed the PK1. Note that when gPC50, ePC is an

ordinary dielectric constant such as eD` , and when gPC51

ePC becomes a pure conductance. When ePC is used to rep-

resent NCL behavior, gPC!1 and APC'eD` .

In contrast, the OMF fitting model involves only the s0 ,

to , and b1 parameters, allowing no separate estimation of

eD` and eC1` , but an estimate of e` may be calculated from

the OMF analog of Eq. ~5!3,7,9,10,14,23,24 using the above-

given parameter estimates and

e`5eMa^x&01 , ~8!

where

eMa[s0to /eV ~9!

is a Maxwell type of relation. In most applications of the

OMF, instead of using Eq. ~8! directly, Eqs. ~8! and ~9! are

used to estimate s0 when an independent estimate of e` is

available. Although the slightly greater simplicity of the

OMF compared to the CMF encourages its use, OMF fitting

invariably leads to inconsistencies in fitting experimental

data and thus to much less accurate fitting than does the

CMF.6–8,14,16

In the past, there has been little direct fitting of Eq. ~4! or

~6! to data because no analytical result for the integral of Eq.

~3! is available for arbitrary values of b0 in Eq. ~1!. There-

fore, I0(v) has had to be calculated numerically for each

separate value of v by a Fourier transform of Eq. ~3!, a task

not amenable for data fitting with free model parameters.

Luckily, an alternative exists and has been used in such data

fitting by the author since 1996. Both the K0 and K1 fre-

quency and temporal responses associated with such equa-

tions as Eqs. ~4! and ~6! may be accurately calculated or

fitted using the free LEVM complex-nonlinear-least-squares

computer program.25 Further, unlike the Fourier transforma-

tion approach, LEVM allows possible inclusion in the total

fitting model of not only K0 or K1 response but also of

effects associated with eD` , partial or full blocking at elec-

trodes, and nearly constant loss.3,8,16–19

The b0 , OMF b1 , and CMF b1 quantities associated

with Eqs. ~1!, ~4!, and ~6! are generally quite different and

should not be designated by just b. The high-frequency-

limiting log–log s8~v! slopes of the three basic Kk models

involving bk are (12bD), b0 , and (12b1).4 Thus for a

given conductive-system data set extending to sufficiently

high frequencies we expect that b0 and (12b1) should both

equal the ZC power-law exponent n. Some relevant fitting

results are included in Sec. III.

B. The ZC response model

The ZC is probably the simplest useful response model.

Its historical background is discussed in Ref. 6. At the com-

plex conductivity level it may be expressed as

sZ~v !5s0@11~ ivtZ!n# , ~10!

with 0,n<1. Although the ZC, particularly in a simplified

expression for sZ8(v), the UDR response model, has been

known and used for many years,6,15,26 both the power-law

low-frequency-limiting behavior of (sZ(v)2s0) and the

high-frequency limiting response of sZ(v) are nonphysical.

Fitting of s8~v! data to the sZ8(v) model thus invariably

yields an inaccurate estimate of s0 .6 See also the fit results

presented here in Sec. IV F.

The UDR form, defined at the real conductivity level, is

sZ8~v !5s0@11~vtU!n# , ~11!

so it follows that tU5tZ@cos(np/2)#1/n, generally smaller

than tZ . In the past, tU has been identified as the inverse of

the hopping frequency of the charge carriers,27–30 but this

interpretation was soon challenged26,31,32 and does not seem

well justified either theoretically or experimentally. Further,

recent work13,14 has shown that the Scher–Lax microscopic

model21 mean time for a hop can be identified as the CMF

mean relaxation time ^t&015to^x&01 of the macroscopic

CK1 model; see Eq. ~5! and the discussion of the isomor-

phism of the microscopic and macroscopic models in Sec.

III. Since there is no reason to believe that tU.^t&01 , it

should not be identified as the hopping time. Further, since

the real and imaginary parts of Eq. ~10! satisfy the Kronig–

Kramers relations, this equation should always be used in

place of Eq. ~11!.3,6,33

When the ZC is used to analyze conductive-system data

by means of complex-nonlinear-least-squares fitting, one

must include the term iveVe` in the full fitting model at the

complex conductivity level in order to account for the en-

demic presence of e` . Note, however, that such a term con-

tributes nothing to the s8~v! part of the response. In the

absence of electrode and NCL effects, it is clear from Eq.

~10! that the high-frequency-limiting log–log slope of sZ8(v)

versus v is just the exponent n. But limited-range data may

not be sufficient to allow a good estimate of n to be obtained

unless the data are accurately described by Eq. ~10! at high

frequencies. If data are, as usual, well fitted by the CK1 or

PK1 models, it is clear that at the complex admittance level

the C of the CK1 approach should involve the term

iveVeD` , not the iveVe` of the ZC and CK0 models.

III. COMPARISON OF SEVERAL FITTING MODELS

A. Preliminary comparisons

In the first version of the present work, detailed compari-

son of fitting results of the same data sets using the OMF and

CMF approaches was emphasized. A reviewer suggested that

because ‘‘there is little doubt that there are electrical dipoles

in ionic solids,’’ such comparisons should include dielectric-

dispersion models as well as conductive-dispersion ones and

cited the present Refs. 34–36 as illustrative of such compari-

son. These works dealt with data for melts, glasses, and liq-
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uid ionic solutions and assumed that dielectric dispersion

associated with ion pairs was dominant and that no

conductive-system dispersion was present.

The problem of deciding whether a given dispersive fre-

quency response data set arises from mobile-charge effects

~conductive-system dispersion! or from dielectric dispersion

is an interesting one and was investigated in 1999 using ac-

curate synthetic data.37 A K1 data set extending over a very

wide frequency range was fitted with the DK0[KD model

~and vice versa!, where the ‘‘D’’ as usual denotes a dielectric

dispersion situation. Because conductive-system response in-

volves a nonzero r(0)51/s0 dc value, adequate dielectric-

system fitting of such data requires that a dc conductivity

quantity be included in parallel with a pure dielectric re-

sponse model, as in Refs. 34–36. Such a KD e~v! model

involves the four parameters e` , De[e02e` , toD , and

bD , as in Eq. ~2!. Let us denote the inclusion of a parallel

conductivity parameter by ‘‘G’’; then an appropriate compos-

ite model may be designated by GDK0. Further, let ‘‘S’’

indicate the presence of a CPE term representing electrode

effects, the SCPE, in series with a conductive or dielectric

model.8,16,18,19 The number of free parameters in a composite

fitting model will be included in parentheses after the name

of the model, for example, GDK0S~7!.

The isothermal comparisons of Ref. 37 showed that

while one could generally well fit a conductive system in-

volving resistive dispersion with one involving dielectric dis-

persion, and vice versa, such fits were not exact, allowing the

different processes to be distinguished. When data are avail-

able for a range of temperatures, one would expect the acti-

vation energies of s0 and to for a thermally activated con-

ductive system to be the same or very nearly equal,8 while

such behavior is unlikely for leaky dielectric situations.

Since the authors of Ref. 38 found nearly equal activation

energies using a dielectric-dispersion fitting model for

lithium chloride solutions, it is likely that conductive-system

analysis would have been more appropriate for their data.

But this 1971 work was published before the OMF approach

had been developed.

It is always a good idea to investigate the appropriate-

ness of different fitting models when analyzing a new experi-

mental data set. We shall here fit data for the single-crystal

material 0.88ZrO2•0.12Y2O3 at T5503 K.8 We consider

conductive-system composite fits involving the ZC, K1, and

K0 models, and the dielectric-system ones GDK0, GDDC,

and GDEXP ones as well. These dielectric-dispersion models

were also used in Ref. 37. Here DC denotes the three-

parameter Davidson–Cole model, and EXP stands for the

asymmetrical exponential distribution-of-relaxations-times

model. LEVM fitting employed proportional weighting of the

complex data at the modulus level and led to values of the

relative standard deviations of the fit residuals, SF . For the

ZC~3!, CZC~4!, and PZC~5! models, values found for SF

were 0.243, 0.0537, and 0.0543, respectively. All of these

values are poor, but the ZC one led to completely inadequate

parameter estimates.

Table I shows fitting results for 15 other models. No

convergence could be obtained for fitting with the K0~3!
model since it involves no e` parameter. Note that both the

OMF K1 model and the GDK1 one led to very poor fits.

Further, although the SF values for the PK1S, PK0S, and

GDDCS models are small, all these fits involved at least two

free parameters with such large relative standard deviations

that their values were statistically undetermined.

Although it is surprising that the bottom three K0-model

fits led to SF values nearly as small as the corresponding K1

ones, it is clear that the PK1 model provided the best fit, as

found earlier for these data,8 one very appreciably better than

those of the GDDC and GDEXP. In addition, fits of the

present data agree with the conclusion in Ref. 37 that a

DEXP model yields a somewhat better dielectric-dispersion

fit than does a DK0 or DDC one.

Another significant result found was that fitting with the

GPK1 model led to essentially the same SF value as that for

the PK1 but also to such a large uncertainty of the parallel

conductivity parameter that it could not be statistically dis-

tinguished from zero. As mentioned in Ref. 37, when such a

result appears it is a good indication that the data involve

conductive dispersion rather than dielectric dispersion. The

equality of the activation energies of s0 and to for fits of

data for the present material over a range of temperatures,8 as

well as the present results, clearly indicate that these data

sets involve resistive rather than dielectric dispersion. Nev-

ertheless, some detailed comparisons between fittings by the

two different approaches are included in the following.

B. Detailed fitting results

The results in Table I suggest that detailed GDEXP-

model fitting be compared to that obtained using the OMF

K1 and the CMF PK1 models, but since the comparisons of

Refs. 34–36 used the GDDC model, it will be employed

here rather than the GDEXP one. Instead of using accurate

complex-nonlinear-least-squares fitting of data to estimate

OMF parameters, it has been customary for those employing

the OMF approach to use the results of Table 2 in Ref. 10 to

relate the width at half height of curves of M 9(v) data to

b(5b1). As discussed in the following, this procedure

yields inappropriate b estimates. Alternatively, one may

readily employ LEVM fitting to obtain accurate estimates of

all OMF model parameters, as illustrated here.

Some detailed results of PK1, K1, and GDDC fittings of

the data used for generating Table I are presented in Fig. 1.

TABLE I. Comparison of values of SF , the relative standard deviation of a

fit, for 15 fits of experimental single-crystal M (v) data of 0.88ZrO2

•0.12Y2O3 at T5503 K. Numbers in parentheses denote the number of free

fitting parameters present. Here an initial C in a model name indicates the

presence of a capacitance or dielectric constant in parallel with the basic

model; P indicates a parallel constant-phase-element; S indicates a series

constant-phase-element; and GD indicates the presence of a conductance or

conductivity in parallel with a dielectric dispersion model ~see Sec. III A!.

K1 models SF K0 models SF GD models SF

K1~3! 0.071 K0~3! ¯ GDK1~5! 0.094

CK1~4! 0.021 CK0~4! 0.035 GDK0~5! 0.019

CK1S~6! 0.0090 CK0S~6! 0.011 GDDC~5! 0.0133

PK1S~7! 0.0050 PK0S~7! 0.0057 GDDCS~7! 0.0101

PK1~5! 0.0049 PK0~5! 0.0083 GDEXP~5! 0.0116
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Although the GDDC-fit points are omitted in Fig. 1~a! be-

cause they would not be well distinguishable, the differences

between the three fit predictions are made clear by the re-

sidual plots of Fig. 1~b!. These results, consistent with the

corresponding SF values, show that the PK1 model is appre-

ciably superior to the GDDC one, especially at low and mid-

frequencies, and both are far superior to the K1 model for

fitting the present data.

Particularly important is the difference between the b1

estimates shown. It arises from the absence of an eD` param-

eter in the OMF K1 fit. Its eC1` estimate of 28.88 is identi-

fied, as usual in this approach, as e` , and we see that it

agrees quite well with the value from the GDDC fit. No e`

estimate is shown for the PK1 fit because the presence of the

PCPE term in this model, applying for all frequencies, pro-

hibits the accurate determination of such a quantity. If, how-

ever, we approximate eD` by the APC524.78 PK1 fit esti-

mate, not unreasonable since the associated gPC estimate is

only 0.0039, we obtain the value e`.29.65, somewhat

larger than the CK1S fit estimate of 28.29 where the b1

estimate is 0.319. An improved PK1-like NCL approach is

discussed in Ref. 8, and related work in progress that re-

places the PCPE term by an effective-medium model does

lead to a physically realizable expression for eD` .

Aside from the more accurate fit of the CMF, true even

when any CPE element is omitted, why should one prefer the

CMF to the OMF? Further reasons are summarized in the

following, but Fig. 2 makes the difference in fitting results

graphic. Here we have plotted full CK1S and K1 M 9(n) fit

results for comparison with the K1-only part of the CK1S

and PK1 fits. The vertical dashed lines, plotted at no

[1/2pto , clearly occur beyond the peaks of the curves,

showing that the sometimes-used identification of no with

the peak frequency39 is inappropriate. Further, as shown here

and hereafter, OMF estimates of to are always much larger

than are CMF-fit ones.

Although the K1 parameter estimates obtained from the

CK1S and PK1 fits are in close agreement, the slightly

FIG. 1. ~a! M 8(n) and M 9(n) data and fit results for the PK1 and K1 models. ~b! Real (r8) and imaginary (r9) relative residuals, each defined here as

~data—model prediction!/~model prediction!, for PK1, K1, and GDDC model fits. The residual lines are included here solely to guide the eye. Here and

hereafter, nn51 Hz. Note that the K1-fit residuals are shown here at one-tenth of their actual size.
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higher peak of the K1 part of the PK1 fit shown in Fig. 2 is

associated with the lack of an exact eD` value for the PK1

fit, as discussed earlier. Nevertheless, the present results in-

dicate that rather than just being arbitrary fitting models

CK1S and PK1 fits allow one to closely estimate a K1-model

description, one describing significant and meaningful physi-

cal response.

The difference between the CMF and OMF K1 curves is

particularly large for the present data where eD`@eC1` , but

the widths at half height of the top K1 curves of the figure

nevertheless lead, on using Table 2 of Ref. 10, to b1 esti-

mates in close agreement with the direct-fit CMF ones of

0.319 and 0.318 for the CK1S and PK1, respectively. Refer-

ence 10, Table 2 actually applies only for the K1 model and

should therefore never be used with experimental M 9(v)

data because such data always include the effects of eD` .

Remember that the conductive-system K1 model and Eq. ~4!
are associated entirely with mobile-charge effects, and eC1`

thus should not involve any bulk dipolar effects, such as

those leading to eD` .

Recent K1 CMF data analysis for different ionic-

conducting materials has indicated that b1 is virtually inde-

pendent of both temperature and mobile-ion concentration

and is close to 1/3 in value.7,8,16 This result is in agreement

with an earlier study yielding (12n).0.33 estimates for a

wide variety of materials, a study that also showed that OMF

estimates of b1 were quite different and of the order of

0.58.40 Reference 40 also states that (12n).0.33 values are

typically observed for mechanical losses in ionic glasses.

Furthermore, nuclear spin relaxation results for a Li chlo-

roborate glass analyzed by Eq. ~1! with k50 led to a value

of b0 of 0.35, which was compared with an OMF electrical

conductivity relaxation estimate of 0.50.41 These results be-

gin to suggest that a K1 value of b151/3 may possibly be a

nearly universal result for various types of relaxation and

materials.

The effect of limited frequency range on b0 estimation

was investigated starting with data for Li0.18La0.61•TiO3 at

T5150 K kindly provided by Dr. C. León. LEVM fitting us-

ing the CMF approach led to parameter estimates that were

then used to generate a virtually exact K1-model M (v) data

set with b151/3 for the range 0.1<v<108 r/s . For this set,

eC1`52/3. Since no value of eD` was included, the OMF

and CMF approaches were formally equivalent. The data

were then fitted with the CK0 model, one including a free ex

parameter. It was needed to model the nonzero eC1` of the

data since for the K0 eC0(`)[eC0`50.

Fit results for both proportional and unity weighting

should lead to b052/3 if the relation b0512b1 were ap-

plicable. In fact, proportional-weighting fitting led to the

large SF value of 0.073 and to the estimate b0.0.59. With

unity weighting, which emphasizes large data values, the fit

at and near the peak was better and led to b0.0.61. Better

estimates of the limiting value were obtained by fitting just

the s8~v! data. Then, proportional and unity weighting led to

estimates of 0.617 and 0.656, respectively. When the data

range was extended to 109 r/s , these estimates were im-

proved to 0.628 and 0.667, respectively.

As the above-mentioned results show, b0 estimates from

fits of synthetic K1 data are sensitive to the range of the data

and to which immittance level is used in the fitting. For fits

of experimental data with a CMF approach involving the K1

model, there is much less b1 sensitivity for data with small

random errors, and none of course when the data have van-

ishingly small random errors and are of K1 character.

In recent composite CMF K1 fits of limited-range data

for several different materials,7,8,16 most b1 estimates were

again found to be close to 1/3 for complex fits at any of the

four immittance levels or for fits of any of the eight indi-

vidual real or imaginary parts of the data. Such comparisons

using the OMF K1 model for fitting were, however, incon-

sistent, and fits of M (v) or M 9(v) yielded b1 estimates

much larger than the corresponding CMF ones. Inconsis-

tency also appeared when OMF b1 estimates for s8~v! fits

were compared with results for any of the other immittance-

level OMF fits. Since s8~v! data values are independent of

the presence or absence of eD` effects, OMF and CMF fits of

data at this level should yield closely the same b1 estimated

values. Such results were indeed observed, verifying the ap-

propriateness of the CMF and the inappropriateness of using

the OMF for parameter estimation at the modulus level, as

illustrated in Fig. 2 and in Sec. IV F.

A final inconsistency of the OMF approach appears

when the formal results of the conductive-system micro-

scopic continuous-time random-hopping model of Scher and

Lax21 are compared to those of the macroscopic modulus

formalism.13,14 The Scher–Lax model involves a @1

2I0(v)# term in its response, just as in Eq. ~4!. The eC19 (v)

expressions following from the two models are of exactly the

same form, but the eC18 (v) expressions differ by the absence

of a nonzero eC18 (`)5eC1` in the microscopic model. Note

that with the present stretched-exponential expression for

FIG. 2. Comparison of full OMF K1 and CMF CK1S fits of Fig. 1 data with

the K1-response parts of the CMF CK1S and PK1 fits. The fit parameters

were used to generate and extrapolate these results to higher frequencies.

The vertical dashed lines show the positions of no[1/2pto for the OMF

and CMF curves.
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f0(t) no overt Coulomb interactions appear in the micro-

scopic ~or macroscopic! K1 response model.

Unfortunately, the Kronig–Kramers relations do not lead

to clarification of the above-mentioned difference in the two

models, a difference ascribed by Scher ~private communica-

tion! as arising from the inapplicability of the microscopic

approach at very high frequencies. It has been shown, how-

ever, that a distribution of relaxation times estimated using

LEVM from specific eC19 (v) K1 response alone may be em-

ployed to estimate the corresponding eC18 (v) response.12,14

The resulting eC18 (v) response agreed well with the

macroscopic-model response and included a proper nonzero

value of eC1` , showing that when the real and imaginary

parts of the microscopic response are made consistent the

two models are fully isomorphic. Since these calculations

and responses involve only mobile-charge effects, the OMF

is intrinsically nonisomorphic because its limiting dielectric

constant involves dipolar as well as monopolar effects and

the model is thus not isomorphic to the Scher–Lax micro-

scopic response theory as claimed earlier.42,43

The above-mentioned CMF isomorphism provides an in-

structive microscopic interpretation of the K1 conductive-

system model. The Scher–Lax approach is that of stochastic

hopping transport of charge involving a continuous-time ran-

dom walk on a lattice. The excellent fits of experimental data

using such macroscopic CMF models as the CK1, the CK1S,

and the PK1 suggest that not only is one dealing with a

conductive system but the physical processes associated with

charge motion in the material investigated are well described

by those of the microscopic Scher–Lax model.

The major problem with the OMF approach, the unwar-

ranted replacement of eC1` by eD` or e` , was first pointed

out in 1994.11 As already mentioned, in 1995 Sidebottom,

Green, and Brow40 showed that UDR power-law data analy-

sis for a wide variety of materials yielded (12n) values of

about 0.33, quite different from their larger OMF b1 esti-

mates of about 0.58, but no explanation of the difference was

presented. Since then, the OMF and CMF data fitting ap-

proaches have been compared in detail.3–8,12,14 When elec-

trode and/or nearly-constant-loss effects are properly ac-

counted for, the OMF b1 is found to increase with

temperature, quite different from CMF-fit constant estimates

of about 1/3.8

IV. COMPARISONS OF MEAN-VALUE AND
DIELECTRIC-CONSTANT EXPRESSIONS AND FIT
RESULTS

A. Background

Because all dispersed-response models lead to relations

such as Eqs. ~5! and ~8! that involve averages over their

distributions of relaxation times, it is important to compare

means for various models as well as the resulting expressions

that relate limiting dielectric constants and dc conductivity.

We shall start with general relations for limiting dielectric

constants and then show explicit forms and fitting results for

the present models of interest. Denote the normalized

relaxation-time distribution as G(x). Then, generally2–6,12,13

^tm&k5to
m^xm&k5to

mE
0

`

xmGk~x !dx

5@to
m/G~m !#E

0

`

um21fk~u !du , ~12!

where u[t/to and G(m) is the Euler gamma function. For

Kk conductive-system models, G1(x)5(x/^x&01)G0(x).3

Unfortunately, for the k5Z ZC model with its nonphysical

limiting responses, ^t&Z , for example, does not exist unless

GZ(x) is cutoff at both extremes. All the following results

involve no cutoffs,5 appropriate for the data set used for the

present comparisons. The quantity ex is a free dielectric pa-

rameter used in fitting with some of the following models.

B. CKO model

eC00 /eMa5^x&05b0
21G~b0

21!, ~13!

eC0` /eMa51/^x21&050, ~14!

e`5ex , e05eC001e` . ~15!

C. CK1 CMF model

eC10 /eMa5^x&15@^x2&01 /^x&01#5G~2b1
21!/G~b1

21!,

~16!

eC1` /eMa51/^x21&15^x&015b1
21G~b1

21!, ~17!

eD`5ex , e`5eC1`1eD` , e05eC101eD` . ~18!

TABLE II. Fitting results using row-1 synthetic M (v) data derived from fitting single-crystal 0.88ZrO2•0.12Y2O3 at T5503 K. In row 1, eD`523, and it

is zero for row 2. The dimension of s0 is S/cm and that of all t-related quantities is seconds. Rows 3 and 4: M (v) fits; rows 5–7: s8~v! fits. See Eqs.

~23!–~22! for ^x&[^t&/to expressions.

No. Model 100SF bk 108s0 100M p9 104to 104tp 104^t&01 104^t&k

1 CMF:CK1

Data

¯ 1/3 1.845 1.035 0.0400 1.212 0.2400 2.400

2 K1 data ¯ 1/3 1.845 3.738 0.0400 0.0598 0.2400 2.400

3 OMF:K1 fit 2.87 0.5460 1.850 1.017 0.8101 1.069 1.395 3.443

4 CK0 fit 1.28 0.5233 1.841 1.020 1.096 1.186 ¯ 2.023

5 CK0 s8 fit 0.98 0.5402 1.865 ¯ 1.017 ¯ ¯ 1.781

6 ZC s8 fit

s0 free

1.75 0.3898 1.716 ¯ 1.093 ¯ ¯ 3.905

7 ZC s8 fit

s0 fixed

3.68 0.3492 1.845 ¯ 0.8967 ¯ ¯ 4.544
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D. K1 OMF model

e10 /eMa5^x&15@^x2&01 /^x&01#5G~2b1
21!/G~b1

21!,

~19!

e1` /eMa51/^x21&15^x&015b1
21G~b1

21!, ~20!

e`5e1` , e05e101e` . ~21!

Although the right-hand sides of Eqs. ~16! and ~17! are the

same in form as those of Eqs. ~19! and ~20!, large differences

between the to and b1 estimates obtained from CMF and

OMF fits of the same data ensure that their eC10 and eC1`

estimates will also differ substantially, as illustrated in Sec.

IV F. Note that the conductive-system ‘‘C’’ subscript is omit-

ted here from the above-mentioned OMF dielectric-constant

designations because the OMF approach is a combination of

both conductive and dielectric responses, as already dis-

cussed.

E. ZC model with bZÆ1Àn¶b0

eCZ0 /eMa8^x&05E
0

`

f0~u !du5E
0

`

exp~2ubZ!du

5bZ
21G~bZ

21!, ~22!

e05eCZ01e` . ~23!

Equation ~22! for eCZ0 , involving a Kohlrausch response

approximation, is discussed in the following.

F. Synthetic data fitting results

In the following two tables, results are presented for fits

of the various models to an exact CK1 data set. This set,

which involved 81 points logarithmically distributed over the

range 100<v<106 r/s, was derived by starting with the

CK1S fit parameters, adjusting the values of those involving

the CK1 part of the response slightly, and then using them in

LEVM to generate the data. Thus, the resulting data set well

represents the response of single-crystal 0.88ZrO2

•0.12Y2O3 at T5503 K with electrode or nearly-constant-

loss effects removed. Because LEVM yields the most accurate

response for b151/3 and because many fit results well ap-

proximate this value, it was used, along with r055.421

3107 V cm.

Table II presents values of various quantities for the ex-

act data in rows 1 and 2 and for fit results in rows 3–7. Here

M p9(vp) is the peak value of the M 9(v) data or fit and tp

[1/vp is the corresponding tau value, where vp is the mode

of the response curve. The tp column has been included

because it was stated some years ago that for conductive

systems tp and the ^t& defined by tpb21G(b21)

5eVe` /s0 were in close agreement.39 But because the re-

sults in Table II show that tpÞto , this definition of ^t& is

incorrect and unequal to that following from Eqs. ~8! and

~19! for the OMF, ^t&015to^x&01 .

Table II also shows that there are no equalities between

the estimates of to , tp , and ^t&01 obtained from the same fit

results. León, Lucia, and Santamaria found excellent agree-

ment, however, between their ZC tZ5to and ^t&01 estimates

from fits of data for the same material as that considered here

but one with a slightly smaller Y2O3 concentration.33 Such

close agreement suggested to them that the two quantities

might be the same. As in the present work, their ^t&01 esti-

mates involved the OMF K1 model, but their b(5b1) and

other parameter estimates were derived by a series of ap-

proximations rather than directly as here. Here, the corre-

sponding estimates for comparison are tZ>1.09331024 s

and ^t&01>1.39531024 s. Interestingly, much closer agree-

ment is apparent here between the tZ estimate and the OMF

K1 tp>1.06931024 s one. Accurate fitting of data from dif-

ferent materials and at different temperatures is needed in

order to assess the generality of these results although the

more significant comparisons are those involving CMF

rather than OMF fitting results.

Table II shows s8~v! fit results in rows 6 and 7 for the

ZC model. These results therefore are also ones that would

be obtained from a UDR-model fit using Eq. ~11! except for

the difference between tZ and tU estimates already men-

tioned. The results in rows 6 and 7 differ because s0 was, as

usual, a free fitting parameter for the row-6 fit and was held

fixed at the exact row-1 value for the row-7 fit. Here bZ is

defined as (12n), so its row-6 value corresponds to n

.0.61, a common value for UDR fits for materials and tem-

peratures where electrode and NCL effects are

negligible6,15,26,41 or properly accounted for in complex-

nonlinear-least-squares fitting. The row-6 estimate of s0 is

the worst of those in Table II, and when it is held fixed at the

TABLE III. Results for various dielectric quantities calculated from exact data ~rows 1 and 2! and fits to the

row-1 data ~rows 3–7!. Here eMa is the Maxwell-type quantity of Eq. ~9!. See Eqs. ~13!–~23! for calculation

formulas employed. The eCZ0 results are discussed in the text.

No. Model ex eMa eCk` e` eCk0 ek0

1 CMF: CK1 23 5/6 5 28 50 73

2 K1 ¯ 5/6 5 5 50 55

3 OMF:K1 fit ¯ 16.93 29.15 29.15 71.94 71.94

4 CK0 fit 28.76 22.79 0 28.76 42.06 70.82

5 CK0 s8 fit

s0 free

¯ 21.42 0 ¯ 37.51 ¯

6 ZC s8 fit

s0 free

¯ 21.21 ¯ ¯ 74.44 ¯

7 ZC s8 fit

s0 fixed

¯ 18.46 ¯ ¯ 91.37 ¯
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proper value, as in row 7, SF is far larger. The row-6 s0

estimate is poorest because ZC low-frequency-limiting be-

havior is physically improper. For this reason, in the absence

of physically realizable cutoff, eZ(v) increases indefinitely

as v→0 and ^x&Z is infinite.

Now it is clear that the ZC model is more comparable to

the K0 rather than to the K1 one. For illustrative purposes

only, I make the approximation of using ZC fit parameter

estimates in the K0 expression of Eq. ~22! in order to calcu-

late the ^t&Z8^t&0 results of rows 6 and 7. It is clear that

they are appreciably larger than the other values in Table II,

perhaps in part because the bZ5(12n)5b0 relation is too

approximate.

When one carries out a s8~v! OMF K1 fit of the present

data, the fit is perfect and leads, as expected, to the results

shown in row 2. Note that the row-2 data and parameters are

very close to those of the CMF top K1 curves of Fig. 2.

Comparison of the row-2 and row-3 results thus illustrates

the inconsistency of the OMF approach at its starkest, as do

the Fig. 2 curves. Such inconsistency also leads to the large

row-3 SF value. Comparison of the CK0 results of rows 4

and 5 indicates that although the comparable parameter esti-

mates and ^t&0 values are not exactly the same, they are

reasonably close, and the SF values are much smaller than

that of the row-3 OMF fit. The K0 model is thus appreciably

more applicable here than is the OMF one, and differences

between the parameter estimates of rows 4 and 5 are associ-

ated with the systematic errors arising from fitting CK1 data

with a CK0 model, not from a basic inconsistency like that

of the OMF model.

The results shown in Table III used those of Table II and

Eqs. ~13!–~23!. Comparison of the values shown in rows 1

and 3 makes it clear that although the OMF K1 approach

leads to estimates of e` and e0 in reasonable agreement with

those of the input CMF CK1 model, these quantities are

formed in different ways. In particular, note that the OMF

estimate of e` arises entirely from the eC1` estimate of the

fit but includes the eD` value in this estimate, thus improp-

erly combining both conductive and dielectric system quan-

tities in this conductive-system parameter. Similar differ-

ences appear for the eC10 estimates.

It is evident that although the K0 fit cannot lead to sepa-

ration of eC1` and eD` values because eC0` is zero or neg-

ligible, M (v) K0 fits nevertheless yield a better estimate of

eC10 than do such fits using the OMF K1 model. Since s8~v!

fits lead to no e` estimates, no ek0 values are shown for rows

5–7, but it is clear that the present analysis of ZC-fit data

using a K0 expression yields very poor eC10 estimates and

would yield far too large estimates of e0 . Finally, it is worth

emphasizing that the conventional use of Eq. ~20! of the

OMF K1 model for estimation of s0 when a value of e` is

known ~or sometimes vice versa!, is inappropriate for two

reasons. First, data rarely extend to such high frequencies

that an accurate, limiting frequency-independent estimate of

e` is available. Second, the inconsistent, theoretically im-

proper OMF approach should be superceded by the CMF

approach, one that, through the use of LEVM or an equivalent

fitting procedure, yields simultaneous accurate estimates of

all pertinent parameters: b1 , to , s0 , and eD` , and so it then

allows the calculation of valid estimates of eC1` and eC10 .

Unfortunately, all publications dealing with the CMF

have been largely ignored so far, and the OMF continues to

be widely employed. For example, Ref. 41 provides a list of

20 OMF papers, many appearing after 1995, and many oth-

ers continue to be published. Because science involves the

search for truth, continuing users of the OMF should either

accept the CMF or show where and why it is incorrect. Since

neither has happened in the last seven years, it seems highly

probable that the basic premise of the CMF is unlikely to be

false and thus the CMF is a far more appropriate idealization

of the actual conductive-system physical situation than is the

OMF.
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